Category Archives: Tutorial

Topics that are targeted at a wider audience.

Univalent foundations subsume classical mathematics

A discussion on the homotopytypetheory mailing list prompted me to write this short note. Apparently a mistaken belief has gone viral among certain mathematicians that Univalent foundations is somehow limited to constructive mathematics. This is false. Let me be perfectly clear:

Univalent foundations subsume classical mathematics!

The next time you hear someone having doubts about this point, please refer them to this post. A more detailed explanation follows.

Continue reading Univalent foundations subsume classical mathematics

The elements of an inductive type

In the HoTT book issue 460 a question by gluttonousGrandma (where do people get these nicknames?) once more exposed a common misunderstanding that we tried to explain in section 5.8 of the book (many thanks to Bas Spitters for putting the book into Google Books so now we can link to particular pages). Apparently the following belief is widely spread, and I admit to holding it a couple of years ago:

An inductive type contains exactly those elements that we obtain by repeatedly using the constructors.

If you believe the above statement you should keep reading. I am going to convince you that the statement is unfounded, or that at the very least it is preventing you from understanding type theory.

Continue reading The elements of an inductive type

Free variables are not “implicitly universally quantified”!

Mathematicians are often confused about the meaning of variables. I hear them say “a free variable is implicitly universally quantified”, by which they mean that it is ok to equate a formula $\phi$ with a free variable $x$ with its universal closure $\forall x \,.\, \phi$. I am addressing this post to those who share this opinion.

Continue reading Free variables are not “implicitly universally quantified”!

How to implement dependent type theory III

I spent a week trying to implement higher-order pattern unification. I looked at couple of PhD dissertations, talked to lots of smart people, and failed because the substitutions were just getting in the way all the time. So today we are going to bite the bullet and implement de Bruijn indices and explicit substitutions.

The code is available on Github in the repository andrejbauer/tt (the blog-part-III branch).

Continue reading How to implement dependent type theory III

How to implement dependent type theory II

I am on a roll. In the second post on how to implement dependent type theory we are going to:

  1. Spiff up the syntax by allowing more flexible syntax for bindings in functions and products.
  2. Keep track of source code locations so that we can report where the error has occurred.
  3. Perform normalization by evaluation.

Continue reading How to implement dependent type theory II

How to implement dependent type theory I

I am spending a semester at the Institute for Advanced Study where we have a special year on Univalent foundations. We are doing all sorts of things, among others experimenting with type theories. We have got some real experts here who know type theory and Coq inside out, and much more, and they’re doing crazy things to Coq (I will report on them when they are done). In the meanwhile I have been thinking how one might implement dependent type theories with undecidable type checking. This is a tricky subject and I am certainly not the first one to think about it. Anyhow, if I want to experiment with type theories, I need a small prototype first. Today I will present a very minimal one, and build on it in future posts.

Make a guess, how many lines of code does it take to implement a dependent type theory with universes, dependent products, a parser, lexer, pretty-printer, and a toplevel which uses line-editing when available?

Continue reading How to implement dependent type theory I

Substitution is pullback

I am sitting on a tutorial on categorical semantics of dependent type theory given by Peter Lumsdaine. He is talking about categories with attributes and other variants of categories that come up in the semantics of dependent type theory. He is amazingly good at fielding questions about definitional equality from the type theorists. And it looks like some people are puzzling over pullbacks showing up, which Peter is about to explain using syntactic categories. Here is a pedestrian explanation of a very important fact:

Substitution is pullback.

Continue reading Substitution is pullback

A hott thesis

Egbert Rijke successfully defended his master thesis in Utrecht a couple of weeks ago. He published it on the Homotopy type theory blog (here is a direct link to the PDF file (revised)). The thesis is well written and it contains several new results, but most importantly, it is a gentle yet non-trivial introduction to homotopy type theory. If you are interested in the topic but do not know where to start, Egbert’s thesis might be perfect for you. As far as I know it is the first substantial piece of text written in (informal) homotopy type theory.

What I find most amazing about the work is that Egbert does not have to pretend to be a homotopy type theorist, like us old folks. His first contact with type theory was homotopy type theory, which impressed on his mind a new kind of geometric intuition about $\Pi$’s, $\Sigma$’s and $\mathrm{Id}$’s. If we perform enough such experiments on young bright students, strange things will happen.