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How cool is computability theory?

» Way cool:
» surprising theorems
» clever programs
» clever proofs
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How cool is computability theory? ey
Computability
» Way cool: Andrej Bauer

» surprising theorems Introduction

» clever programs
» clever proofs

» Way horrible, it contains expressions like

Sop(r(i,apq(i) (8(n,i,m)+1),m) 043y (gr(n,i,m)fl))(a - f;*(n, i m))

» Can we do computability theory as “ordinary”
math?
» use axiomatic method
» argue conceptually and abstractly
» use customary mathematical notions
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» Friedman [1971], axiomatizes coding and universal
functions

First Steps in
Synthetic
Computability

Andrej Bauer

Introduction



Related Work e

Computability
» Friedman [1971], axiomatizes coding and universal Andrej Baver
functions
» Moschovakis [1971] & Fenstad [1974], axiomatize
computations and subcomputations

Introduction



Related Work e

Computability
» Friedman [1971], axiomatizes coding and universal Andrej Baver
functions
» Moschovakis [1971] & Fenstad [1974], axiomatize
computations and subcomputations

» Hyland [1982], effective topos

Introduction



Related Work

» Friedman [1971], axiomatizes coding and universal
functions

» Moschovakis [1971] & Fenstad [1974], axiomatize
computations and subcomputations

» Hyland [1982], effective topos

» Richman [1984], an axiom for effective enumerability
of partial functions

First Steps in
Synthetic
Computability

Andrej Bauer

Introduction



Related Work

>

Friedman [1971], axiomatizes coding and universal
functions

Moschovakis [1971] & Fenstad [1974], axiomatize
computations and subcomputations

» Hyland [1982], effective topos

» Richman [1984], an axiom for effective enumerability

of partial functions

We shall follow Richman [1984] in style, and borrow
ideas from Rosolini [1986], Berger [1983], and Spreen
[1998].
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Computability without Turing Machines

» Use ordinary set theory:
no Turing Machines, or other special notions.
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Computability without Turing Machines ot

Computability

» Use ordinary set theory: L
no Turing Machines, or other special notions. Introduction

» Add a couple of axioms about sets of numbers.

» The underlying logic is intuitionistic:
this is a theorem, not a political conviction.

» Interpretation in the effective topos translates our
theory back to classical recursion theory.



Basic setup

» Intuitionistic logic:
generally, no Law of Excluded Middle or Proof by
Contradiction.
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Basic setup

» Intuitionistic logic:
generally, no Law of Excluded Middle or Proof by
Contradiction.

» As in Bishop-style constructive mathematics, we do
not accept the full Axiom of Choice, but only
Number Choice (and Dependent Choice).

> Basic sets:
0, 1={«}, N={0,1,2,...}
> Set operations:

AxB, A+B, B =A-—B, {xcA|pkx)}, PA
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Basic setup ey
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» Intuitionistic logic:
generally, no Law of Excluded Middle or Proof by
Contradiction. Constructive Math

» As in Bishop-style constructive mathematics, we do
not accept the full Axiom of Choice, but only
Number Choice (and Dependent Choice).

> Basic sets:
0, 1={+}, N={0,1,2,...}
> Set operations:
AxB, A+B, B =A-—B, {xcA|pkx)}, PA
» We say that A is

» non-empty if -VxeA.L,
» inhabited if AIxc A. T.



Some interesting sets

» The set of truth values:

Q="P1

truth T =1,

falsehood L = ()
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Some interesting sets ey
Computability
» The set of truth values: Andrej Bauer

Q = Pl Constructive Math

truth T =1, falsehood L =0
» The set of decidable truth values:

2={0,1}={pecQlpv-p},

where wewrite1 = Tand 0 = L.

» The set of classical truth values:

Q-={peQ|-p=p}.
»2C Q. CAQ.



Decidable and classical sets

» A subset S C A is equivalently given by its
characteristic map xs : A — Q, xs(x) = (x € S).
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Decidable and classical sets

» A subset S C A is equivalently given by its
characteristic map xs : A — Q, xs(x) = (x € S).

» A subset S C Aisdecidable if xs : A — 2, equivalently
VxeA.(xeSVvx¢gSs) .

» Asubset S C Ais classical if xs: A — Q_,
equivalently

VxeA.(-(x¢S) = x€8) .
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The generic convergent sequence

» A useful set is the generic convergent sequence:

Nt = {anN | VkeN. g gakH} .
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The generic convergent sequence

» A useful set is the generic convergent sequence:
Nt = {a €2V |VkeN.g < ﬂk+1} .

» We have N C N* vian — Ak. (k < n).
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The generic convergent sequence

» A useful set is the generic convergent sequence:

Nt = {anN | VkeN. g Sﬂk+1} .

» We have N C N* vian — Ak. (k < n).
» But there is also co = A\k. 0.

» NT can be thought of as the one-point
compactification of N.
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Enumerable & finite sets

» A is finite if there exist n € N and an onto map
e:{1,...,n} - A, called a listing of A. An element
may be listed more than once.
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Enumerable & finite sets e

Computability

» A is finite if there exist n € N and an onto map Andrej Bauer

e:{1,...,n} - A, called a listing of A. An element
may be listed more than once.

Constructive Math
» A is enumerable (countable) if there exists an onto map

e: N — 1+ A, called an enumeration of A. For

inhabited A we may takee : N — A.

» A is infinite if there exists an injective a : N — A.
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Proof.

Givenf : B — B, there is x € A such that
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Theorems for Free



Lawvere — Cantor

Theorem (Lawvere)

Ife: A — B4 is onto then B has the fixed point property.

Proof.
Givenf : B — B, there is x € A such that

e(x) = Ay: A f(e(y)(y)). Then e(x)(x) = f(e(x)(x))-

Corollary (Cantor)

There is no onto map e : A — PA.

Proof.

PA = Q4 and - : Q — Q does not have a fixed point.
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Non-enumerability of Cantor and Baire space = "Smic
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Corollary

2N and NN are not enumerable.

Proof.

Theorems for Free

2 and N do not have the fixed-point property. O

We have proved our first synthetic theorem: there are no
effective enumerations of recursive sets and total
recursive functions.



Projection Theorem

Recall: the projection of S C A x B is the set

{xeA|3yeB.(x,y) €S} .
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Projection Theorem

Recall: the projection of S C A x B is the set

{xeA|3yeB.(x,y) €S} .

Theorem (Projection)

A subset of N is enumerable iff it is the projection of a decidable
subset of N x N.

Proof.

If A is enumerated by e : N — 1 + A then A is the
projection of the graph of e.
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Projection Theorem iy
Computability
Recall: the projection of S C A x B is the set L

{xeA|3yeB.(x,y) €S} .

Theorem (Projection)

Theorems for Free

A subset of N is enumerable iff it is the projection of a decidable
subset of N x N.

Proof.

If A is enumerated by e : N — 1 + A then A is the
projection of the graph of e.

If A is the projection of B C N x N, define
e:NxN—1+Aby

e(m,n) =if (m,n) € Bthen melse =« . O



Semidecidable sets

> A semidecidable truth value p € 2 is one of the form,
forsomed : N — 2,

p=3neN.d(n).
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Semidecidable sets e

Computability
» A semidecidable truth value p € Q is one of the form, Andrej Baver
forsomed : N — 2,

p=3neN.d(n).

» The set of semidecidable truth values:

Theorems for Free

r={pecq|3de2’.p=3neN.dn)} .

This is Rosolini’s dominance.
»2C Y CQ.
» A subset S C N is semidecidable if xs: A — L.



Y as a quotient of N*

» ¥ is a quotient of 2" via taking countable joins:
d € 2" is mapped to In € N.d(n).
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Y as a quotient of N*

» ¥ is a quotient of 2" via taking countable joins:
d € 2" is mapped to In € N.d(n).

» ¥ is a quotient of N* via the map g : Nt — ¥,
defined by g(t) = (t < o0).

» If q(t) = s we say that t is a time at which s becomes
true. Beware, t is not uniquely determined!
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Semidecidable subsets

Theorem

The enumerable subsets of N are precisely the semidecidable
subsets of N.

Proof.

By Projection Theorem, an enumerable A C N is the
projection of a decidable B C N x N. Then n € A iff
dmeN. (n,m) € B.

Conversely, if A € £, by Number Choice there is
d:Nx N — 2suchthatn € Aiff 3m e N.d(m,n).
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Semidecidable subsets

Theorem

The enumerable subsets of N are precisely the semidecidable
subsets of N.

Proof.

By Projection Theorem, an enumerable A C N is the
projection of a decidable B C N x N. Then n € A iff
dmeN. (n,m) € B.

Conversely, if A € £, by Number Choice there is
d:Nx N — 2suchthatn € Aiff 3m e N.d(m,n).

The enumerable subsets of N:

E=3N.
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The Topological View

» Y is the Sierpinski space.
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The Topological View

» Y is the Sierpinski space.

» Y is closed under finite meets, enumerable joins, and
finite meets distribute over enumerable joins.

> A o-frame is a lattice with enumerable joins that
distribute over finite meets.

» The topology of A is 4.
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Partial functions

» A partial functionf : A — Bis a functionf : A’ — B
defined on a subset A’ C A, called the domain of f.
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» Equivalently, it is a functionf : A — E, where

B={scPB|Vx,ycB.(xcsAycs = x=y)} .
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Partial functions

» A partial functionf : A — Bis a functionf : A’ — B
defined on a subset A’ C A, called the domain of f.

» Equivalently, it is a functionf : A — E, where

B={scPB|Vx,ycB.(xcsAycs = x=y)} .

» The singleton map {—} : B — B embeds B in B.

» Fors e E, write s| when s is inhabited.
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Partial functions ey
Computability
» A partial functionf : A — Bis a functionf : A’ — B Andrej Bauer

defined on a subset A’ C A, called the domain of f.

» Equivalently, it is a functionf : A — E, where

B={scPB|Vx,ycB.(xcsAycs = x=y)} .

» The singleton map {—} : B — B embeds B in B.

» Fors e E, write s| when s is inhabited.

» Which partial functions N — N have enumerable
graphs?



Y -partial functions

Proposition

f: N — N has an enumerable graph iff f(n)| € X for all
neN
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Y -partial functions

Proposition

f: N — N has an enumerable graph iff f(n)| € X for all
neN

Define the lifting operation
AL:{se;ﬂsleZ} .
Forf: A — Bdefinef, : Ay — B, tobe

fi(s)={f(x) | xes} .
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Proposition

f: N — N has an enumerable graph iff f(n)| € X for all
neN

Define the lifting operation Thores forFies
AL:{se;ﬂsleZ} .
Forf: A — Bdefinef, : Ay — B, tobe

fi(s)={f(x) | xes} .

A Y -partial function is a functionf : A — B..



Domains of ¥ -partial functions

Proposition

A subset is semidecidable iff it is the domain of a X-partial
function.

Proof.

A semidecidable subset S € ¥4 is the domain of its
characteristicmap xs : A - X =1,.

If f : A — B, is Y-partial then its domain is the set

{x € A|f(x)|}, which is obviously semidecidable. O
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The Single-Value Theorem

A selection for R C A x Bisa partial map f : A — B such
that, for every x € A,

JyeB.R(x,y) = f(x)| AR(x.f(x)).

This is like a choice function, expect it only chooses when
there is something to choose from.
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The Single-Value Theorem

A selection for R C A x Bisa partial map f : A — B such
that, for every x € A,

JyeB.R(x,y) = f(x)| AR(x.f(x)).

This is like a choice function, expect it only chooses when
there is something to choose from.

Theorem (Single Value)

Every open relation R € £™*N has a T-partial selection.
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Axiom of Enumerability

Axiom (Enumerability)

There are enumerably many enumerable sets of numbers.

Let W : N — £ be an enumeration.
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Axiom of Enumerability

Axiom (Enumerability)

There are enumerably many enumerable sets of numbers.
Let W : N — & be an enumeration.

Proposition

Y and & have the fixed-point property.

Proof.
By Lawvere, W : N — £ = o e SN e N
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Enumerability of N — N Nt

Computability

Andrej Bauer

Proposition

N — N is enumerable.

Proof.

Let V : N — %N be an enumeration. By Single-Value Erumenily Ao
Theorem and Number Choice, thereis ¢ : N — (N — N )

such that ¢, is a selection of V},. The map ¢ is onto, as

every f : N — N, is the only selection of its graph. O



The Law of Excluded Middle Fails
The Law of Excluded Middle says 2 = .
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The Law of Excluded Middle Fails e

Computability
The Law of Excluded Middle says 2 = . Andrej Baver
Corollary
The Law of Excluded Middle is false.
Proof. E—————

Among the sets 2 C ¥ C 2 only the middle one has the
tixed-point property, so 2 # ¥ # Q. O



Focal sets

> A focal set is a set A together withamapey : A} — A
such that e4({x}) = x forall x € A:

AQAJ_

A

The focus of Ais L4 = ea(L).
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Focal sets

> A focal set is a set A together withamapey : A} — A
such that e4({x}) = x forall x € A:

AQAJ_

A

The focus of Ais L4 = ea(L).
» A lifted set A is always focal (because lifting is a
monad with whose unit is {—}).
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Enumerable focal sets

» Enumerable focal sets, known as Ersov complete sets,
have good properties.
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Enumerable focal sets iy
Computability
» Enumerable focal sets, known as Ersov complete sets, Andrej Bauer

have good properties.

» A flat domain A, is focal. It is enumerable if A is
decidable and enumerable.

» If A is enumerable and focal then so is AN:

Enumerability Axiom

» Some enumerable focal sets are

o2V N



Multi-valued functions

> A multi-valued function f : A = B is a function
f : A — PB such that f(x) is inhabited for all x € A.
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f(x) ={y € B|R(x,y)}
R(x,y) <= yef(x).



Multi-valued functions ot
Computability
> A multi-valued function f : A = B is a function Andrej Baver

f : A — PB such that f(x) is inhabited for all x € A.

» This is equivalent to having a fotal relation R C A x B.
The connection between f and R is

f(x) ={y € B|R(x,y)}
R(x,y) <= yef(x).

> A fixed point of f : A = Ais x € A such that x € f(x).



Recursion Theorem iy
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Theorem (Recursion Theorem)

Every f : A = A on enumerable focal A has a fixed point.

Proof.

Lete : N — A be an enumeration, and € : A; — A a focal map. For S A
every k € N there exists m € N such that e(m) € f(e(k)). By Number

Choice there is a map ¢ : N — N such that e(c(k)) € f(e(k)) for every

k € N. It suffices to find k such that e(c(k)) = e(k) since then x = e(k) is

a fixed point for f.

For every m € N there is n € N such that (e (cL (¢pn(m)))) = e(n). By

Number Choice there is ¢ : N — N such that

e(eL(co(pm(m)))) = e(g(m)) for every m € N. There is j € N such that

g = ¢j. Letk = g(j). Then

e(k) = e(8()) = eler(cL(;(1)))) == e(c(8(7))) = e(c(k)) -



Classical Recursion Theorem e

Computability
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Corollary (Classical Recursion Theorem)

For every f : N — N there is n € N such that ¢r(,) = on.

Proof.

In Recursion Theorem, take the enumerable focal set NT Sl
and the multi-valued function

F(g)={he N | 3neN.g= oAb =)} -

There is g such that g € F(g). Thus there exists n € N such
that ¢, = g = h= Pf(n)- L]



Markov Principle

» If a binary sequence a € 2" is not constantly 0, does it
containa 1?
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Markov Principle

» If a binary sequence a € 2" is not constantly 0, does it
containa 1?

» Forpe ¥, doesp # Limplyp =T?
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Markov Principle

» If a binary sequence a € 2" is not constantly 0, does it
containa 1?

» Forpe ¥, doesp # Limplyp =T?
> sX C Q.2
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» If a binary sequence a € 2" is not constantly 0, does it
containa 1?

» Forpe ¥, doesp # Limplyp =T?
> IsX C Q7
» For x € NT,if x # oo is x = k for some k € N?
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Markov Principle e
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Andrej Bauer

» If a binary sequence a € 2" is not constantly 0, does it
containa 1?

» Forpe ¥, doesp # Limplyp =T?
> IsX C Q7
» For x € NT,if x # oo is x = k for some k € N?

Markov Principle

Axiom (Markov Principle)

A binary sequence which is not constantly 0 contains a 1.



Post’s Theorem

Theorem (Post)

A subset is decidable if, and only if, it and its complement are
both semidecidable.

Proof.

Clearly, a decidable proposition is semidecidable and so
is its complement. If p and —p are semidecidable then so
is p V =p. By Markov Principlep V —p € ¥ C Q- hence

pVop=-a(pVop)=-(pA-p)=-L=T,

as required.
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Topological Exterior and Creative Sets

» The exterior of an open set is the largest open set
disjoint from it.
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Topological Exterior and Creative Sets

» The exterior of an open set is the largest open set
disjoint from it.

» Anopen set U € 4 is creative if it is without exterior:
for every V € ¥4 such that U N V = () there is
V' € ¥4 such that UN V' = () and V' \ V is inhabited.

Theorem

There exists a creative subset of N.

Proof.

The familiar K = {n eN ‘ ne Wn} is creative. Given any
Ve&withV=Wrand KNV = (), wehaven ¢ V,so we
can take V' = V {k}. O
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Immune and Simple Sets

» A setis immune if it is neither finite nor infinite.
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Immune and Simple Sets ey
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» A setis immune if it is neither finite nor infinite.

> A set is simple if it is open and its complement is
immune.

Theorem

There exists a closed subset of N which is neither finite nor Vorkow Prinige
infinite.

Proof.

Following Post, consider P = {(m,n) e Nx N | n >2m An € Wy},
andletf : N — N, be a selection for P by Single-Value Theorem. Then
S={neN|3meN.f(m)=n} is the complement of the set we are
looking for.

Because f(m) > 2m the set N \ S cannot be finite.

For any infinite enumerable set U C N\ S with U = W,,, we have
f(m)], f(m) € W,, = U, and f(m) € S, hence U is not contained in

N\ S. O
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Theorem

There exists an element of Plotkin’s 2\ that is inconsistent
with every maximal element of 21 .

Proof.

Markov Principle

Because 2 is focal and enumerable, 2§ is as well. Let
PN —» ZT be an enumeration, and letf : 2, — 2, be the
isomorphism t(x) = =, x which exchanges 0 and 1.
Consider a € 2 defined by a(n) = t(u(n)). If b € 2 is
maximal with b = vy, then a(k) = =y (k) = —b(k).
Because a(k) and b(k) are both total and different they are
inconsistent. Hence a and b are inconsistent. O



Berger’s Lemma

Lemma (Berger)

IfU : A = X is a multi-valued open set, and x : Nt — A such
that U(xo) = {T} then there is k € N for which T € U(xy).

Proof.

For every y € A there is p € N* such that (p < o) € U(y).
Consequently, for every y € A there is z € A such that

JpeNT ((p< o) eUy)Az=1x) . 1)

By Recursion Theorem there is y = z satisfying (1). For such y, p is not
equal to co because p = co implies y = xo. and

1 =(p < o0) € U(y) =U(xso) = {T}, contradiction. By Markov
Principle, p € Nsowehavex, =yand T = (p < o0) € U(xy), as
required. O
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w-Chain Complete Posets

» An w-chain complete poset (w-cpo) is a poset in which
enumerable chains have suprema.
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w-Chain Complete Posets

» An w-chain complete poset (w-cpo) is a poset in which
enumerable chains have suprema.

> A base for an w-cpo (A, <) is an enumerable subset
S C A such that:
» Forallxe S, ye A (x<y)eX.
» Every x € Ais the supremum of a chain in S.
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The Topology of w-cpos

Theorem

1. The open subsets of an w-cpo are upward closed and
inaccessible by chains.

2. If an w-cpo A has a base S, then every open is a union of
basic opens sets Tx = {y € A | x <y} withx € S.

Proof.
Ifx<yandx € U € ¥4, definea : Nt — A by

a, = Jif k<pthen xelse y
keN

Then a, = x € U and by Berger’s Lemma thereis k € N
such that y = a; € U, too. ]
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A subset A C B is a subspace if every U € ¥4 is the
restriction of some V € ¥5.
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A subset A C B is a subspace if every U € ¥4 is the
restriction of some V € ¥5.

Axiom (Injectivity)

A classical subset of N is a subspace of N.
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The Injectivity Axiom e

Computability

Andrej Bauer

A subset A C B is a subspace if every U € ¥4 is the
restriction of some V € ¥5.

Axiom (Injectivity)
A classical subset of N is a subspace of N.

In other words, ¥ is injective with respect to classical
subsets of N.

Injectivity Axiom



Kreisel-Lacombe-Shoenfield Theorem

Theorem (Kreisel-Lacombe-Shoenfield-Ceitin)

Every map from a complete separable metric space to a metric
space is ed-continuous.
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Kreisel-Lacombe-Shoenfield Theorem

Theorem (Kreisel-Lacombe-Shoenfield-Ceitin)

Every map from a complete separable metric space to a metric
space is ed-continuous.

Proof idea.

Suppose f : M — L is such a function. Write B(x, r) for the
open ball with radius r and centered at x.
The proof uses Berger’s Lemma and the observation that

VteB(x,r) .f(t) € B(y,q)

is the negation of

JteB(x,r).d(f(t),y) > q,

which is semidecidable. ]
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Where to go from here?

» Computable Analysis:

» 2% is homeomorphic to NV,

» R is locally non-compact, in the sense that every
interval contains a sequence without accumulation
point,

» IR has measure zero: it can be covered by a sequence
of open intervals whose total length is bounded by
e > 0.
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Where to go from here? ot

Computability

» Computable Analysis: Andrej Bauer

» 2% is homeomorphic to NV,

» R is locally non-compact, in the sense that every
interval contains a sequence without accumulation
point,

» IR has measure zero: it can be covered by a sequence
of open intervals whose total length is bounded by
e > 0.

» Turing degrees:

» find a connection between Turing degrees and Baire
category theorems.

Conclusion



Syntheticism

» Synthetic Differential Geometry — success.
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Syntheticism

» Synthetic Differential Geometry — success.

» Synthetic Domain Theory — success.

» Synthetic Computability — successful perversion.

» What do we learn from this?
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Conclusion
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