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ABSTRACT. Lawvere’s fixed point theorem captures the essence of diagonalization argu-
ments. Cantor’s theorem, Gödel’s incompleteness theorem, and Tarski’s undefinability of
truth are all instances of the contra-positive form of the theorem. It is harder to apply the
theorem directly because non-trivial examples are not easily found, in fact, none exist if
excluded middle holds.

We study Lawvere’s fixed-point theorem in the effective topos. Rather than operating
directly with the topos, we work in synthetic computability, which is higher-order intu-
itionistic logic augmented with the Axiom of Countable Choice, Markov’s principle, and
the Enumeration axiom, which states that there are countably many countable subsets of N.
These extra-logical principles are valid in the effective topos, as well as in any realizabil-
ity topos built over Turing machines with an oracle, and suffice for an abstract axiomatic
development of a computability theory.

We show that every countably generated ω-chain complete pointed partial order (ωcppo)
is countable, and that countably generated ωcppos are closed under countable products.
Therefore, Lawvere’s fixed-point theorem applies and we obtain fixed points of all en-
domaps on countably generated ωcppos. Similarly, the Knaster–Tarski theorem guarantees
existence of least fixed points of continuous endomaps. To get the best of both theorems,
we prove a synthetic version of the Myhill–Shepherdson theorem: every map from an
ωcpo to a domain (an ωcppo which is generated by a countable set of compact elements)
is continuous. The proof relies on a new fixed-point theorem, the synthetic Recursion The-
orem. It subsumes the classic Kleene-Rogers Recursion Theorem, and takes the form of
Lawvere’s fixed point theorem for multi-valued endomaps.

1. INTRODUCTION

A fixed point theorem of Lawvere’s [12, Theorem 1.1] is the quintessential diagonal
argument. The following version uses a stronger notion of surjectivity than the original
theorem, but its statement and proof may be interpreted in the internal language of a topos.

Theorem 1.1 (Lawvere). If there is a surjection e : A→ BA then every map f : B → B
has a fixed point.

Proof. There is a ∈ A such that e(a) = λx :A . f(e(x)(x)), thus e(a)(a) = f(e(a)(a)).
�

Among the consequences of Lawvere’s original theorem are Cantor’s theorem [12, Corol-
lary 1.2], Gödel’s incompleteness theorem [12, Theorem 3.3], and Tarski’s undefinability
of truth [12, Theorem 3.2]. These all take the contrapositive form: because some object
has an endomap without fixed points, some surjection does not exist. For instance, the
contrapositive form of Theorem 1.1 implies that there is no surjection from A to its power
ΩA, because negation has no fixed points as an endomap on the object of truth values Ω.

This material is based upon work supported by the Air Force Office of Scientific Research, Air Force Materiel
Command, USAF under Award No. FA9550-14-1-0096.
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How about direct applications of the theorem? None are given by Lawvere [12], and
there are none in the presence of excluded middle, where a surjection A→ BA is possible
only ifB is a singleton. We shall heed Lawvere’s advice and look for them in computability
theory.

Rather than crafting Turing machines and Gödel codes, we prefer to work in Hyland’s
effective topos [6]. In fact, we shall avoid chasing diagrams, too, and instead use exclu-
sively the internal language of the topos. To be precise, our settings is higher-order intu-
itionistic logic with a natural numbers object [11], augmented with just three extra-logical
principles: the Axiom of Countable Choice, the Enumeration Axiom, and Markov’s Prin-
ciple; see §2 for their formulation and explanation. The principles are valid in the effective
topos, as well as in any realizability topos arising from a partial combinatory algebra of
(codes of) Turing machines with an oracle. In other words, all results relativize with re-
spect to an arbitrary oracle. I call this setup synthetic computability because it is grounded
in a ‘synthetic’ mathematical universe with computability theory built in, but it approaches
the subject in an axiomatic and abstract way that eschews talking about computation ex-
plicitly. It is similar in techniques and ideas to synthetic domain theory [19, 7, 16, 21] and
synthetic topology [5, 13, 22, 1], with an emphasis on topics that pertain to computability
theory.

We shall seek examples of Lawvere’s theorem in domain theory. For this purpose we
review in §3 the basic definitions and facts about ω-complete partial orders (ωcpos) and
their pointed versions, ωcppos, and make sure that everything works in intuitionistic logic
with the Axiom of Countable Choice (but we do not use Markov’s principle or the Enu-
meration Axiom). Of special interest are the countably generated ωcppos and domains,
both of which are defined in §3.

In §4 we fulfill our initial task by proving with the help of the Enumeration Axiom that
all countably generated ωcppos satisfy Lawvere’s fixed-point theorem. In fact, they satisfy
two two fixed-point theorems:

(1) Every endomap has a fixed point.
(2) Every continuous endomap has a least fixed point.

The first one is Lawvere’s theorem, and the second one the Knaster–Tarski theorem. In or-
der to reconcile these into a single theorem we develop more synthetic computability in §5.
We formulate and prove a new version of Lawvere’s fixed point theorem (Theorem 5.2),
which states the existence of fixed points of multi-valued maps. We call it the Recursion
Theorem because it implies the classic Kleene-Rogers Recursion Theorem, and allows us
to construct various recursive objects.

The Recursion Theorem applies to all countably generated ωcppos. We use it to prove
a continuity principle (Theorem 6.4) stating that all maps from ωcpos to domains are con-
tinuous. The principle subsumes other continuity principles, such as the classic Myhill-
Shepherdson theorem and Scott’s principle from synthetic domain theory. It also implies
that all endomaps on domains have least fixed points, and so at least for domains the rec-
onciliation of fixed-point theorems is accomplished.

2. SYNTHETIC COMPUTABILITY

We shall work in higher-order intuitionistic logic with a natural numbers object [11], en-
riched with three extra-logical principles. The first one is the Axiom of Countable Choice:

Axiom 2.1. A total relation whose domain is N contains the graph of a function.
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Written in intuitionistic higher-order logic, the axiom states that for every relation ψ :
N×A→ Ω,

(∀n ∈ N .∃x ∈ A .ψ(x, a))⇒ ∃f ∈ AN .∀n ∈ N . ψ(n, f(n)).

The second axiom is Markov’s principle [14]:

Axiom 2.2. If a binary sequence is not constantly 0 then it contains a 1.

Written as a formula, Markov’s principles states

∀α ∈ 2N .¬(∀n . αn = >)⇒ ∃n . αn = >.

where 2 = {p ∈ Ω | p ∨ ¬p} is the set of decidable truth values. In Proposition 3.4 we
shall see another formulation of Markov’s principle.

The Axiom of Countable Choice and Markov’s principle are both valid in the effective
topos, as was noted already in [6]. The third tenet is the Enumeration Axiom:

Axiom 2.3. There are countably many countable subsets of the natural numbers.

Let us be more precise. A set A is countable, or enumerable, if there is a surjection
e : N → 1 + A, where summing the codomain with the singleton 1 = {?} allows an
enumeration to ‘skip’ by outputting ?. Thus the empty set is enumerated by a sequence
that always skips. When A is inhabited there is a surjection 1 + A → A that provides an
enumeration N→ Awithout skipping. The countable subsets of a setA are the restrictions
of images of maps N→ 1 +A to A, and they again form a set

E(A) = {S ∈ ΩA | ∃e ∈ (1 +A)N .∀x ∈ A . x ∈ S ⇔ ∃n . e(n) = x}.

If we let E abbreviate E(N) then the Enumeration Axiom states that there is a surjection

W : N→ E .

We are using standard notation for computability theory because it suggests how the effec-
tive topos validates the Enumeration axiom: E is just the object of computably enumerable
sets. In Ershov’s theory of numbered sets [4] it is the numbered set (E ,W), where E is
the set of computably enumerable sets and W : N → E a standard numbering of E . The
Enumeration axiom is valid simply because W is total, and so the realizer for surjectivity
of W is just the the identity map. After we have developed some theory, in §4.1 we shall
compare the Enumeration axiom to other axiomatic formulations of computability theory.

We use the Axiom of Countable Choice frequently, Markov’s principle only in Propo-
sition 6.1, and the Enumeration axiom only in Theorem 4.2.

Higher-order intuitionistic logic can be put to work immediately, even without the extra
axioms. The contra-positive form of Lawvere’s theorem tells us that there are no surjec-
tions

N→ NN and N→ 2N

because the natural numbers and the decidable truth values have endomaps without fixed
points, namely the successor and the negation, respectively. The realizability interpreta-
tions of these statements are the familiar facts that there are no computable enumerations
of total computable functions and of computable subsets of N, respectively.

A slightly more interesting observation is the following proposition, which will serve
to prove a synthetic variant of Rice’s theorem, see Corollary 4.4. Say that a set has the
fixed-point property if every endomap on it has a fixed point.

Proposition 2.4. If A has the fixed point property then every map A→ 2 is constant.
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Proof. Given f : A→ 2 and any x, y ∈ A we show that f(x) = f(y). Define g : A→ A
by

g(z) =

{
x if f(z) = f(y),
y otherwise.

There is z ∈ A such that z = f(z). If f(z) = f(y) then z = g(z) = x and f(x) = f(z) =
f(y). If f(z) 6= f(y) then z = g(z) = y and so f(z) = f(y), a contradiction, hence again
f(x) = f(y). �

3. CHAIN-COMPLETE POINTED PARTIAL ORDERS

We shall look for sets that satisfy the precondition of Lawvere’s theorem in domain the-
ory. We first review the relevant concepts, and make sure that they work intuitionistically.

A partially ordered set, or poset, (P,≤) is a set P with a reflexive, transitive and asym-
metric relation ≤. A chain in (P,≤) is a a monotone sequence c : N → P : for all
i ∈ N, ci ≤ ci+1. A chain-complete poset (ωcpo) is a poset (P,≤) in which every chain
c : N → P has a supremum

∨
ncn. If an ωcpo has a least element ⊥, called the bot-

tom, then it is a pointed ωcpo (ωcppo). A map between ωcpos is continuous when it is
monotone and it preserves suprema of chains.

A countable base, or just a base, for an ωcppo (P,≤) is a countable subset B ⊆ P ,
whose elements are called basic, such that:

(1) every element in P is the supremum of a chain of basic elements, and
(2) the induced order on B is decidable.

A countably generated ωcppo is one that has a base. Note that our terminology differs
from the established one, as a base often involves the way below relation. The bottom ⊥
is always basic because it is the supremum of a chain of basic elements, but those must all
be ⊥.

We must thread still slightly deeper into domain theory. In an ωcppo (P,≤) an element
x ∈ P is compact if, for every countable chain c : N → P , x ≤

∨
ncn implies x ≤ cn

for some n ∈ N. A domain is a countably generated ωcppo whose basic elements are
compact. If basic elements are compact then all compact elements are basic, for each
compact element is the supremum of a chain of basic elements, and therefore equal to one
of them by compactness.

Domains are generally constructed as completions. Let (B,≤) be a countable poset
with a least element ⊥ and a decidable order. An ideal in B is a subset I ⊆ B which is

(1) inhabited: ⊥ ∈ I ,
(2) downward closed: if x ≤ y and y ∈ I then x ∈ I , and
(3) directed: for all x, y ∈ I there is z ∈ I such that x ≤ z and y ≤ z.

The poset ωIdl(B) of countable ideals in B ordered by inclusion ⊆, is a domain. The least
element is the trivial ideal {⊥}, and the supremum of a countable chain of countable ideals
is again a countable ideal, thanks to the Axiom of Countable Choice. For each x ∈ B the
principal ideal ↓x = {y ∈ B | y ≤ x} is countable because the order on B is decidable,
and it is compact in ωIdl(B). Thus principal ideals form a countable base of compact
elements. The construction is a completion because it has the following universal property.

Proposition 3.1. For any countable poset (B,≤B) with a least element and decidable
order, and a monotone map f : B → P into an ωcpo (P,≤P ), there exists a unique
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continuous extension f : ωIdl(B)→ P such that the following diagram commutes:

B
↓ //

f
##

ωIdl(B)

f

��
P

Proof. Let us first show that every countable ideal I ⊆ B contains a countable chain which
is cofinal in I . Starting from an enumeration e : N→ I , by the Axiom of Countable Choice
there is a map s : N × N → N which chooses for any m,n ∈ N an element s(m,n) ∈ N
such that em ≤B es(m,n) and en ≤B es(m,n). Let r : N → N be defined by r(0) = 0
and r(n + 1) = s(r(n), n + 1). Then c = e ◦ r is the cofinal chain we are looking for.
Therefore, I is the supremum of the chain of principal ideals ↓cn, and so it must be the
case that

f(I) = f(
∨
n↓cn) =

∨
nf(↓cn) =

∨
nf(cn).

The right-hand side does not depend on the cofinal chain c : N → I , because any two
cofinal chains in I dominate each other, and so do their images by f . Thus the equation
may be taken as the definition of f . Uniqueness now follows by a standard argument. �

We really do have to take only the countable ideals, because arbitrary ideals may not
contain cofinal chains. For example, the ideal completion of the finite decidable subsets
of N is the powerset ΩN. If every subset of N were the union of a chain of finite sets,
then every subset of N would be countable, ΩN = E , but this cannot be because Cantor’s
theorem states uncountability of ΩN and the Enumeration axiom countability of E .

Countably generated ωcppos are closed for several construction, but of special interest
to us is closure for countable products.

Theorem 3.2. Countably generated ωcppos are closed under countable products, and so
are domains.

Proof. Let (Pi,≤i)i∈N be a sequence of countably generated ωcppos and Q =
∏
i∈N Pi

their product, ordered coordinate-wise. We need to exhibit a base for Q. By the Axiom of
Countable Choice, for every i ∈ N there is an enumeration bi : N → Pi of a base for Pi.
Let List(N) be the set of finite lists of numbers, let |s| be the length of the list s, and si
its i-th element, counting from zero. There is an enumeration ` : N → List(N). Define
c : N→ Q by

cn(i) =

{
bi(`(n)i) if i < |`(n)|,
⊥i otherwise.

One readily verifies that c is a base for Q.
To prove the statement for domains, one just has to additionally verify that c enumerates

compact elements in Q if the bi’s do the same in Pi’s. �

Below we give examples of domains, but counter-examples are equally instructive. The
closed interval [0, 1] with the usual ordering ≤ is not closed under suprema of chains, be-
cause such closure would imply the Limited Principle of Omniscience, which is false, see
Corollary 4.3 and the subsequent paragraph. However, the related closed interval [0, 1]`
of lower reals is a ωcppo. (Recall that the lower reals are constructed as the set of lower
Dedekind cuts, whereas the construction of reals uses two-sided cuts.) The rational num-
bers between 0 and 1 form a countable base for [0, 1]`, but [0, 1]` is not a domain, since its
only compact element is 0.



6 ANDREJ BAUER

3.1. Lifting and partial maps. Given a countable set A with decidable equality, take
as the base the poset A + {⊥} in which x ≤ y if, and only if, x = ⊥ or x = y. Its
completion ωIdl(A+ {⊥}) is a domain known as the lifting A⊥. It may also be described
as the poset of countable subsets in A with at most one element,

A⊥ = {S ∈ E(A) | ∀x, y ∈ S . x = y},

ordered by inclusion. A countable base for A⊥ consists of those elements of A⊥ which are
either empty or inhabited.

Let Ã be the set of subsets of A with at most one element,

Ã = {S ∈ ΩA | ∀x, y ∈ S . x = y}.

A partial map f : A ⇀ B is a map f : A → B̃, where f(x) = ∅ signifies that f is
undefined at x and f(x) = {y} that it takes the value y. The support of f is

‖f‖ = {x ∈ A | ∃y ∈ B . f(x) = {y}},

and its graph the set

Γf = {(x, y) ∈ A×B | f(x) = {y}}.

Because B⊥ ⊆ B̃, every map f : A→ B⊥ is a partial map.

Proposition 3.3. The following are equivalent for a partial map f : N⇀ N:

(1) the support of f is countable,
(2) the graph of f is countable,
(3) the values of f are countable.

Proof. Note that the last claim states that f may be seen as a map N→ N⊥.
If e : N→ 1 + ‖f‖ enumerates the support then the graph is enumerated by

k 7→

{
(i, j) if e(k) = i and f(i) = {j},
? otherwise.

If e : N → 1 + Γf enumerates the graph then, for every m ∈ N, the value f(m) is
enumerated by

k 7→

{
n if e(k) = (m,n),
? otherwise.

Suppose f(m) is countable for every m ∈ N. By the Axiom of Countable Choice there
is e : N × N → 1 + N such that e(m,−) enumerates f(m) for every m ∈ N. Then the
support of f is enumerated by

〈m, k〉 7→

{
? if e(m, k) = ?,
m otherwise.

where 〈−,−〉 : N× N→ N is any bijection. �

The proposition tells us that N⊥N may be identified with partial maps whose graphs
are countable. In the effective topos it is the object of partial computable maps, i.e., the
numbered set of partial computable maps with a standard numbering. In § 4.1 we shall
return to N⊥N in relation to other axiomatizations of computability theory.
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3.2. The Rosolini dominance. Of special interest is the Rosolini dominance [19], which
can be described as the completion ωIdl(2) of the Boolean lattice 2, or as the set of semide-
cidable truth values,

Σ = {p ∈ Ω | ∃q ∈ 2N . (p⇔ ∃n ∈ N . qn = >)},

with the order induced by that of Ω. It has arbitrary countable suprema, not just those of
chains, a fact whose proof relies on the Axiom of Countable Choice. The decidable truth
values 2 = {p ∈ Ω | p ∨ ¬p} form a countable base for Σ.

Several logical principles may be expressed as relationships between sublattices of Ω.
Let Ω¬¬ = {p ∈ Ω | ¬¬p⇒ p} be the set of ¬¬-stable truth values.

Proposition 3.4. Excluded middle states that 2 = Ω, the Limited Principle of Omniscience
that 2 = Σ, and Markov’s principle that Σ ⊆ Ω¬¬.

Proof. Excluded middle states that, for all p ∈ Ω, p or ¬p, which is equivalent to saying
that Ω ⊆ 2, while the reverse inclusion holds by definition of 2.

The Limited Principle of Omniscience [2] states that, for all q : N → 2, either ∃n ∈
N . qn = > or ∀n ∈ N . qn = ⊥. The latter is equivalent to ¬∃n ∈ N . qn = ⊥, and so the
principle is equivalent to ∀p ∈ Σ . p ∨ ¬p, which may be expressed as 2 = Σ.

Finally, Markov’s principle is equivalent to the statement that, for all q : N → 2, if
¬¬∃n ∈ N . qn = > then ∃n ∈ N . qn = >. This in turn is equivalent to ∀p ∈ Σ .¬¬p⇒
p, which may be expressed as Σ ⊆ Ω¬¬. �

The Rosolini dominance classifies the countable subsets of N so that

(1) E ∼= ΣN.

The isomorphism f : E → ΣN is given by

f(S) = (∃n ∈ N . n ∈ S).

The value f(S) is in Σ because n ∈ S is equivalent to the truth value (∃k ∈ N . e(k) = n)
where e is any enumeration of S. The inverse map g : ΣN → E is defined as follows.
Given any p ∈ ΣN, by the Axiom of Countable Choice there is q : N × N → 2 such that
p(n) is equivalent to ∃k ∈ N . q(n, k). We define g(p) to be the countable set enumerated
by the map N× N→ 1 + N, defined by

〈n, k〉 7→

{
n if q(n, k),
? otherwise.

The verification that f and g are inverses of each other is not terribly interesting. The
upshot of (1) is that the Enumeration Axiom is just an instance of the precondition of
Lawvere’s theorem.

4. APPLICATIONS OF LAWVERE’S FIXED-POINT THEOREM

So far we have not appealed to the Enumeration axiom, but now we will use it to transfer
countability of E to countability of countably generated ωcppos, which will provide us with
examples of Lawvere’s fixed-point theorem. We need just one more lemma.

Lemma 4.1. A countable inhabited poset (P,≤) with a decidable order contains a chain
c : N→ P such that if P is linearly ordered then c is cofinal in P .
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Proof. Let e : N→ P be an enumeration of P . Define c : N→ P by

c0 = e0 and cn+1 =

{
en+1 if cn ≤ en+1

cn otherwise

We need to show that c is cofinal in P when P is linearly ordered. Clearly, c dominates e0
because e0 = c0. Given any n ∈ N, cn ≤ en+1 or en+1 ≤ cn since P is a linear order. In
the former case we have en+1 = cn+1, and in the latter en+1 ≤ cn. �

Theorem 4.2. A countably generated ωcppo is countable.

Proof. Let (P,≤) be an ωcppo and b : N→ P an enumeration of the basic elements. For
n ∈ N, the sub-poset

Pn = {⊥} ∪ {bi | i ∈Wn} ⊆ P
is countable and inhabited, and it has decidable order because b enumerates a base. We
may apply Lemma 4.1 and the Axiom of countable Choice to obtain for each n ∈ N a
countable chain c(n) : N → Pn such that c(n) is cofinal in Pn if Pn is a linear order. We
claim that the map e : N→ P defined by e(n) =

∨
kc

(n)
k is a surjection. Given any x ∈ P

there is a countable chain d : N → P of basic elements whose supremum is x. Without
loss of generality we may assume d0 = ⊥. By the Axiom of Countable Choice there is
r : N → N such that d = b ◦ r. By the Enumeration axiom there is m ∈ N such that
Wm = {ri | i ∈ N}. Notice that Pm is the image of d:

Pm = {⊥} ∪ {bj | j ∈Wm} = {⊥} ∪ {br(i) | i ∈ N} = {dj | j ∈ N}.

Therefore, Pm is linearly ordered, c(m) is a cofinal chain in Pm, and so

e(m) =
∨
kc

(n)
k =

∨
jdj = x. �

If (P,≤) is a countably generated ωcppo then by Theorem 3.2 so is PN. Theorem 4.2
applied to PN provides a surjection N → PN, after which we may apply Lawvere’s theo-
rem. An immediate consequence is the fixed point property of countably generated ωcppos.

Corollary 4.3. Every endomap on a countably generated ωcppo has a fixed point.

Because Σ has the fixed point property but 2 and Ω do not (consider negation), there is
a chain of proper inclusions

2 ( Σ ( Ω.

Consequently Excluded middle and the Limited Principle of Omniscience are both false
because they respectively state 2 = Ω and 2 = Σ.

The fixed point property implies a general version of Rice’s theorem:

Corollary 4.4. A decidable predicate on a countably generated ωcppo is trivial.

Proof. A decidable predicate on a countably generated ωcppo (P,≤) is classified by a map
P → 2, which is constant by Proposition 2.4. �

4.1. Richman’s Axiom and Church’s Thesis. By Theorem 4.2 there is an enumeration

ϕ : N→ N⊥N

of partial maps with countable graphs. Richman [17] showed how one may develop ba-
sic computability theory axiomatically from the existence of ϕ in the context of Bishop’s
constructive mathematics [2]. The work was taken further by Bridges and Richman [3].
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Richman’s axiom and the Enumeration axiom imply each other. We have already es-
tablished one direction, while for the other all one has to notice is that there is a retraction
r : N⊥N → E and a section s : E → N⊥N, namely

r(f) = {n ∈ N | 0 ∈ f(n)} and s(S)(n) = {0 | n ∈ S}.

Computability theory in logical form may also be developed from the formal Church’s
thesis [23, §1.11.7]

∀f ∈ NN .∃k ∈ N .∀n ∈ N .∃m ∈ N . T (k, n,m) ∧ U(m) = f(n).

Here T (k, n,m) is Kleene’s predicate expressing the fact that m encodes the computation
of the Turing machine encoded by k with input n, and U extracts the output from the code
of a computation. Thus the above statement says that every total function f is computed
by some Turing machine.

Proposition 4.5. The formal Church’s thesis implies the Enumeration axiom.

Proof. Define W : N→ E by

W (k) = {n ∈ N | ∃`,m ∈ N . T (k, 〈n, `〉,m) ∧ U(m) = 1}.

We claim that W is a surjection if formal Church’s thesis holds. For this purpose, consider
an enumeration e : N→ 1 + S of some S ∈ E . Define f : N→ N by

f(〈n, `〉) =

{
1 if ∃i < ` . e(i) = n,
0 otherwise.

and observe that S = {n ∈ N | ∃` ∈ N . f(〈n, `〉) = 1}. By formal Church’s thesis there
is a code k for f , and so

W (k) = {n ∈ N | ∃`,m ∈ N . T (k, 〈n, `〉,m) ∧ U(m) = 1}
= {n ∈ N | f(〈n, `〉) = 1} = S. �

We cannot reverse Proposition 4.5, because the Enumeration axiom is valid in a real-
izability topos over Turing machines with a (fixed) oracle, and in such a topos not every
map is Turing computable. The Enumeration axiom still implies a kind of ‘synthetic’
formal Church’s thesis stating that every map N → N has a synthetic code, in the sense
that ∀f ∈ N .∃k ∈ N . ϕk = f . However, this says little beyond the fact that NN is
subcountable because it is a subset of the countable set N⊥N.

Richman [17] notes that “the main results of Church-Markov-Turing theory of com-
putable functions may quickly be derived and understood without recourse to the largely
irrelevant theories of recursive functions, Markov algorithms, or Turing machines.” While
I hesitate to call central notions of computability theory irrelevant, the present paper does
reinforce Richman’s observation by developing an even larger portion of basic computabil-
ity theory in an abstract way and without reference to any notion of computation.

5. THE RECURSION THEOREM

There is another fixed point theorem that applies to countably generated ωcppos, and in
fact to all ωcppos, namely the Knaster–Tarski theorem [10, 20].

Theorem 5.1. Every continuous endomap on an ωcppo has the least fixed point.
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Proof. The usual proof is constructive. The least fixed point of a continuous endomap
f : P → P on an ωcppo (P,≤) is computed as the supremum of the chain

⊥ ≤ f(⊥) ≤ f(f(⊥)) ≤ f(f(f(⊥))) ≤ · · ·

of iterates of f applied to ⊥. �

Theorem 5.1 applies only to continuous endomaps but gives canonical fixed points,
whereas Corollary 4.3 applies to all maps but gives arbitrary fixed points. To get the best
of both theorems, we will prove Theorem 6.4 stating that all functions from ωcpos to
domains are continuous, and thus all endomaps on domains have least fixed points. The
proof relies on a synthetic Recursion Theorem, which is the topic of the present section.
The theorem takes the form of Lawvere’s fixed-point theorem for multi-valued maps.

Let P∗(A) be the set of inhabited subsets of A,

P∗(A) = {S ∈ ΩA | ∃x ∈ A . x ∈ S}.

A multi-valued map f : A⇒ B is a map f : A→ P∗(B). A fixed point of a multi-valued
map f : A→ P∗(A) is an element x ∈ A such that x ∈ f(x).

Theorem 5.2 (Recursion Theorem). If there is a surjection e : N→ AN then every multi-
valued map f : A⇒ A has a fixed point, which is an x ∈ A such that x ∈ f(x).

Proof. For every n ∈ N there is x ∈ f(e(n)(n)), hence by the Axiom of Countable Choice
there is a map g : N→ A such that g(n) ∈ f(e(n)(n)) for all n ∈ N. There is k ∈ N such
that e(k) = g, and so e(k)(k) = g(k) ∈ f(e(k)(k)). �

Note that the Recursion Theorem applies to countably generated ωcppos by Theo-
rems 4.2 and 3.2. We shall use it only once in Proposition 6.1, where it is applied to Σ.
(If one looked for shortcuts, one would point out that the Enumeration Axiom directly
validates the application of the Recursion Theorem to Σ.)

The usual Kleene-Rogers Recursion Theorem [8, 9, 18] is a consequence of the syn-
thetic one. Recall from §3.1 the enumeration ϕ : N→ N⊥N of the domain N⊥N.

Corollary 5.3. Given any map f : N→ N, there is n ∈ N such that ϕn = ϕf(n).

Proof. Recursion Theorem applies to the domain N⊥N because (N⊥N)N is is countable by
a double application of Theorem 3.2. Take a fixed point g of the multi-valued map F :
N⊥N ⇒ N⊥N defined by

F (g) = {h ∈ N⊥N | ∃n ∈ N . ϕn = g ∧ h = ϕf(n)}.

By the definition of F there is n ∈ N such that ϕn = g = ϕf(n). �

The technique used to prove the corollary may be generalized as follows.

Proposition 5.4. Suppose e : A → B is a surjection and every multi-valued map on B
has a fixed point. Then for every h : A⇒ B there exists x ∈ A such that e(x) ∈ h(x).

Proof. Consider the multi-valued map F : B ⇒ B defined by

F (y) = {z ∈ B | ∃x ∈ A . e(x) = y ∧ z ∈ h(x)}.

There is y ∈ B such that y ∈ F (y), which implies that for some x ∈ A we have e(x) =
y ∈ h(x). �
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To recover Corollary 5.3 from the Proposition 5.4, take the surjection ϕ : N → N⊥N and
the map h = ϕ ◦ f : N → N⊥N. Various self-referential objects can be constructed with
the help of Proposition 5.4, too. For example, to obtain n ∈ N such that Wn = {n}, take
the surjection W : N → E and the map h : N → E defined by h(k) = {k}. To obtain a
quine (a function that outputs its own code) take the surjection ϕ : N→ N⊥N and the map
h : N→ N⊥N defined be h(n) = (λk ∈ N . n).

6. A CONTINUITY PRINCIPLE

In the present section we prove a continuity principle for maps from ωcpos to domains.
We first show that the Enumeration axiom and Markov’s principle together imply that maps
into Σ satisfy a weak form of sequential continuity stating that the limit point of a sequence
cannot be detached from the sequence. For maps from ωcpos to Σ the weak principle may
be amplified to proper continuity, from which the general theorem then follows.

The set of non-increasing binary sequences

N+ = {α ∈ 2N | ∀n ∈ N . αn ≥ αn+1}.
can be thought of as a generic sequence with a limit point, where the n-th term is

n = 1, 1, . . . , 1︸ ︷︷ ︸
n

0, 0, . . .

and the limit point is
∞ = 1, 1, 1, 1, . . .

We define a strict order < on N+ by

α < β ⇐⇒ ∃n ∈ N . αn < βn.

Recall from [1] the principle of Weak Sequential Openness (WSO):

∀U : N+ → Σ . (U(∞) = > ⇒ ∃n ∈ N . U(n) = >).

The principle is motivated by considerations from synthetic topology, see [1, 13], where ΣA

is seen as the topology of intrinsically open subsets in A. From a topological perspective
the principle claims that the limit point∞ cannot be isolated from the sequence 0, 1, 2, . . .

Proposition 6.1. Weak Sequential Openness holds.

Proof. Suppose U : N+ → Σ is such that U(∞) = >. Define g : Σ ⇒ Σ by

g(p) = {q ∈ Σ | ∃α ∈ N+ . (α <∞) = p ∧ q = U(α)}.
By Recursion Theorem there is p ∈ Σ such that p ∈ g(p), and by definition of g there is
α ∈ N+ such that (α < ∞) = p = U(α). If it were the case that p = ⊥ then it would
follow that α = ∞, but this would lead to the contradiction ⊥ = U(∞) = >. Therefore
p 6= ⊥ and so p = > by Markov’s principle, expressed in the form given in Proposition 3.4.
Because α <∞ there is n ∈ N such that α = n, hence U(n) = >. �

We can use the principle to show that maps from ωcpos into Σ are well behaved.

Lemma 6.2. Every map f : P → Σ on an ωcpo (P,≤) is monotone.

Proof. Consider any u, v ∈ P such that u ≤ v. We need to show that f(u) = > implies
f(v) = >, so assume f(u) = >. Define r : N+ × N→ P and s : N+ → P by

r(α, n) =

{
u if αn = 1,
v if αn = 0,

and s(α) =
∨
nr(α, n).
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Observe that s(∞) = u and s(n) = v for n ∈ N. Because f(s(∞)) = f(u) = >,
by Weak Sequential Openness there is n ∈ N such that f(s(n)) = >, hence f(v) =
f(s(n)) = >. �

Lemma 6.3. Every map f : P → Σ on an ωcpo (P,≤) is continuous.

Proof. Let c : N → P be any chain. By the previous lemma f is monotone, therefore∨
nf(cn) ≤ f(

∨
ncn) holds. To establish the opposite inequality it suffices to show that

f(
∨
ncn) = > implies f(cn) = > for some n ∈ N, so assume f(

∨
ncn) = >.

For α ∈ N+, define the chain cα : N→ P by

cαn =

{
cn if αn = 1,
ck if α = k and k < n.

Observe that c∞ = c and that cn increases up to cn and stays put there. Define s : N+ → P
by s(α) =

∨
nc
α
n . Because f(s(∞)) = f(

∨
ncn) = >, by Weak Sequential Openness

there is n ∈ N such that f(s(n)) = >, hence f(cn) = f(s(n)) = >, as desired. �

Everything is set in place for a continuity principle.

Theorem 6.4. Every map f : P → Q from an ωcpo (P,≤P ) to a domain (Q,≤Q) is
continuous.

Proof. If x ∈ Q is a basic element and y ∈ Q then (x ≤Q y) ∈ Σ. Indeed, y =
∨
ndn for

a chain of basic elements d : N→ Q, so by compactness of x

x ≤Q y ⇐⇒ ∃n ∈ N . x ≤Q dn.

The right-hand side is a truth value in Σ because the order ≤Q is decidable on basic ele-
ments. Therefore, for a compact x ∈ Q we may define a map ux : Q→ Σ by

ux(y) = (x ≤Q y).

Let c : N→ P be a chain. In order to prove f(
∨
ncn) =

∨
nf(cn) it suffices to show that,

for every basic element x ∈ Q,

x ≤ f(
∨
ncn) ⇐⇒ x ≤

∨
nf(cn).

Another way of saying the same thing is

ux(f(
∨
ncn)) = ux(

∨
nf(cn),

which holds because by Lemma 6.3 both ux ◦ f and ux are continuous, therefore

ux(f(
∨
ncn)) = (ux ◦ f)(

∨
ncn) =

∨
nux(f(cn)) = ux(

∨
nf(cn)). �

Theorem 6.4 subsumes several other continuity principles. When we instantiate it to
endomaps N⊥N → N⊥N we obtain a synthetic version of the Myhill–Shepherdson theo-
rem [15], while the instance ΣN → Σ corresponds to Scott’s principle from synthetic
domain theory [21].

At last, let us reconcile Lawvere’s and Tarski-Knaster fixed point theorems.

Corollary 6.5. Every endomap on a domain has a least fixed point.

Proof. The Knaster–Tarski Theorem 5.1 applies because such an endomap is continuous.
�
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