Metric Spaces in Synthetic Topology

With Davorin Lešnik.

Abstract: We investigate the relationship between constructive theory of metric spaces and synthetic topology. Connections between these are established by requiring a relationship to exist between the intrinsic and the metric topology of a space. We propose a non-classical axiom which has several desirable consequences, e.g., that all maps between separable metric spaces are continuous in the sense of metrics, and that, up to topological equivalence, a set can be equipped with at most one metric which makes it complete and separable.

Presented at: 3rd Workshop on Formal Topology

Download slides: 3wft.pdf

Leave a Reply

Your email address will not be published. Required fields are marked *

*