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How cool is computability theory?

I Way cool:
I surprising theorems
I clever programs
I clever proofs

I Way horrible, it contains expressions like

ϕp(r(i,ϕq(i)(ĝ(n,i,m)+1),m),ϕq(i)(ĝ(n,i,m)−1))(a− ĝ(n, i,m))

I Can we do computability theory as “ordinary”
math?

I use axiomatic method
I argue conceptually and abstractly
I use customary mathematical notions
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Related Work
I Friedman [1971], axiomatizes coding and universal

functions

I Moschovakis [1971] & Fenstad [1974], axiomatize
computations and subcomputations

I Hyland [1982], effective topos
I Richman [1984], an axiom for effective enumerability

of partial functions
I We shall follow Richman [1984] in style, and borrow

ideas from Rosolini [1986], Berger [1983], and Spreen
[1998].
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Computability without Turing Machines

I Use ordinary set theory:
no Turing Machines, or other special notions.

I Add a couple of axioms about sets of numbers.
I The underlying logic is intuitionistic:

this is a theorem, not a political conviction.
I Interpretation in the effective topos translates our

theory back to classical recursion theory.
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Basic setup

I Intuitionistic logic:
generally, no Law of Excluded Middle or Proof by
Contradiction.

I As in Bishop-style constructive mathematics, we do
not accept the full Axiom of Choice, but only
Number Choice (and Dependent Choice).

I Basic sets:

∅, 1 = {∗} , N = {0, 1, 2, . . .}

I Set operations:

A×B, A+B, BA = A → B,
{

x ∈ A
∣∣ p(x)

}
, PA

I We say that A is
I non-empty if ¬∀ x∈A .⊥,
I inhabited if ∃ x∈A .>.
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Some interesting sets

I The set of truth values:

Ω = P1

truth > = 1, falsehood ⊥ = ∅

I The set of decidable truth values:

2 = {0, 1} =
{

p ∈ Ω
∣∣ p ∨ ¬p

}
,

where we write 1 = > and 0 = ⊥.
I The set of classical truth values:

Ω¬¬ =
{

p ∈ Ω
∣∣ ¬¬p = p

}
.

I 2 ⊆ Ω¬¬ ⊆ Ω.
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Decidable and classical sets
I A subset S ⊆ A is equivalently given by its

characteristic map χS : A → Ω, χS(x) = (x ∈ S).

I A subset S ⊆ A is decidable if χS : A → 2, equivalently

∀ x∈A . (x ∈ S ∨ x 6∈ S) .

I A subset S ⊆ A is classical if χS : A → Ω¬¬,
equivalently

∀ x∈A . (¬(x 6∈ S) =⇒ x ∈ S) .
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The generic convergent sequence

I A useful set is the generic convergent sequence:

N+ =
{

a ∈ 2N ∣∣ ∀ k∈N . ak ≤ ak+1

}
.

I We have N ⊆ N+ via n 7→ λk. (k ≤ n).
I But there is also ∞ = λk. 0.
I N+ can be thought of as the one-point

compactification of N.
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Enumerable & finite sets
I A is finite if there exist n ∈ N and an onto map

e : {1, . . . ,n} � A, called a listing of A. An element
may be listed more than once.

I A is enumerable (countable) if there exists an onto map
e : N � 1 + A, called an enumeration of A. For
inhabited A we may take e : N � A.

I A is infinite if there exists an injective a : N � A.
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Lawvere → Cantor

Theorem (Lawvere)

If e : A → BA is onto then B has the fixed point property.

Proof.
Given f : B → B, there is x ∈ A such that
e(x) = λy : A . f (e(y)(y)). Then e(x)(x) = f (e(x)(x)).

Corollary (Cantor)

There is no onto map e : A � PA.

Proof.
PA = ΩA and ¬ : Ω → Ω does not have a fixed point.
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Non-enumerability of Cantor and Baire space

Corollary

2N and NN are not enumerable.

Proof.
2 and N do not have the fixed-point property.

We have proved our first synthetic theorem: there are no
effective enumerations of recursive sets and total
recursive functions.
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Projection Theorem

Recall: the projection of S ⊆ A× B is the set{
x ∈ A

∣∣ ∃ y∈B . 〈x, y〉 ∈ S
}
.

Theorem (Projection)

A subset of N is enumerable iff it is the projection of a decidable
subset of N× N.

Proof.
If A is enumerated by e : N → 1 + A then A is the
projection of the graph of e.
If A is the projection of B ⊆ N× N, define
e : N× N → 1 + A by

e〈m,n〉 = if 〈m,n〉 ∈ B then m else ? .
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Semidecidable sets
I A semidecidable truth value p ∈ Ω is one of the form,

for some d : N → 2,

p = ∃n∈N . d(n) .

I The set of semidecidable truth values:

Σ =
{

p ∈ Ω
∣∣ ∃ d∈2N . p = ∃n∈N . d(n)

}
.

This is Rosolini’s dominance.
I 2 ⊆ Σ ⊂ Ω.
I A subset S ⊆ N is semidecidable if χS : A → Σ.
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Σ as a quotient of N+

I Σ is a quotient of 2N via taking countable joins:
d ∈ 2N is mapped to ∃n∈N . d(n).

I Σ is a quotient of N+ via the map q : N+ → Σ,
defined by q(t) = (t <∞).

I If q(t) = s we say that t is a time at which s becomes
true. Beware, t is not uniquely determined!
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Semidecidable subsets

Theorem
The enumerable subsets of N are precisely the semidecidable
subsets of N.

Proof.
By Projection Theorem, an enumerable A ⊆ N is the
projection of a decidable B ⊆ N× N. Then n ∈ A iff
∃m∈N . 〈n,m〉 ∈ B.
Conversely, if A ∈ ΣN, by Number Choice there is
d : N× N → 2 such that n ∈ A iff ∃m∈N . d(m,n).

The enumerable subsets of N:

E = ΣN .
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The Topological View

I Σ is the Sierpinski space.

I Σ is closed under finite meets, enumerable joins, and
finite meets distribute over enumerable joins.

I A σ-frame is a lattice with enumerable joins that
distribute over finite meets.

I The topology of A is ΣA.
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Partial functions
I A partial function f : A ⇀ B is a function f : A′ → B

defined on a subset A′ ⊆ A, called the domain of f .

I Equivalently, it is a function f : A → B̃, where

B̃ =
{

s ∈ PB
∣∣ ∀ x, y∈B . (x ∈ s ∧ y ∈ s =⇒ x = y)

}
.

I The singleton map {−} : B → B̃ embeds B in B̃.
I For s ∈ B̃, write s↓ when s is inhabited.
I Which partial functions N → Ñ have enumerable

graphs?
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graphs?



First Steps in
Synthetic

Computability

Andrej Bauer

Introduction

Constructive Math

Basic
Computability
Theory
Theorems for Free

Enumerability Axiom

Markov Principle

Injectivity Axiom

Conclusion

Partial functions
I A partial function f : A ⇀ B is a function f : A′ → B

defined on a subset A′ ⊆ A, called the domain of f .
I Equivalently, it is a function f : A → B̃, where

B̃ =
{

s ∈ PB
∣∣ ∀ x, y∈B . (x ∈ s ∧ y ∈ s =⇒ x = y)

}
.

I The singleton map {−} : B → B̃ embeds B in B̃.
I For s ∈ B̃, write s↓ when s is inhabited.

I Which partial functions N → Ñ have enumerable
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Σ-partial functions

Proposition

f : N → Ñ has an enumerable graph iff f (n)↓ ∈ Σ for all
n ∈ N.

Define the lifting operation

A⊥ =
{

s ∈ Ã
∣∣ s↓ ∈ Σ

}
.

For f : A → B define f⊥ : A⊥ → B⊥ to be

f⊥(s) =
{

f (x)
∣∣ x ∈ s

}
.

A Σ-partial function is a function f : A → B⊥.
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Domains of Σ-partial functions

Proposition

A subset is semidecidable iff it is the domain of a Σ-partial
function.

Proof.
A semidecidable subset S ∈ ΣA is the domain of its
characteristic map χS : A → Σ = 1⊥.
If f : A → B⊥ is Σ-partial then its domain is the set{

x ∈ A
∣∣ f (x)↓

}
, which is obviously semidecidable.



First Steps in
Synthetic

Computability

Andrej Bauer

Introduction

Constructive Math

Basic
Computability
Theory
Theorems for Free

Enumerability Axiom

Markov Principle

Injectivity Axiom

Conclusion

The Single-Value Theorem

A selection for R ⊆ A× B is a partial map f : A ⇀ B such
that, for every x ∈ A,

∃ y∈B .R(x, y) =⇒ f (x)↓ ∧ R(x, f (x)) .

This is like a choice function, expect it only chooses when
there is something to choose from.

Theorem (Single Value)

Every open relation R ∈ ΣN×N has a Σ-partial selection.
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Axiom of Enumerability

Axiom (Enumerability)

There are enumerably many enumerable sets of numbers.

Let W : N � E be an enumeration.

Proposition

Σ and E have the fixed-point property.

Proof.
By Lawvere, W : N � E = ΣN ∼= ΣN×N ∼= EN.
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Enumerability of N → N⊥

Proposition

N → N⊥ is enumerable.

Proof.
Let V : N � ΣN×N be an enumeration. By Single-Value
Theorem and Number Choice, there is ϕ : N → (N → N⊥)
such that ϕn is a selection of Vn. The map ϕ is onto, as
every f : N → N⊥ is the only selection of its graph.
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The Law of Excluded Middle Fails

The Law of Excluded Middle says 2 = Ω.

Corollary

The Law of Excluded Middle is false.

Proof.
Among the sets 2 ⊆ Σ ⊆ Ω only the middle one has the
fixed-point property, so 2 6= Σ 6= Ω.
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Focal sets
I A focal set is a set A together with a map εA : A⊥ → A

such that εA({x}) = x for all x ∈ A:

A
{−} //

AA
AA

AA
AA

AA
AA

AA
AA

A⊥

εA

��
A

The focus of A is ⊥A = εA(⊥).

I A lifted set A⊥ is always focal (because lifting is a
monad with whose unit is {−}).
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Enumerable focal sets
I Enumerable focal sets, known as Eršov complete sets,

have good properties.

I A flat domain A⊥ is focal. It is enumerable if A is
decidable and enumerable.

I If A is enumerable and focal then so is AN:

N
ϕ // // NN

⊥
eN
⊥ // // AN

⊥
εN

A // // AN

I Some enumerable focal sets are

ΣN, 2N
⊥, NN

⊥ .
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Multi-valued functions
I A multi-valued function f : A ⇒ B is a function

f : A → PB such that f (x) is inhabited for all x ∈ A.

I This is equivalent to having a total relation R ⊆ A× B.
The connection between f and R is

f (x) =
{

y ∈ B
∣∣ R(x, y)

}
R(x, y) ⇐⇒ y ∈ f (x) .

I A fixed point of f : A ⇒ A is x ∈ A such that x ∈ f (x).
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Recursion Theorem

Theorem (Recursion Theorem)

Every f : A ⇒ A on enumerable focal A has a fixed point.

Proof.
Let e : N � A be an enumeration, and ε : A⊥ → A a focal map. For
every k ∈ N there exists m ∈ N such that e(m) ∈ f (e(k)). By Number
Choice there is a map c : N → N such that e(c(k)) ∈ f (e(k)) for every
k ∈ N. It suffices to find k such that e(c(k)) = e(k) since then x = e(k) is
a fixed point for f .
For every m ∈ N there is n ∈ N such that ε(e⊥(c⊥(ϕm(m)))) = e(n). By
Number Choice there is g : N → N such that
ε(e⊥(c⊥(ϕm(m)))) = e(g(m)) for every m ∈ N. There is j ∈ N such that
g = ϕj. Let k = g(j). Then

e(k) = e(g(j)) = ε(e⊥(c⊥(ϕj(j)))) == e(c(g(j))) = e(c(k)) .
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Classical Recursion Theorem

Corollary (Classical Recursion Theorem)

For every f : N → N there is n ∈ N such that ϕf (n) = ϕn.

Proof.
In Recursion Theorem, take the enumerable focal set NN

⊥
and the multi-valued function

F(g) =
{

h ∈ NN
⊥

∣∣ ∃n∈N . g = ϕn ∧ h = ϕf (n)

}
.

There is g such that g ∈ F(g). Thus there exists n ∈ N such
that ϕn = g = h = ϕf (n).
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Markov Principle

I If a binary sequence a ∈ 2N is not constantly 0, does it
contain a 1?

I For p ∈ Σ, does p 6= ⊥ imply p = >?
I Is Σ ⊆ Ω¬¬?
I For x ∈ N+, if x 6= ∞ is x = k for some k ∈ N?

Axiom (Markov Principle)

A binary sequence which is not constantly 0 contains a 1.
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Axiom (Markov Principle)

A binary sequence which is not constantly 0 contains a 1.
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Post’s Theorem

Theorem (Post)

A subset is decidable if, and only if, it and its complement are
both semidecidable.

Proof.
Clearly, a decidable proposition is semidecidable and so
is its complement. If p and ¬p are semidecidable then so
is p ∨ ¬p. By Markov Principle p ∨ ¬p ∈ Σ ⊆ Ω¬¬, hence

p ∨ ¬p = ¬¬(p ∨ ¬p) = ¬(¬p ∧ ¬¬p) = ¬⊥ = > ,

as required.
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Topological Exterior and Creative Sets

I The exterior of an open set is the largest open set
disjoint from it.

I An open set U ∈ ΣA is creative if it is without exterior:
for every V ∈ ΣA such that U ∩ V = ∅ there is
V′ ∈ ΣA such that U ∩ V′ = ∅ and V′ \ V is inhabited.

Theorem
There exists a creative subset of N.

Proof.
The familiar K =

{
n ∈ N

∣∣ n ∈ Wn
}

is creative. Given any
V ∈ E with V = Wk and K ∩ V = ∅, we have n 6∈ V, so we
can take V′ = V {k}.
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Immune and Simple Sets

I A set is immune if it is neither finite nor infinite.

I A set is simple if it is open and its complement is
immune.

Theorem
There exists a closed subset of N which is neither finite nor
infinite.

Proof.
Following Post, consider P =

˘
〈m, n〉 ∈ N× N

˛̨
n > 2m ∧ n ∈ Wm

¯
,

and let f : N → N⊥ be a selection for P by Single-Value Theorem. Then
S =

˘
n ∈ N

˛̨
∃m∈N . f (m) = n

¯
is the complement of the set we are

looking for.
Because f (m) > 2m the set N \ S cannot be finite.
For any infinite enumerable set U ⊆ N \ S with U = Wm, we have
f (m)↓, f (m) ∈ Wm = U, and f (m) ∈ S, hence U is not contained in
N \ S.
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Inseparable sets

Theorem
There exists an element of Plotkin’s 2N

⊥ that is inconsistent
with every maximal element of 2N

⊥.

Proof.
Because 2⊥ is focal and enumerable, 2N

⊥ is as well. Let
ψ : N � 2N

⊥ be an enumeration, and let t : 2⊥ → 2⊥ be the
isomorphism t(x) = ¬⊥x which exchanges 0 and 1.
Consider a ∈ 2N

⊥ defined by a(n) = t(ψn(n)). If b ∈ 2N
⊥ is

maximal with b = ψk, then a(k) = ¬ψk(k) = ¬b(k).
Because a(k) and b(k) are both total and different they are
inconsistent. Hence a and b are inconsistent.
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Berger’s Lemma

Lemma (Berger)

If U : A ⇒ Σ is a multi-valued open set, and x : N+ → A such
that U(x∞) = {>} then there is k ∈ N for which > ∈ U(xk).

Proof.
For every y ∈ A there is p ∈ N+ such that (p < ∞) ∈ U(y).
Consequently, for every y ∈ A there is z ∈ A such that

∃ p∈N+ . ((p < ∞) ∈ U(y) ∧ z = xp) . (1)

By Recursion Theorem there is y = z satisfying (1). For such y, p is not
equal to ∞ because p = ∞ implies y = x∞ and
⊥ = (p < ∞) ∈ U(y) = U(x∞) = {>}, contradiction. By Markov
Principle, p ∈ N so we have xp = y and > = (p < ∞) ∈ U(xp), as
required.
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ω-Chain Complete Posets

I An ω-chain complete poset (ω-cpo) is a poset in which
enumerable chains have suprema.

I A base for an ω-cpo (A,≤) is an enumerable subset
S ⊆ A such that:

I For all x ∈ S, y ∈ A, (x ≤ y) ∈ Σ.
I Every x ∈ A is the supremum of a chain in S.
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The Topology of ω-cpos

Theorem

1. The open subsets of an ω-cpo are upward closed and
inaccessible by chains.

2. If an ω-cpo A has a base S, then every open is a union of
basic opens sets ↑x =

{
y ∈ A

∣∣ x ≤ y
}

with x ∈ S.

Proof.
If x ≤ y and x ∈ U ∈ ΣA, define a : N+ → A by

ap =
⋃
k∈N

if k < p then x else y

Then a∞ = x ∈ U and by Berger’s Lemma there is k ∈ N
such that y = ak ∈ U, too.
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The Injectivity Axiom

A subset A ⊆ B is a subspace if every U ∈ ΣA is the
restriction of some V ∈ ΣB.

Axiom (Injectivity)

A classical subset of N is a subspace of N.

In other words, Σ is injective with respect to classical
subsets of N.
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Kreisel-Lacombe-Shoenfield Theorem

Theorem (Kreisel-Lacombe-Shoenfield-Ceitin)

Every map from a complete separable metric space to a metric
space is εδ-continuous.

Proof idea.
Suppose f : M → L is such a function. Write B(x, r) for the
open ball with radius r and centered at x.
The proof uses Berger’s Lemma and the observation that

∀ t∈B(x, r) . f (t) ∈ B(y, q)

is the negation of

∃ t∈B(x, r) . d(f (t), y) > q ,

which is semidecidable.
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Where to go from here?

I Computable Analysis:
I 2N is homeomorphic to NN,
I R is locally non-compact, in the sense that every

interval contains a sequence without accumulation
point,

I R has measure zero: it can be covered by a sequence
of open intervals whose total length is bounded by
ε > 0.

I Turing degrees:
I find a connection between Turing degrees and Baire

category theorems.
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Syntheticism

I Synthetic Differential Geometry – success.

I Synthetic Domain Theory – success.
I Synthetic Computability – successful perversion.
I What do we learn from this?
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