Mathematics and Computation

A blog about mathematics for computers

Postsby categoryby yearall
earlier posts

I think I am getting addicted to Coq, or more generally to doing mathematics, including the proofs, with computers. I spent last week finalizing a formalization of Gödel's functional interpretation of logic, also known as the Dialectica interpretation. There does not seem to be one available already, which is a good opportunity for a blog post.

continue reading (6 comments)

Subgroups are equalizers, constructively?

[Edit 2010-11-12: Given the gap in my “proof”, I am changing the title of the post to a question.]

I would like to record the following fact, which is hard to find on the internet: every subgroup is an equalizer, constructively. In other words, all monos in the category of groups are regular, constructively. It is interesting that this fact fails if we work in a meta-theory with “poor quotients”.

continue reading (9 comments)

Delimited continuations in eff

[UPDATE 2012-03-08: since this post was written eff has changed considerably. For updated information, please visit the eff page.]

**Let's keep the blog rolling! Here are delimited continuations in eff, and a bunch of questions I do not know the answers to.

continue reading (6 comments)

How eff handles built-in effects

[UPDATE 2012-03-08: since this post was written eff has changed considerably. For updated information, please visit the eff page.]

From some of the responses we have been getting it looks like people think that the io effect in eff is like unsafePerformIO in Haskell, namely that it causes an effect but pretends to be pure. This is not the case. Let me explain how eff handles built-in effects.

continue reading

[UPDATE 2012-03-08: since this post was written eff has changed considerably. For updated information, please visit the eff page.]

**This is a second post about the programming language eff. We covered the theory behind it in a previous post. Now we turn to the programming language itself.

Please bear in mind that eff is an academic experiment. It is not meant to take over the world. Yet. We just wanted to show that the theoretical ideas about the algebraic nature of computational effects can be put into practice. Eff has many superficial similarities with Haskell. This is no surprise because there is a precise connection between algebras and monads. The main advantage of eff over Haskell is supposed to be the ease with which computational effects can be combined.

continue reading (7 comments)

[UPDATE 2012-03-08: since this post was written eff has changed considerably. For updated information, please visit the eff page.]

I just returned from Paris where I was visiting the INRIA ?r² team. It was a great visit, everyone was very hospitable, the food was great, and the weather was nice. I spoke at their seminar where I presented a new programming language eff which is based on the idea that computational effects are algebras. The language has been designed and implemented jointly by Matija Pretnar and myself. Eff is far from being finished, but I think it is ready to be shown to the world. What follows is an extended transcript of the talk I gave in Paris. It is divided into two posts. The present one reviews the basic theory of algebras for a signature and how they are related to computational effects. The impatient readers can skip ahead to the second part, which is about the programming language.

A side remark: I have updated the blog to WordPress to 3.0 and switched to MathJax for displaying mathematics. Now I need to go through 70 old posts and convert the old ASCIIMathML notation to MathJax, as well as fix characters which got garbled during the update. Oh well, it is an investment for the future.

continue reading (18 comments)

Since the death of my old web server my Random Art has not worked. Bringing it up to date and installing it on the new server was a nightmare in software management. But it was worth it. The new Random Art runs the random art program inside your browser!

continue reading (14 comments)

An amazing functional

Martin Escardo and Paulo Oliva have been working on the selection monad and related functionals. The selection monad `S(X) = (X -> R) -> X` is a cousin of the continuation monad `C(X) = (X -> R) -> R` and it has a lot of useful and surprising applications. I recommend their recent paper “What Sequential Games, the Tychonoff Theorem and the Double-Negation Shift have in Common” which they wrote for MSFP 2010 (if you visit the workshop you get to hear Martin live). They explain things via examples written in Haskell, starting off with the innocently looking functional `ox` (which i I am writting as ox in Haskell for “crossed O”):

ox :: [(x -> r) -> x] -> ([x] -> r) -> [x]
ox [] p = []
ox (e : es) p = a : ox es (p . (a:))
   where a = e (\x -> p (x : ox es (p . (x:))))

It is just four lines of code, so how complicated could it be? Well, read the paper to find out. If you are ready for serious math, have a look at this paper instead.

continue reading (3 comments)

After more than 1300 days of uninterrupted service, the good old PC that served the blog started to spontaneously reboot every 4 minutes or so. It looks like a hardware failure. I moved the site to a temporary machine. I am seriously considering renting a private virtual server and just forget about buying my own hardware in the future.

On top of that I discovered that evil forces planted a phishing attack on the blog about two weeks ago. The strategy was this:

  1. Create an account on my blog (I stupidly left registration open to everyone).
  2. Elevate account privileges to administrator by exploiting a WordPress security hole (I do not know which one).
  3. Upload evil files to the upload area.
  4. Direct phishing victims to the uploaded files.

So, keep your WordPress as closed as possible.

continue reading (3 comments)

Random art in Python

I get asked every so often to release the source code for my random art project. The original source is written in Ocaml and is not publicly available, but here is a simple example of how you can get random art going in python in 250 lines of code.

Download source: randomart.py

continue reading (12 comments)
later posts
Postsby categoryby yearall