Mathematics and Computation

A blog about mathematics for computers

Postsby categoryby yearall
earlier posts

Agda Writer

My student Marko Koležnik is about to finish his Master’s degree in Mathematics at the University of Ljubljana. He implemented Agda Writer, a graphical user interface  for the Agda proof assistant on the OS X platform. As he puts it, the main advantage of Agda Writer is no Emacs, but the list of cool features is a bit longer:

Agda Writer is open source. Everybody is welcome to help out and participate on the Agda Writer repository.

Who is Agda Writer for? Obviously for students, mathematicians, and other potential users who were not born with Emacs hard-wired into their brains. It is great for teaching Agda as you do not have to spend two weeks explaining Emacs. The only drawback is that it is limited to OS X. Someone should write equivalent Windows and Linux applications. Then perhaps proof assistants will have a chance of being more widely adopted.

continue reading (5 comments)

Provably considered harmful

This is officially a rant and should be read as such.

Here is my pet peeve: theoretical computer scientists misuse the word “provably”. Stop it. Stop it!

continue reading (10 comments)

I have not written a blog post in a while, so I decided to write up a short observation about truth values in intuitionistic logic which sometimes seems a bit puzzling.

Let $\Omega$ be the set of truth values (in Coq this would be the setoid whose underlying type is $\mathsf{Prop}$ and equality is equivalence $\leftrightarrow$, while in HoTT it is the h-propostions). Call a truth value $p : \Omega$ intermediate if it is neither true nor false, i.e., $p \neq \bot$ and $p \neq \top$. Such a “third” truth value $p$ is proscribed by excluded middle.

The puzzle is to explain how the following two facts fit together:

  1. “There is no intermediate truth value” is an intuitionistic theorem.
  2. There are models of intuitionistic logic with many truth values.
continue reading (6 comments)

Here are the slides of my TYPES 2015 talk “The troublesome reflection rule” with fairly detailed presenter notes. The meeting is  taking place in Tallinn, Estonia – a very cool country in many senses (it’s not quite spring yet even though we’re in the second half of May, and it’s the country that gave us Skype).

Download slides: The troublesome reflection rule (TYPES 2015) [PDF].

continue reading (2 comments)

Another PhD position in Ljubljana

It is my pleasure to announce a second PhD position in Ljubljana!

A position is available for a PhD student at the University of Ljubljana in the general research area of modelling and reasoning about computational effects. The precise topic is somewhat flexible, and will be decided in discussion with the student. The PhD will be supervised by Alex Simpson who is Professor of Computer Science at the Faculty of Mathematics and Physics.

The position will be funded by the Effmath project (see project description). Full tuition & stipend will be provided.

The candidate should have a master’s (or equivalent) degree in either mathematics or computer science, with background knowledge relevant to the project area. The student will officially enrol in October 2015 at the University of Ljubljana. No knowledge of the Slovene language is required.

The candidates should contact Alex.Simpson@fmf.uni-lj.si by email as soon as possible. Please include a short CV and a statement of interest.

continue reading

I am looking for a PhD student in mathematics. Full tuition & stipend will be provided for a period of three years, which is also the official length of the programme. The topic of research is somewhat flexible and varies from constructive models of homotopy type theory to development of a programming language for a proof assistant based on dependent type theory, see the short summary of the Effmath project for a more detailed description.

The candidate should have as many of the following desiderata as possible, and at the very least a master’s degree (or an equivalent one):

  1. a master’s degree in mathematics, with good knowledge of computer science
  2. a master’s degree in computer science, with good knowledge of mathematics
  3. experience with functional programming
  4. experience with proof assistants
  5. familiarity with homotopy type theory

The student will officially enrol in October 2015 at the University of Ljubljana. No knowledge of Slovene is required. However, it is possible, and even desirable, to start with the actual work (and stipend) earlier, as soon as in the spring of 2015. The candidates should contact me by email as soon as possible. Please include a short CV and a statement of interest.

Update 2015-03-28: the position has been taken.

continue reading

TEDx “Zeroes”

I spoke at TEDx University of Ljubljana. The topic was how programming influences various aspects of life. I showed the audence how a bit of simple programming can reveal the beauty of mathematics. Taking John Baez’s The Bauty of Roots as an inspiration, I drew a very large image (20000 by 17500 pixels) of all roots of all polynomials of degree at most 26 whose coefficients are $-1$ or $1$. That’s 268.435.452 polynomials and 6.979.321.752 roots. It is two degrees more than Sam Derbyshire’s image,  so consider the race to be on! Who can give me 30 degrees?

continue reading (6 comments)

Here are the slides from my Logic Coloquium 2014 talk in Vienna. This is joint work with Kazuto Yoshimura from Japan Advanced Institute for Science and Technology.

Abstract: In constructive mathematics we often consider implications between non-constructive reasoning principles. For instance, it is well known that the Limited principle of omniscience implies that equality of real numbers is decidable. Most such reductions proceed by reducing an instance of the consequent to an instance of the antecedent. We may therefore define a notion of instance reducibility, which turns out to have a very rich structure. Even better, under Kleene’s function realizability interpretation instance reducibility corresponds to Weihrauch reducibility, while Kleene’s number realizability relates it to truth-table reducibility. We may also ask about a constructive treatment of other reducibilities in computability theory. I shall discuss how one can tackle Turing reducibility constructively via Kleene’s number realizability.

Slides with talk notes:  lc2014-slides-notes.pdf

continue reading

In the post Seemingly impossible functional programs, I wrote increasingly efficient Haskell programs to realize the mathematical statement

$\forall p : X \to 2. (\exists x:X.p(x)=0) \vee (\forall x:X.p(x)=1)$

for $X=2^\mathbb{N}$, the Cantor set of infinite binary sequences, where $2$ is the set of binary digits. Then in the post A Haskell monad for infinite search in finite time I looked at ways of systematically constructing such sets $X$ with corresponding Haskell realizers of the above omniscience principle.

In this post I give examples of infinite sets $X$ and corresponding constructive proofs of their omniscience that are intended to be valid in Bishop mathematics, and which I have formalized in Martin-Löf type theory in Agda notation. This rules out the example $X=2^\mathbb{N}$, as discussed below, but includes many interesting infinite examples. I also look at ways of constructing new omniscient sets from given ones. Such sets include, in particular, ordinals, for which we can find minimal witnesses if any witness exists.

Agda is a dependently typed functional programming language based on Martin-Löf type theory. By the Curry-Howard correspondence, Agda is also a language for formulating mathematical theorems (types) and writing down their proofs (programs). Agda acts as a thorough referee, only accepting correct theorems and proofs. Moreover, Agda can run your proofs. Here is a graph of the main Agda modules for this post, and here is a full graph with all modules.

continue reading

I just gave a talk at “Semantics of proofs and certified mathematics”. I spoke about a new proof checker Chris Stone and I are working on. The interesting feature is that it has both kinds of equality, the “paths” and the “strict” ones. It is based on a homotopy type system proposed by Vladimir Voevodsky. The slides contain talk notes and explain why it is “Brazilian”.

Download slides: brazilian-type-checking.pdf

GitHub repository: https://github.com/andrejbauer/tt

Abstract: Proof assistants verify that inputs are correct up to judgmental equality. Proofs are easier and smaller if equalities without computational content are verified by an oracle, because proof terms for these equations can be omitted. In order to keep judgmental equality decidable, though, typical proof assistants use a limited definition implemented by a fixed equivalence algorithm. While other equalities can be expressed using propositional identity types and explicit equality proofs and coercions, in some situations these create prohibitive levels of overhead in the proof.
Voevodsky has proposed a type theory with two identity types, one propositional and one judgmental. This lets us hypothesize new judgmental equalities for use during type checking, but generally renders the equational theory undecidable without help from the user.

Rather than reimpose the full overhead of term-level coercions for judgmental equality, we propose algebraic effect handlers as a general mechanism to provide local extensions to the proof assistant’s algorithms. As a special case, we retain a simple form of handlers even in the final proof terms, small proof-specific hints that extend the trusted verifier in sound ways.

continue reading (5 comments)
later posts
Postsby categoryby yearall