First Steps in Synthetic Computability

Andrej Bauer

Department of Mathematics and Physics
University of Ljubljana
Slovenia

MATHLOGAPS, Fischbachau, September 2005

How cool is computability theory?

- Way cool:
- surprising theorems
- clever programs
- clever proofs
- Way horrible, it contains expressions like

$$
\varphi_{p\left(r\left(i, \varphi_{q(i)}(\hat{g}(n, i, m)+1), m\right), \varphi_{q(i)}(\hat{g}(n, i, m)-1)\right)}(a-\hat{g}(n, i, m))
$$

- Can we do computability theory as "ordinary" math?
- use axiomatic method
- argue conceptually and abstractly
- use customary mathematical notions

Related Work

- Friedman [1971], axiomatizes coding and universal functions
- Moschovakis [1971] \& Fenstad [1974], axiomatize computations and subcomputations
- Hyland [1982], effective topos
- Richman [1984], an axiom for effective enumerability of partial functions
- We shall follow Richman [1984] in style, and borrow ideas from Rosolini [1986], Berger [1983], and Spreen [1998].

Computability without Turing Machines

- Use ordinary set theory: no Turing Machines, or other special notions.
- Add a couple of axioms about sets of numbers.
- The underlying logic is intuitionistic: this is a theorem, not a political conviction.
- Interpretation in the effective topos translates our theory back to classical recursion theory.

Basic setup

- Intuitionistic logic: generally, no Law of Excluded Middle or Proof by Contradiction.
- As in Bishop-style constructive mathematics, we do not accept the full Axiom of Choice, but only Number Choice (and Dependent Choice).
- Basic sets:

$$
\emptyset, \quad 1=\{*\}, \quad \mathbb{N}=\{0,1,2, \ldots\}
$$

- Set operations:

$$
A \times B, \quad A+B, \quad B^{A}=A \rightarrow B, \quad\{x \in A \mid p(x)\}, \quad \mathcal{P} A
$$

- We say that A is
- non-empty if $\neg \forall x \in A . \perp$,
- inhabited if $\exists x \in A$. T .

Some interesting sets

- The set of truth values:

$$
\begin{gathered}
\Omega=\mathcal{P} 1 \\
\text { truth } \top=1, \quad \text { falsehood } \perp=\emptyset
\end{gathered}
$$

- The set of decidable truth values:

$$
2=\{0,1\}=\{p \in \Omega \mid p \vee \neg p\}
$$

where we write $1=\top$ and $0=\perp$.

- The set of classical truth values:

$$
\Omega_{\neg \neg}=\{p \in \Omega \mid \neg \neg p=p\} .
$$

$-2 \subseteq \Omega_{\neg \neg} \subseteq \Omega$.

Decidable and classical sets

- A subset $S \subseteq A$ is equivalently given by its characteristic $\operatorname{map} \chi_{S}: A \rightarrow \Omega, \chi_{S}(x)=(x \in S)$.
- A subset $S \subseteq A$ is decidable if $\chi_{S}: A \rightarrow 2$, equivalently

$$
\forall x \in A .(x \in S \vee x \notin S) .
$$

- A subset $S \subseteq A$ is classical if $\chi_{S}: A \rightarrow \Omega_{\neg \neg,}$, equivalently

$$
\forall x \in A .(\neg(x \notin S) \Longrightarrow x \in S)
$$

The generic convergent sequence

- A useful set is the generic convergent sequence:

$$
\mathbb{N}^{+}=\left\{a \in 2^{\mathbb{N}} \mid \forall k \in \mathbb{N} . a_{k} \leq a_{k+1}\right\}
$$

- We have $\mathbb{N} \subseteq \mathbb{N}^{+}$via $n \mapsto \lambda k .(k \leq n)$.
- But there is also $\infty=\lambda k .0$.
- \mathbb{N}^{+}can be thought of as the one-point compactification of \mathbb{N}.

Enumerable \& finite sets

- A is finite if there exist $n \in \mathbb{N}$ and an onto map $e:\{1, \ldots, n\} \rightarrow A$, called a listing of A. An element may be listed more than once.
- A is enumerable (countable) if there exists an onto map $e: \mathbb{N} \rightarrow 1+A$, called an enumeration of A. For inhabited A we may take $e: \mathbb{N} \rightarrow A$.
- A is infinite if there exists an injective $a: \mathbb{N} \hookrightarrow A$.

Lawvere \rightarrow Cantor

Theorem (Lawvere)

If e : $A \rightarrow B^{A}$ is onto then B has the fixed point property.

Proof.

Given $f: B \rightarrow B$, there is $x \in A$ such that $e(x)=\lambda y: A \cdot f(e(y)(y))$. Then $e(x)(x)=f(e(x)(x))$.

Corollary (Cantor)

There is no onto map $e: A \rightarrow \mathcal{P} A$.

Proof.

$\mathcal{P} A=\Omega^{A}$ and $\neg: \Omega \rightarrow \Omega$ does not have a fixed point.

Non-enumerability of Cantor and Baire space

Corollary
 $2^{\mathbb{N}}$ and $\mathbb{N}^{\mathbb{N}}$ are not enumerable.

Proof.

2 and \mathbb{N} do not have the fixed-point property.
We have proved our first synthetic theorem: there are no effective enumerations of recursive sets and total recursive functions.

Projection Theorem

Recall: the projection of $S \subseteq A \times B$ is the set

$$
\{x \in A \mid \exists y \in B .\langle x, y\rangle \in S\}
$$

Theorem (Projection)

A subset of \mathbb{N} is enumerable iff it is the projection of a decidable subset of $\mathbb{N} \times \mathbb{N}$.

Proof.

If A is enumerated by $e: \mathbb{N} \rightarrow 1+A$ then A is the projection of the graph of e.
If A is the projection of $B \subseteq \mathbb{N} \times \mathbb{N}$, define $e: \mathbb{N} \times \mathbb{N} \rightarrow 1+A$ by

$$
e\langle m, n\rangle=\operatorname{if}\langle m, n\rangle \in B \text { then } m \text { else } \star .
$$

Semidecidable sets

- A semidecidable truth value $p \in \Omega$ is one of the form, for some $d: \mathbb{N} \rightarrow 2$,

$$
p=\exists n \in \mathbb{N} \cdot d(n)
$$

- The set of semidecidable truth values:

$$
\Sigma=\left\{p \in \Omega \mid \exists d \in 2^{\mathbb{N}} \cdot p=\exists n \in \mathbb{N} \cdot d(n)\right\}
$$

This is Rosolini's dominance.

- $2 \subseteq \Sigma \subseteq \Omega$.
- A subset $S \subseteq \mathbb{N}$ is semidecidable if $\chi_{S}: A \rightarrow \Sigma$.

Σ as a quotient of \mathbb{N}^{+}

- Σ is a quotient of $2^{\mathbb{N}}$ via taking countable joins: $d \in 2^{\mathbb{N}}$ is mapped to $\exists n \in \mathbb{N}$. $d(n)$.
- Σ is a quotient of \mathbb{N}^{+}via the $\operatorname{map} q: \mathbb{N}^{+} \rightarrow \Sigma$, defined by $q(t)=(t<\infty)$.
- If $q(t)=s$ we say that t is a time at which s becomes true. Beware, t is not uniquely determined!

Semidecidable subsets

Theorem

The enumerable subsets of \mathbb{N} are precisely the semidecidable subsets of \mathbb{N}.

Proof.

By Projection Theorem, an enumerable $A \subseteq \mathbb{N}$ is the projection of a decidable $B \subseteq \mathbb{N} \times \mathbb{N}$. Then $n \in A$ iff $\exists m \in \mathbb{N}$. $\langle n, m\rangle \in B$.
Conversely, if $A \in \Sigma^{\mathbb{N}}$, by Number Choice there is $d: \mathbb{N} \times \mathbb{N} \rightarrow 2$ such that $n \in A$ iff $\exists m \in \mathbb{N}$. $d(m, n)$.

The enumerable subsets of \mathbb{N} :

$$
\mathcal{E}=\Sigma^{\mathbb{N}}
$$

The Topological View

- Σ is the Sierpinski space.
- Σ is closed under finite meets, enumerable joins, and finite meets distribute over enumerable joins.
- A σ-frame is a lattice with enumerable joins that distribute over finite meets.
- The topology of A is Σ^{A}.

Partial functions

- A partial function $f: A \rightharpoonup B$ is a function $f: A^{\prime} \rightarrow B$ defined on a subset $A^{\prime} \subseteq A$, called the domain of f.
- Equivalently, it is a function $f: A \rightarrow \widetilde{B}$, where

$$
\widetilde{B}=\{s \in \mathcal{P B} \mid \forall x, y \in B .(x \in s \wedge y \in s \Longrightarrow x=y)\}
$$

- The singleton map $\{-\}: B \rightarrow \widetilde{B}$ embeds B in \widetilde{B}.
- For $s \in \widetilde{B}$, write $s \downarrow$ when s is inhabited.
- Which partial functions $\mathbb{N} \rightarrow \widetilde{\mathbb{N}}$ have enumerable graphs?

Σ-partial functions

Proposition

$f: \mathbb{N} \rightarrow \widetilde{\mathbb{N}}$ has an enumerable graph iff $f(n) \downarrow \in \Sigma$ for all $n \in \mathbb{N}$.
Define the lifting operation

$$
A_{\perp}=\{s \in \widetilde{A} \mid s \downarrow \in \Sigma\}
$$

For $f: A \rightarrow B$ define $f_{\perp}: A_{\perp} \rightarrow B_{\perp}$ to be

$$
f_{\perp}(s)=\{f(x) \mid x \in s\}
$$

A Σ-partial function is a function $f: A \rightarrow B_{\perp}$.

Domains of Σ-partial functions

Proposition

A subset is semidecidable iff it is the domain of a Σ-partial function.

Proof.

A semidecidable subset $S \in \Sigma^{A}$ is the domain of its characteristic map $\chi_{S}: A \rightarrow \Sigma=1_{\perp}$. If $f: A \rightarrow B_{\perp}$ is Σ-partial then its domain is the set $\{x \in A \mid f(x) \downarrow\}$, which is obviously semidecidable.

The Single-Value Theorem

A selection for $R \subseteq A \times B$ is a partial map $f: A \rightharpoonup B$ such that, for every $x \in A$,

$$
\exists y \in B \cdot R(x, y) \Longrightarrow f(x) \downarrow \wedge R(x, f(x))
$$

This is like a choice function, expect it only chooses when there is something to choose from.

Theorem (Single Value)

Every open relation $R \in \Sigma^{\mathbb{N} \times \mathbb{N}}$ has a Σ-partial selection.

Axiom of Enumerability

Axiom (Enumerability)

There are enumerably many enumerable sets of numbers.
Let $\mathrm{W}: \mathbb{N} \rightarrow \mathcal{E}$ be an enumeration.

Proposition

Σ and \mathcal{E} have the fixed-point property.

Proof.

By Lawvere, $\mathrm{W}: \mathbb{N} \rightarrow \mathcal{E}=\Sigma^{\mathbb{N}} \cong \Sigma^{\mathbb{N} \times \mathbb{N}} \cong \mathcal{E}^{\mathbb{N}}$.

The Law of Excluded Middle Fails

The Law of Excluded Middle says $2=\Omega$.

Corollary

The Law of Excluded Middle is false.

Proof.

Among the sets $2 \subseteq \Sigma \subseteq \Omega$ only the middle one has the fixed-point property, so $2 \neq \Sigma \neq \Omega$.

Enumerability of $\mathbb{N} \rightarrow \mathbb{N}_{\perp}$

Proposition $\mathbb{N} \rightarrow \mathbb{N}_{\perp}$ is enumerable.

Proof.

Let $V: \mathbb{N} \rightarrow \Sigma^{\mathbb{N} \times \mathbb{N}}$ be an enumeration. By Single-Value Theorem and Number Choice, there is $\varphi: \mathbb{N} \rightarrow\left(\mathbb{N} \rightarrow \mathbb{N}_{\perp}\right)$ such that φ_{n} is a selection of V_{n}. The map φ is onto, as every $f: \mathbb{N} \rightarrow \mathbb{N}_{\perp}$ is the only selection of its graph.

Corollary (Church's Thesis)

$\mathbb{N}^{\mathbb{N}}$ is subcountable (because $\mathbb{N}^{\mathbb{N}} \subseteq \mathbb{N}_{\perp}^{\mathbb{N}}$).
In other words, $\forall f \in \mathbb{N}^{\mathbb{N}} . \exists n \in \mathbb{N} . f=\varphi_{n}$.

Focal sets

- A focal set is a set A together with a map $\epsilon_{A}: A_{\perp} \rightarrow A$ such that $\epsilon_{A}(\{x\})=x$ for all $x \in A$:

The focus of A is $\perp_{A}=\epsilon_{A}(\perp)$.

- A lifted set A_{\perp} is always focal (because lifting is a monad whose unit is $\{-\})$.

Enumerable focal sets

- Enumerable focal sets, known as Eršov complete sets, have good properties.
- A flat domain A_{\perp} is focal. It is enumerable if A is decidable and enumerable.
- If A is enumerable and focal then so is $A^{\mathbb{N}}$:

$$
\mathbb{N} \xrightarrow{\varphi} \mathbb{N}_{\perp}^{\mathbb{N}} \xrightarrow{e_{\perp}^{\mathbb{N}}} A_{\perp}^{\mathbb{N}} \xrightarrow{\epsilon_{A}^{\mathbb{N}}} A^{\mathbb{N}}
$$

- Some enumerable focal sets are

$$
\Sigma^{\mathbb{N}}, \quad 2_{\perp}^{\mathbb{N}}, \quad \mathbb{N}_{\perp}^{\mathbb{N}} .
$$

Topological Exterior and Creative Sets

- The exterior of an open set is the largest open set disjoint from it.
- An open set $U \in \Sigma^{A}$ is creative if it is without exterior: every $V \in \Sigma^{A}$ disjoint from U can be enlarged and still be disjoint from U.

Theorem

There exists a creative subset of \mathbb{N}.

Proof.

The familiar $K=\left\{n \in \mathbb{N} \mid n \in \mathbb{W}_{n}\right\}$ is creative. Given any $V \in \mathcal{E}$ with $V=\mathrm{W}_{k}$ and $K \cap V=\emptyset$, we have $k \notin V$, so $V^{\prime}=V \cup\{k\}$ is larger and still disjoint from K.

Immune and Simple Sets

- A set is imтипе if it is neither finite nor infinite.
- A set is simple if it is open and its complement is immune.

Theorem

There exists a closed subset of \mathbb{N} which is neither finite nor infinite.

Proof.

Following Post, consider $P=\left\{\langle m, n\rangle \in \mathbb{N} \times \mathbb{N} \mid n>2 m \wedge n \in W_{m}\right\}$, and let $f: \mathbb{N} \rightarrow \mathbb{N}_{\perp}$ be a selection for P. Then $S=\{n \in \mathbb{N} \mid \exists m \in \mathbb{N} . f(m)=n\}$ is the complement of the set we are looking for. Because $f(m)>2 m$ the set $\mathbb{N} \backslash S$ cannot be finite. For any infinite enumerable set $U \subseteq \mathbb{N} \backslash S$ with $U=\mathbf{W}_{m}$, we have $f(m) \downarrow$, $f(m) \in \mathbf{W}_{m}=U$, and $f(m) \in S$, hence U is not contained in $\mathbb{N} \backslash S$.

Inseparable sets

Theorem

There exists an element of Plotkin's $2_{\perp}^{\mathbb{N}}$ that is inconsistent with every maximal element of $2_{\perp}^{\mathbb{N}}$.

Proof.

Because 2_{\perp} is focal and enumerable, $2_{\perp}^{\mathbb{N}}$ is as well. Let $\psi: \mathbb{N} \rightarrow 2_{\perp}^{\mathbb{N}}$ be an enumeration, and let $t: 2_{\perp} \rightarrow 2_{\perp}$ be the isomorphism $t(x)=\neg \perp x$ which exchanges 0 and 1 , and fixes \perp. Consider $a \in 2_{\perp}^{\mathbb{N}}$ defined by $a(n)=t\left(\psi_{n}(n)\right)$. If $b \in 2_{\perp}^{\mathbb{N}}$ is maximal with $b=\psi_{k}$, then $a(k)=\neg \psi_{k}(k)=\neg b(k)$. Because $a(k)$ and $b(k)$ are both total and different they are inconsistent. Hence a and b are inconsistent.

End of Part I

Let's get some coffee.

Part II

1. Quick overview of Part I
2. Post's Theorem and Markov Principle
3. Recursion Theorem
4. Rice-Shapiro \& Myhill-Shepherdson
5. Recursive Analysis

Recall from Part I

Truth values:

- truth values $\Omega=\mathcal{P} 1$,
- decidable truth values $2=\{p \in \Omega \mid p \vee \neg p\}$,
- classical truth values $\Omega_{\neg \neg}=\{p \in \Omega \mid \neg \neg p=p\}$,
- semidecidable truth values

$$
\Sigma=\left\{p \in \Omega \mid \exists d \in \mathbb{2}^{\mathbb{N}} \cdot p=(\exists n \in \mathbb{N} \cdot d(n)=1)\right\}
$$

Enumerable, or semidecidable, subsets of \mathbb{N} :

$$
\mathcal{E}=\Sigma^{\mathbb{N}}
$$

Σ-partial functions: $\mathbb{N} \rightarrow \mathbb{N}_{\perp}$.

Axiom of Enumerability

Axiom (Enumerability)

There are enumerably many enumerable sets of numbers.
An enumeration $\mathrm{W}: \mathbb{N} \rightarrow \mathcal{E}$.
Consequences:

- Σ and \mathcal{E} have the fixed-point property,
- Law of Excluded Middle is false,
- $\mathbb{N} \rightarrow \mathbb{N}_{\perp}$ is enumerable,
- Other enumerable sets:
- A focal and enumerable $\Longrightarrow A^{\mathbb{N}}$ focal and enumerable,
- $\mathbb{N} \rightarrow 2_{\perp}$ is enumerable,
- retract of an enumerable set is enumerable,
- Scott domains are enumerable,
- Creative, simple, immune and inseparable sets exist.

Markov Principle

- If a binary sequence $a \in 2^{\mathbb{N}}$ is not constantly 0 , does it contain a 1 ?
- For $p \in \Sigma$, does $p \neq \perp$ imply $p=\top$?
- Is $\Sigma \subseteq \Omega_{\neg \neg}$?
- For $x \in \mathbb{N}^{+}$, if $x \neq \infty$ is $x=k$ for some $k \in \mathbb{N}$?

Axiom (Markov Principle)

A binary sequence which is not constantly 0 contains a 1 .

Post's Theorem

Theorem

For all $p \in \Omega$,

$$
p \in 2 \Longleftrightarrow p \in \Sigma \wedge \neg p \in \Sigma
$$

Proof.

\Rightarrow If $p \in 2$ then $\neg p \in 2$, therefore $p, \neg p \in 2 \subseteq \Sigma$.
\Leftarrow If $p \in \Sigma$ and $\neg p \in \Sigma$ then $p \vee \neg p \in \Sigma \subseteq \Omega_{\neg \neg \text {, therefore }}$

$$
p \vee \neg p=\neg \neg(p \vee \neg p)=\neg(\neg p \wedge \neg \neg p)=\neg \perp=\top,
$$

as required.

Multi-valued functions

- A multi-valued function $f: A \rightrightarrows B$ is a function $f: A \rightarrow \mathcal{P B}$ such that $f(x)$ is inhabited for all $x \in A$.
- This is equivalent to having a total relation $R \subseteq A \times B$. The connection between f and R is

$$
\begin{aligned}
f(x) & =\{y \in B \mid R(x, y)\} \\
R(x, y) & \Longleftrightarrow y \in f(x) .
\end{aligned}
$$

- A fixed point of $f: A \rightrightarrows A$ is $x \in A$ such that $x \in f(x)$.

Recursion Theorem

Theorem (Recursion Theorem)

Every f : A $\rightrightarrows A$ on enumerable focal A has a fixed point.

Corollary (Classical Recursion Theorem)

For every $f: \mathbb{N} \rightarrow \mathbb{N}$ there is $n \in \mathbb{N}$ such that $\varphi_{f(n)}=\varphi_{n}$.

Proof.

In Recursion Theorem, take the enumerable focal set $A=\mathbb{N}_{\perp}^{\mathbb{N}}$ and the multi-valued function

$$
F(g)=\left\{h \in \mathbb{N}_{\perp}^{\mathbb{N}} \mid \exists n \in \mathbb{N} . g=\varphi_{n} \wedge h=\varphi_{f(n)}\right\} .
$$

There is g such that $g \in F(g)$. Thus there exists $n \in \mathbb{N}$ such that $\varphi_{n}=g=h=\varphi_{f(n)}$.

Open subsets of \mathbb{N}^{+}

Lemma

If $U \in \Sigma^{\mathbb{N}^{+}}$and $\infty \in U$ then there is $n \in \mathbb{N}$ such that $n \in U$.

Proof.

Suppose $\infty \in U \in \Sigma^{\mathbb{N}^{+}}$. By Markov Principle, it suffices to show $\neg \forall n \in \mathbb{N} . n \notin U$. So suppose $\forall n \in \mathbb{N}$. $n \notin U$. Recall the quotient map $q: \mathbb{N}^{+} \rightarrow \Sigma, q: x \mapsto(x<\infty)$, and define $f: \Sigma \rightarrow \Sigma$ by $f(q(x))=U(x)$. Now $f(T)=\perp$ and $f(\perp)=T$. Since Σ has the fixed-point property, there exists $p \in \Sigma$ such that $f(p)=p$. But then $p \neq \top$ and $p \neq \perp$, i.e., $\neg p \wedge \neg \neg p$, a contradiction.

Note: the conclusion of the lemma cannot be improved to $\exists n \in \mathbb{N} .[n, \infty] \subseteq U$.

ω-Chain Complete Posets

- An ω-chain complete poset (ω-cpo) is a poset in which enumerable ascending chains have suprema.
- A base for an ω-cpo (A, \leq) is an enumerable subset $S \subseteq A$ such that:
- For all $x \in S, y \in A,(x \leq y) \in \Sigma$.
- Every $x \in A$ is the supremum of a chain in S.
- Examples of ω-cpos:
$\Sigma^{\mathbb{N}}, \mathbb{N} \rightarrow \mathbb{N}_{\perp}, \mathbb{N} \rightarrow 2_{\perp}$, Scott domains, \ldots

The Topology of ω-cpos

Theorem

1. The open subsets of an ω-cpo are upward closed and inaccessible by chains.
2. If an ω-cpo A has a base S, then every open is a union of basic opens sets $\uparrow x=\{y \in A \mid x \leq y\}, x \in S$.

Proof.

We only prove "upward closed": if $x \leq y$ and $x \in U \in \Sigma^{A}$, define $a: \mathbb{N}^{+} \rightarrow A$ by

$$
a_{p}=\bigvee_{k \in \mathbb{N}} \text { if } k<p \text { then } x \text { else } y
$$

Then $a_{\infty}=x \in U$ and by Lemma there is $k \in \mathbb{N}$ such that $y=a_{k} \in U$, too.

Binary Trees

- Let 2^{*} be the set of finite binary sequences, with prefix-ordering \preceq.
- The length of $\left[a_{0}, \ldots, a_{n-1}\right] \in 2^{*}$ is $|a|=n$.
- A tree $T \subseteq 2^{*}$ is an inhabited prefix-closed subset.
- A Kleene tree T_{K} is a tree such that:

1. T_{K} is decidable (as a subset of 2^{*}),
2. T_{K} is unbounded: $\forall k \in \mathbb{N} . \exists a \in T_{K} .|a| \geq k$,
3. every infinite path exits T_{K} :

$$
\forall \alpha \in 2^{\mathbb{N}} . \exists n \in \mathbb{N} .\left[\alpha_{0}, \ldots, \alpha_{n}\right] \notin T_{K} .
$$

Construction of a Kleene Tree

1. Recall an enumeration $\psi: \mathbb{N} \rightarrow 2_{\perp}^{\mathbb{N}}$ and $s(n)=\neg \perp \psi_{n}(n)$ which is inconsistent with every $\alpha \in 2^{\mathbb{N}}$.
2. Let $\left\langle m_{-}, d_{-}\right\rangle: \mathbb{N} \rightarrow \mathbb{N} \times 2$ be an enumeration of the graph of s, i.e., $s\left(m_{k}\right)=d_{k}$ for all $k \in \mathbb{N}$ and we enumerate all such pairs.
3. Given $a=\left[a_{0}, \ldots, a_{n}\right] \in 2^{*}$, say that a clashes with $\left\langle m_{-}, d_{-}\right\rangle$, if there is $k \leq n$ such that $m_{k} \leq n$ and $a_{m_{k}} \neq d_{k}$.
4. Define $K_{T}=\left\{a \in 2^{*} \mid a\right.$ does not clash with $\left.\left\langle m_{-}, d_{-}\right\rangle\right\}$.
5. K_{T} is a Kleene tree!

Construction of a Kleene Tree

$K_{T}=\left\{a \in 2^{*} \mid a\right.$ does not clash with $\left.\left\langle m_{-}, d_{-}\right\rangle\right\}$
K_{T} is a Kleene tree:

1. Clearly, decidable, inhabited, prefix-closed.
2. Unbounded: define $\left[a_{0}, \ldots, a_{n}\right]$ by

$$
a_{j}= \begin{cases}d_{k} & \text { if } j=m_{k} \text { for some } k \leq n \\ 0 & \text { otherwise }\end{cases}
$$

Then $\left[a_{0}, \ldots, a_{n}\right]$ does not clash with $\left\langle m_{-}, d_{-}\right\rangle$.
3. Every path $\alpha \in 2^{\mathbb{N}}$ exits $T_{K}: \alpha$ and s are inconsistent, hence prefixes of α clash with $\left\langle m_{-}, d_{-}\right\rangle$eventually.
Note: there is an enumeration $\ell: \mathbb{N} \rightarrow 2^{*}$ without repetitions of the leaves of T_{K}.

Cantor space and Baire space

The Cantor space $2^{\mathbb{N}}$ and Baire space $\mathbb{N}^{\mathbb{N}}$ are complete separable metric spaces, with metric (for both spaces)

$$
\left.d(\alpha, \beta)=2^{-\min \{k \in \mathbb{N}} \mid \alpha_{k} \neq \beta_{k}\right\} .
$$

Theorem

$2^{\mathbb{N}}$ and $\mathbb{N}^{\mathbb{N}}$ are homeomorphic as metric spaces.

Proof.

The homeomorphism $h: \mathbb{N}^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ is defined by

$$
h(\alpha)=\ell\left(\alpha_{0}\right) \ell\left(\alpha_{1}\right) \ell\left(\alpha_{2}\right) \cdots
$$

Computing $2^{2^{\mathbb{N}}}$

$2^{2^{\mathbb{N}}}$ is the set of decidable subsets of decidable subsets.

$$
2^{2^{\mathbb{N}}}=2^{\mathbb{N}^{\mathbb{N}}}=2^{\mathbb{N} \times \mathbb{N}^{\mathbb{N}}}=\left(2^{\mathbb{N}}\right)^{\mathbb{N}^{\mathbb{N}}}=\left(\mathbb{N}^{\mathbb{N}}\right)^{\mathbb{N}^{\mathbb{N}}}=\mathbb{N}^{\mathbb{N} \times \mathbb{N}^{\mathbb{N}}}=\mathbb{N}^{\mathbb{N}^{\mathbb{N}}}
$$

Remark: in sane models of computability, such as Equ, we have $2^{\mathbb{N}} \not \not 二 \mathbb{N}^{\mathbb{N}}$ and $2^{2^{\mathbb{N}}}=\mathbb{N}$.

Local non-compactness of \mathbb{R}

- The "middle-thirds" embedding $i: 2^{\mathbb{N}} \rightarrow[0,1]$, $i(\alpha)=\sum_{k=0}^{\infty} \frac{2 \alpha_{k}}{3^{k+1}}$.
- The image $C=\operatorname{im}(i)$ is a closed located subset of $[0,1]$.
- The map $i \circ h: \mathbb{N}^{\mathbb{N}} \rightarrow[0,1]$ embeds $\mathbb{N}^{\mathbb{N}}$ as a closed located subset $C \subseteq[0,1]$.

Theorem (Specker sequence)

There exists a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ in $[0,1]$ without accumulation point.

Proof.

The sequence $b_{n}=\lambda k . n$, is without accumulation point in $\mathbb{N}^{\mathbb{N}}$. Define $a_{n}=i\left(h\left(b_{n}\right)\right)$. Then a_{n} is without accumulation point in C. Because C is closed and located, a_{n} is without accumulation point in $[0,1]$.

Extending a continuous map $C \rightarrow \mathbb{R}$

Theorem

Every continuous $g: C \rightarrow \mathbb{R}$ can be extended to a continuous $\bar{g}:[0,1] \rightarrow \mathbb{R}$.

Extending a continuous map $C \rightarrow \mathbb{R}$

Theorem

Every continuous $g: C \rightarrow \mathbb{R}$ can be extended to a continuous $\bar{g}:[0,1] \rightarrow \mathbb{R}$.

Unbounded continuous $f:[0,1] \rightarrow \mathbb{R}$

Theorem

There exists an unbounded continuous map $[0,1] \rightarrow \mathbb{R}$.

Proof.

- The map $g: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{R}, g: \alpha \mapsto \alpha_{0}$ is unbounded and continuous.
- The map $g \circ h^{-1} \circ i^{-1}: C \rightarrow \mathbb{R}$ is unbounded and continuous.
- Extend $g \circ h^{-1} \circ i^{-1}$ to a continuous $f:[0,1] \rightarrow \mathbb{R}$. It is still unbounded.

Conclusion

- The theme: as logicians, we should look for elegant presentations of theories we study. They can lead to new intuitions (and destroy old ones).
- These slides, and more, at math. andrej.com.
- We want food.

