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1. Thanks to organizers for the invitation.
2. The first part of the work is joint with Kazuto Yoshimura

from JAIST.



1. Instance reducibility
2. Other reducibilities
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1. The talk consists of two parts
2. I will first talk about instance reducibility, a natural notion

of reducibility in constructive mathematics (it trivializes to
implication classically), and its connection to Weihrauch
reducibility, which has been studied in some detail
recently by various people (is Arno in the audience?).

3. Then I will discuss some work in progress: how to deal
with other reducibilities: many-to-one, truth-table, and
Turing reducibilities.



Synthetic mathematics:
I build a model to taste,
I argue on “high level” internally,
I hide nitty-gritty details in the model
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1. I am not after just any way of constructivizing these topics.
In order for it to be worth it, the constructivization must
result in what I would call natural mathematics.

2. For instance, I do not wish to speak in detail about Turing
machines in the constructive setting – these should be
hidden inside a model, such as Kleene’s realizability.

3. Rather, the concepts and the theorems should expose a
conceptual, or high-level ideas, or relate known results in
computability theory to standard notions and theorems in
analysis and topology.

4. This is called synthetic because we synthesize a model in
such a way that its internal language, that is the
mathematics inside the model, does what we want
elegantly (we hope!), while hiding nitty-gritty details
under the hood.

5. But you will see what I mean when I do it. Well known
examples of this approach are non-standard analysis and
synthetic differential geometry.



(∀y ∈ B . ψ(y))⇒ ∀x ∈ A . φ(x)
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1. In constructive mathematics, and generally in all
mathematics, we often want to prove that one universal
statement implies another.

2. Note, there is no restriction on φ and ψ here.
3. What’s a common way of proving such statements? To

answer this, let’s look at an example. And let’s make it an
exercise in constructive reasoning.



Show that 1. implies 2.:
1. ∀x ∈ R . x = 0 ∨ ¬(x = 0)
2. ∀f ∈ {0, 1}N . (∀n . f (n) = 0) ∨ ¬(∀n . f (n) = 0)

Solution: given f : N→ {0, 1} define

x =
∞∑

n=0

f (n) · 2−n.

Either x = 0 or x 6= 0. In the first case it follows that
∀n . f (n) = 0, and in the second ¬∀n . f (n) = 0.
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1. Let us show that statement 1 implies statement 2.
2. Statement 1 says that every real is zero or not zero.
3. Statement 2 says that every infinite binary sequence is all

zeroes or not.
4. If you think about this for yourself, or if you have seen it

in a book, the proof looked somewhat as follows.
5. Let us note the form of the proof: given an instance f of the

second statement we find a suitable instance x of the first
statement, such that the first statement at x implies the
second statement at f .

6. Let us give the technique a name.
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Definition

A predicate φ ⊆ A is instance reducible to ψ ⊆ B,
written φ ≤I ψ, if there is a total relation
K ⊆ A× B such that

∀x ∈ A . (∃y ∈ B .K(x, y) ∧ ψ(y))⇒ φ(x). (1)

Say that y suitable for x when K(x, y).

Note: condition (1) is equivalent to

∀x ∈ A .∀y ∈ B .K(x, y) ∧ ψ(y)⇒ φ(x).

6 / 21

1. I will equate predicates with subsets, or subobjects, i.e.,
they are not formulas (only a logician would think that).

2. The definition reflects the solution on previous slide,
where “suitable” means is captured by the relation K.

3. Actually, on the previous slide K was a function because
we found a specific suitable y for a given x. This is often
the case, but in general K need not be single valued.

4. Observe that we can rewrite the defining condition as a
negative formula (not containing ∃). This says that the
computational content of an instance reducibility is
“stored” only in K.
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Theorem

If φ ≤I ψ then (∀y ∈ B . ψ(y))⇒ ∀x ∈ A . φ(x).

Proof. Given x ∈ A, there is y ∈ B such that K(x, y). By
assumption we also have ψ(y) therefore φ(x).
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1. Instance reducibility is indeed sufficient to show the
implication between the corresponding universally
quantified statements.

2. I am not going through the proof, it’s very simple.
3. Note the reversal of order, we have “φ is less than ψ” but

“ψ implies φ”. This is in accordance with the idea that a
notion of reduction measures how difficult a problem is,
not how easy.

4. We may ask whether the converse holds. It does
classically, but not constructively. Under further
conditions, studied by Kazuto, it is sometimes possible to
obtain the converse. This then gives us separation results
in constructive reverse math, ask me later if you’re
interested.



Theorem

Instance reducibilities form a distributive lattice.

Proof. The operations are as follows:
I The bottom is ∅ ⊆ ∅.
I The top is ∅ ⊆ {?}.
I The supremum of φ ⊆ A and ψ ⊆ B is φ+ ψ ⊆ A + B

where for x ∈ A and y ∈ B

(φ+ ψ)(x) ⇐⇒ φ(x) and (φ+ ψ)(y) ⇐⇒ ψ(y)

I The infimum of φ ⊆ A and ψ ⊆ B is φ× ψ ⊆ A× B
where

(φ× ψ)(x, y) ⇐⇒ φ(x) ∨ ψ(y)

8 / 21

1. The basic structure of instance reducibility is described by
the following theorem. By lattice we mean a bounded one,
i.e., it has bottom and top.

2. The lattice structure is straightforward and the properties
easy to check.
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Given φ ⊆ A and B define φB ⊆ AB by

φB(f ) ⇐⇒ ∀y ∈ B . φ(f (y)).

Then φ ≤I ψ
B means that φ reduces to B-many

instances of ψ.
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1. Let us look at a couple of other constructions on instance
reducibilities.

2. The first one is parameterization. It allows us to reduce to
many instances rather than just one.

3. For example, we can set B to N to get “countably many
instances”.

4. A slightly more complicated construction in the style of
Kleene iteration gives “finitely many instances”.



Given f : A→ B and ψ ⊆ B, define f ∗ψ ⊆ A by

f ∗ψ(x) ⇐⇒ ψ(f (x)).

Given φ ⊆ A, define ∀fφ ⊆ B and ∃fφ ⊆ B by

∀fφ(y) ⇐⇒ ∀x ∈ A . f (x) = y⇒ φ(x)
∃fφ(y) ⇐⇒ ∃x ∈ A . f (x) = y ∧ φ(x).

Then:
f ∗ψ ≤I ψ and φ ≤I ∀fφ.

If f is surjective then also

ψ ≤I f ∗ψ and ∃fφ ≤I φ.

Example: f = π1 : A× B→ A with B inhabited.
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1. Given a function f : A→ B we can pull back a predicate
from B to A. This is just the preimage of ψ under f .

2. In the other direction we have two options: one uses a
universal quantifier and the other the existential one.

3. They correspond to the preimage satisfying the original
predicate universally or existentially.

4. We have a basic inequalities, where two of them hold
provided that f is onto.

5. The useful case is when f is a projection from A× B to A
with inhabited B. The formulas then correspond to usual
quantifications.
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Theorem

There is an antimonotone embedding of truth values
into instance reducibilities.

Proof. A truth value p corresponds to the predicate
φp ⊆ {?} defined by φp(x) ⇐⇒ p.
We have p⇒ q iff φq ≤I φp.
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1. Instance reducibilities form a very rich structure that
contains many others.

2. The truth values embed into instance reducibilities.
3. We shall see in a moment that instance reducibility

corresponds to Weihrauch reducibility in a certain
realizability model. The embedding of Prop there becomes
the embedding of the Medvedev lattice into Weihrauch
lattice.



Theorem

Define >A to be the top predicate A ⊆ A.
1. φ ≤I >{?} iff φ = >A for some A,
2. >A ≤I >B iff there is a total K ⊆ A× B.
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1. Another large part of the instance reducibility are sets
under “total relation” ordering.

2. The condition that there is a total K ⊆ A× R can be read as
“A is at least as large as B”.



For F ⊆ NN × NN define

F[α] = {β ∈ NN | (α, β) ∈ F},
‖F‖ = {α ∈ NN | ∃β . (α, β) ∈ F}.

Definition
A subset F ⊆ NN × NN is Weihrauch reducible to
G ⊆ NN × NN, written F ≤W G, if there exist partial
computable maps k, ` : NN ↪→ NN such that, for all
α, β ∈ NN:

1. if α ∈ ‖F‖ then k(α) is defined and k(α) ∈ ‖G‖,
2. if α ∈ ‖F‖ and β ∈ G[k(α)] then `(〈α, β〉) is defined

and `(〈α, β〉) ∈ F[α].
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1. Let us now relate instance reducibility to a known notion
of reducibility in computability theory, namely Weihrauch
reducibility, which we recall.

2. Think of F as a description of a problem, α as a question,
and β as an answer. Read (α, β) ∈ F as “β is an answer to
question α for problem description F.”

3. Under this reading F[α] is the set of F-answers to question
α, and ‖F‖ is the set of those questions that have an
answer.

4. Many natural problems in computable analysis can be
expressed in this form, because questions and answers are
infinite sequences that can encode reals and complex
numbers, continuous and smooth maps, open and closed
sets, etc.

5. In the definition of F ≤W G, the map k translates an
F-question to a G-question, and ` translates a G-answer to
an F-answer (it is also provided the original question).



For F ⊆ NN × NN define

F[α] = {β ∈ NN | (α, β) ∈ F},
‖F‖ = {α ∈ NN | ∃β . (α, β) ∈ F}.

Definition
An extended Weihrauch degree is a pair (U,F) where
U ⊆ NN and F ⊆ U × NN. An (extended) Weihrauch
reduction (U,F) ≤W (V,G) is given by partial computable
maps k, ` : NN ↪→ NN such that:

1. if α ∈ U then k(α) is defined and k(α) ∈ V,
2. if α ∈ U and β ∈ G[k(α)] then `(α, β) is defined and
`(〈α, β〉) ∈ F[α].
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1. When we interpret instance reducibility in the realizability
model which corresponds to TTE (relative function
realizability), we do not get Weihrauch reducibility, but an
extension of it.

2. The difference is as follows. Weihrauch reducibility only
cares about questions that have an answer. In the
extended version, we specify which questions are “valid”,
even though they may not have an answer. The
reducibility must then translate all valid questions, not just
those that have an answer.

3. We can actually explain how the definition arises: U is the
set of realizers of elements of A, F is encodes φ, k is the
realizer for totality of K, and ` is the realizer for
implication ψ(y) ∧ K(x, y)⇒ φ(x).

4. There are natural examples of extended degrees which are
not proper degrees, for instance formal Church’s thesis CT:
(α, β) ∈ CT iff β(0) is the code of a machine computing α.



Theorem

Instance reducibility corresponds to extended
Weihrauch reducibility.

Precisely: the lattice of instance reducibilities interpreted
in relative realizability topos RT((NN)eff,NN) is equivalent
to the extended Weihrauch lattice.

Theorem

Instance reducibility restricted to ¬¬-dense
predicates corresponds to Weihrauch reducibility.

(A predicate φ ⊆ A is ¬¬-dense when ¬∃x ∈ A .¬φ(x).)
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1. We can now state the exact correspondence between
instance reducibility and extended Weihrauch reducibility.
It is simply this: when instance reducibility is interpreted
in the realizability topos of Baire-space representations
and computable maps we obtain the extended Weihrauch
lattice. This topos is the setup for TTE and also the
standard model for Brouwerian intuitionism.

2. And if we restrict to ¬¬-dense predicates, we obtain the
Weihrauch lattice.

3. This is how synthetic mathematics is supposed to work.
The technicalities are hidden in the model, so we are left
with a clean concept and clean proofs.

4. The benefits are immediate: proofs in constructive reverse
mathematics yield Weihrauch reducibilities. In the
opposite direction, non-existence of Weihrauch reductions
implies non-provability of instance reductions.

5. Furthermore, we can interpret the definition in other
realizability models, and even in sheaf toposes, etc.
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1. Instance reducibility
2. Other reducibilities
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1. This brings us to the second part of the talk.
2. We would like to do something similar for other kinds of

reducibility.



Definition

A predicate φ ⊆ A is many-to-one reducible to
ψ ⊆ B, written φ ≤M ψ, if there is f : A→ B such
that φ = f ∗ψ.

Theorem

Instance reducibility corresponds to truth-table
reducibility.

Precisely: when instance reducibility (allowing reductions
to finitely many instances) is interpreted in Kleene’s
number realizability, it restricts to truth-table reducibility
on subsets of N.
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1. First of all, a many-to-one reduction is just an inverse
image map.

2. We have again a simple and mathematically clean
definition which mentions no computability. It works for
arbitrary predicates on arbitrary sets, not just subsets of N.

3. Next, truth-table reductions correspond to instance
reducibility (from finitely many instances, rather than just
one) interpreted in Kleene’s number realizability.

4. But Turing reductions are not so easy.
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I A partial oracle is a pair (A0,A1) of disjoint subsets
of N. The space of all partial oracles:

T = {(A0,A1) ∈ P(N)× P(N) | A0 ∩ A1 = ∅}.

I We order T by

(A0,A1) ≤ (B0,B1) ⇐⇒ A0 ⊆ B0 ∧ A1 ⊆ B1.

This is Plotkin’s universal domain, a dcpo whose finite
elements are pairs of finite disjoint subsets.

I The total oracles are the maximal elements of T. They
are precisely those (A0,A1) for which A0 = N \A1 and
A1 = N \ A0.
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1. We need to consider partial oracles, i.e., ones that do not
necessarily give an answer: a pair of disjoint sets (A0,A1).
Think of A0 as the questions with answers “no” and A1
with answer “yes”. Since the union of A0 and A1 need not
be all of N the oracle is partial.

2. There is an obvious order on partial oracles which turns T
into a directed-complete poset. It is in fact a well-known
object domain theory: Plotkin’s universal domain.

3. Because every subsets of N is a directed union of its finite
subsets, T is generated by pairs of finite disjoint sets.

4. It would be too restrictive to say that an oracle (A0,A1) is
total when A0 ∪ A1 = N, that would give only computable
oracle. We need to take as total the maximal elements of T.
They are precisely pairs (A0,A1) that are complements of
each other.



Let K(T) be the set of finite elements of T.

Definition

A (partial) Turing reduction is a continuous map
r : T→ T whose graph

{(x, y) ∈ K(T)×K(T) | y ≤ r(x)}

is countable.
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1. What should we take as a reduction? Obviously, some sort
of a map T→ T, but with what properties?

2. It should be continuous, i.e., preserve directed suprema.
Then it will already be determined by its values on the
finite oracles, which is our way of expressing the use
principle from computability. We see the synthetic
approach at work: we use principle becomes continuity –
an analogy that becomes an exact correspondence.

3. Continuity is not enough. Every constant map is
continuous, but we certainly do not want to be able to
reduce all oracles to every oracle. We need to express the
fact that a reduction is Turing computable.

4. Recall that a number-theoretic function is computable iff
its graph is c.e. Internal the c.e. condition is just
“countable”. So a reduction is a continuous map with a
countable graph.

5. We are of course talking about partial reductions. A total
one would map total oracles to total oracles.



I For a sequence of Turing reductions (rn : T→ T)n∈N,
let the Post-Turing statement PT(r) be

∃x, y ∈ Max(T) . ∀n ∈ N . x 6= rn(y) ∧ y 6= rn(x)

In words: “There are total oracles x and y which are
not reduced to each other by the reductions (rn)n.”

I Let PT be the statement ∀(rn)n .PT(r): “PT(r) holds
for all sequences of reductions (rn)n.”

I Limited principle of omniscience (LPO):

∀f ∈ {0, 1}N . (∃n . f (n) = 1) ∨ ¬(∃n . f (n) = 1)

An equivalent form: given n ∈ N and countable
B ⊆ N, either n ∈ B or n 6∈ B.
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1. Let us tackle the Post-Turing theorem which says that
there are incomparable total oracles.

2. We shall prove the theorem with respect to any given
sequence of reductions. When we specialize to all the
computable reductions in the effective topos, we get the
classical theorem.

3. Actually, we are not going to prove PT , but rather reduce
it to countably many instances of the Limited Principle of
Omniscience.



Theorem (Post-Turing)

PT ≤I LPON.

Proof outline. Total oracles Max(T) form a complete metric
space. We apply the Baire category theorem to the sets

Un = {(x, y) ∈ Max(T)×Max(T) | rn(x) 6= y},
Vn = {(x, y) ∈ Max(T)×Max(T) | rn(y) 6= x}.

We need countably many instances of LPO to show that
the Un’s and Vn’s are actually open dense subsets.
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1. Caveat: we need to use a formulation of metric spaces in
which distances are measured by upper reals, i.e., we only
get upper bounds on distances.

2. And we need a carefully crafted version of the Baire
category theorem, ask me for details.

3. It would be interesting to get a corresponding theorem in
the Weihrauch lattice in the context of TTE, perhaps it is
already known?

4. How about the Friedberg-Muchnik theorem? I do not
know.
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1. Caveat: we need to use a formulation of metric spaces in
which distances are measured by upper reals, i.e., we only
get upper bounds on distances.

2. And we need a carefully crafted version of the Baire
category theorem, ask me for details.

3. It would be interesting to get a corresponding theorem in
the Weihrauch lattice in the context of TTE, perhaps it is
already known?

4. How about the Friedberg-Muchnik theorem? I do not
know.


