Mathematics and Computation

A blog about mathematics for computers

Two Constructive Embedding-Extension Theorems with Applications to Continuity Principles and to Banach-Mazur Computability

With Alex Simpson.

Abstract: We prove two embedding and extension theorems in the context of the constructive theory of metric spaces. The first states that Cantor space embeds in any inhabited complete separable metric space (CSM) without isolated points, `X`, in such a way that every sequentially continuous function from Cantor space to `ZZ` extends to a sequentially continuous function from `X` to `RR`. The second asserts an analogous property for Baire space relative to any inhabited locally non-compact CSM. Both results rely on having careful constructive formulations of the concepts involved.

As a first application, we derive new relationships between “continuity principles” asserting that all functions between specified metric spaces are pointwise continuous. In particular, we give conditions that imply the failure of the continuity principle “all functions from `X` to `RR` are continuous”, when `X` is an inhabited CSM without isolated points, and when `X` is an inhabited locally non-compact CSM. One situation in which the latter case applies is in models based on “domain realizability”, in which the failure of the continuity principle for any inhabited locally non-compact CSM, `X`, generalizes a result previously obtained by Escardo and Streicher in the special case `X = C[0,1]`.

As a second application, we show that, when the notion of inhabited complete separable metric space without isolated points is interpreted in a recursion-theoretic setting, then, for any such space `X`, there exists a Banach-Mazur computable function from `X` to the computable real numbers that is not Markov computable. This generalizes a result obtained by Hertling in the special case that `X` is the space of computable real numbers.

Published in: Mathematical Logic Quarterly, 50(4,5):351-369, 2004.

Download: continuity.pdf, continuity.ps.gz

How to comment on this blog: At present comments are disabled because the relevant script died. If you comment on this post on Mastodon and mention andrejbauer@mathstodon.xyz, I will gladly respond. You are also welcome to contact me directly.