# Posts in the category Synthetic computability

### Synthetic mathematics with an excursion into computability theory

- 03 February 2021
- Talks, Synthetic computability

It is my pleasure to have the opportunity to speak at the University of Wisconsin Logic seminar. The hosts are graciously keeping the seminar open for everyone. I will speak about a favorite topic of mine:

##### Synthetic mathematics with an excursion into computability theory

**Speaker:** Andrej Bauer (University of Ljubljana)

**Location:** University of Wisconsin Logic seminar

**Time:** February 8th 2021, 21:30 UTC (3:30pm CST in Wisconsin, 22:30 CET in Ljubljana)

**Video link:** the Zoom link is available at the seminar page

**Abstract:**

According to Felix Klein, “synthetic geometry is that which studies figures as such, without recourse to formulae, whereas analytic geometry consistently makes use of such formulae as can be written down after the adoption of an appropriate system of coordinates”. To put it less eloquently, the synthetic method axiomatizes geometry directly by construing points and lines as primitive notions, whereas the analytic method builds a model, the Euclidean plane, from the real numbers.

Do other branches of mathematics posses the synthetic method, too? For instance, what would “synthetic topology” look like? To build spaces out of sets, as topologists usually do, is the analytic way. The synthetic approach must construe spaces as primitive and axiomatize them directly, without any recourse to sets. It cannot introduce continuity as a desirable property of functions, for that would be like identifying straight lines as the non-bending curves.

It is indeed possible to build the synthetic worlds of topology, smooth analysis, measure theory, and computability. In each of them, the basic structure – topological, smooth, measurable, computable – is implicit by virtue of permeating everything, even logic itself. The synthetic worlds demand an economy of thought that the unaccustomed mind finds frustrating at first, but eventually rewards it with new elegance and conceptual clarity. The synthetic method is still fruitfully related to the analytic method by interpretation of the former in models provided by the latter.

We demonstrate the approach by taking a closer look at synthetic computability, whose central axiom states that there are countably many countable subsets of the natural numbers. The axiom is validated and explained by its interpretation in the effective topos, where it corresponds to the familiar fact that the computably enumerable sets may be computably enumerated. Classic theorems of computability may be proved in a straightforward manner, without reference to any notion of computation. We end by showing that in synthetic computability Turing reducibility is expressed in terms of sequential continuity of maps between directed-complete partial orders.

The **slides** and the **video**
recording of the talk are now available.

### On fixed-point theorems in synthetic computability

- 07 November 2019
- Synthetic computability, Publications

I forgot to record the fact that already two years ago I wrote a paper on Lawvere's fixed-point theorem in synthetic computability:

Andrej Bauer:

On fixed-point theorems in synthetic computability. Tbilisi Mathematical Journal, Volume 10: Issue 3, pp. 167–181.

It was a special issue in honor of Professors Peter J. Freyd and F. William Lawvere on the occasion of their 80th birthdays.

Lawvere's paper "Diagonal arguments and cartesian closed categories proves a beautifully simple fixed point theorem.

Theorem:(Lawvere)If $e : A \to B^A$ is a surjection then every $f : B \to B$ has a fixed point.

*Proof.* Because $e$ is a surjection, there is $a \in A$ such that $e(a) = \lambda x : A \,.\, f(e(x)(x))$, but then $e(a)(a) = f(e(a)(a)$. $\Box$

Lawvere's original version is a bit more general, but the one given here makes is very clear that Lawvere's fixed point theorem is the diagonal argument in crystallized form. Indeed, the contrapositive form of the theorem, namely

Corollary:If $f : B \to B$ has no fixed point then there is no surjection $e : A \to B^A$.

immediately implies a number of famous theorems that rely on the diagonal argument. For example, there can be no surjection $A \to \lbrace 0, 1\rbrace^A$ because the map $x \mapsto 1 - x$ has no fixed point in $\lbrace 0, 1\rbrace$ -- and that is Cantors' theorem.

It not easy to find non-trivial instances to which Lawvere's theorem applies. Indeed, if excluded middle holds, then having a surjection $e : A \to B^A$ implies that $B$ is the singleton. We should look for interesting instances in categories other than classical sets. In my paper I do so: I show that countably based $\omega$-cpos in the effective topos are countable and closed under countable products, which gives us a rich supply of objects $B$ such that there is a surjection $\mathbb{N} \to B^\mathbb{N}$.

Enjoy the paper!

→ continue reading### Reductions in computability theory from a constructive point of view

- 19 July 2014
- Constructive math, Logic, Synthetic computability, Talks

Here are the slides from my Logic Coloquium 2014 talk in Vienna. This is joint work with Kazuto Yoshimura from Japan Advanced Institute for Science and Technology.

**Abstract: **In constructive mathematics we often consider implications between non-constructive reasoning principles. For instance, it is well known that the Limited principle of omniscience implies that equality of real numbers is decidable. Most such reductions proceed by reducing an instance of the consequent to an instance of the antecedent. We may therefore define a notion of *instance reducibility*, which turns out to have a very rich structure. Even better, under Kleene's function realizability interpretation instance reducibility corresponds to Weihrauch reducibility, while Kleene's number realizability relates it to truth-table reducibility. We may also ask about a constructive treatment of other reducibilities in computability theory. I shall discuss how one can tackle Turing reducibility constructively via Kleene's number realizability.

**Slides with talk notes: ** lc2014-slides-notes.pdf

### Synthetic Computability (MFPS XXIII Tutorial)

- 24 May 2007
- Constructive math, Synthetic computability, Talks, Tutorial

A tutorial presented at the *Mathematical Foundations of Programming Semantics XXIII* Tutorial Day.

### First Steps in Synthetic Computability Theory (Fischbachau)

- 18 September 2005
- Synthetic computability, Talks

At the EST training workshop in Fischbachau, Germany, I gave two lectures on syntehtic computability theory. This version of the talk contains material on recursive analysis which is not found in the MFPS XXI version of a similar talk.

**Abstract:**

Computability theory, which investigates computable functions and computable sets, lies at the foundation of logic and computer science. Its classical presentations usually involve a fair amount of Goedel encodings. Consequently, there have been a number of presentations of computability theory that aimed to present the subject in an abstract and conceptually pleasing way. We build on two such approaches, Hyland's effective topos and Richman's formulation in Bishop-style constructive mathematics, and develop basic computability theory, starting from a few simple axioms. Because we want a theory that resembles ordinary mathematics as much as possible, we never speak of Turing machines and Goedel encodings, but rather use familiar concepts from set theory and

topology.

**Download slides:** est.pdf

### First Steps in Synthetic Computability Theory (MFPS XXI)

- 08 May 2005
- Publications, Synthetic computability, Talks

**Abstract:** Computability theory, which investigates computable functions and computable sets, lies at the foundation of computer science. Its classical presentations usually involve a fair amount of Gödel encodings which sometime obscure ingenious arguments. Consequently, there have been a number of presentations of computability theory that aimed to present the subject in an abstract and conceptually pleasing way. We build on two such approaches, Hyland's effective topos and Richman's formulation in Bishop-style constructive mathematics, and develop basic computability theory, starting from a few simple axioms. Because we want a theory that resembles ordinary mathematics as much as possible, we never speak of Turing machines and Gödel encodings, but rather use familiar concepts from set theory and topology.

**Presented at:** Mathematical Foundations of Programming Semantics XXI, Birmingham, 2004 (invited talk).

**Download paper:** synthetic.pdf, synthetic.ps.gz

**Download slides:** synthetic-slides.pdf