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1 Welcome everyone. I am honored to have the opportunity to speak here. I was 
asked to do an introduction to type theory in one hour for people who know 
nothing about it.

It is an impossible task. Here we go.

spartan | ˈspɑːt(ə)n |

adjective

showing or characterized by austerity or a lack of comfort or 
luxury: the accommodation was fairly spartan.


2 Benedikt saved me from the dilemma of choosing a title for my talk.

Through the title he is sending a message to the participants.

He even arranged a snow blizzard.



Vladimir Voevodsky (1966–2017)

3 Before we go on, let us remember Vladimir Voevodsky, whose idea this winter 
school was.

His passing away was a terrible blow, on a professional level, but also on a 
personal level for many present here. Let us spend a moment in silence in memory 
of Vladimir.

What is type theory?

4 So, what is type theory?



A foundation 
of mathematics.

5 Some say it is a foundation of mathematics.

If this is the case, then type theory has to stand on its own, without assuming logic 
or set theory.


But in explaining it I will rely on our pre-existing mathematical knowledge,

because a foundation is not magic that gets you something out of nothing.


A foundation organizes mathematics.

It is a tool for doing mathematics (and maybe a language). 
It provides a method for doing mathematics.

It serves the mathematician first, and the logician second!

A foundation 
of mathematics.A fo

und
atio

n of
 

com
puta

tion
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6 There are several other views of type theory.

We do not have time to go into them, but they are all interesting.



A foundation 
of mathematics.A fo

und
atio

n of
 

com
puta

tion
!A programming language!

7 Ask your teachers here, they can tell you all about it.
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puta

tion
!A foundation 

of mathematics.

A programming language!

Internal language 

of (∞,1)-toposes!

8 Careful though, they may drag you into strange territory.
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puta

tion
!A foundation 

of mathematics.

A programming language!

Internal language 

of (∞,1)-toposes!

Philosophy!

9 Or they may say incomprehensible things. It’s fun!


But let me tell you a secret: the informal style of a typical mathematical text is as 
close as, if not closer to type theory than it is to Zermelo-Fraenkel set theory. This 
is not to say that anything is wrong with set theory, or that it hasn’t had an 
important role. It’s just an observation, supported by evidence: the most 
successful computer formalizations of mathematics all rely on type theory. (I 
include Mizar in this list, for those who wonder.)

A theory of 
constructions.

10 If I had to give you a single short phrase describing type theory,

I would say that it is a theory of constructions.

It is not about what is true, but about how to build mathematical objects generally.



A theory of 
constructions.

11 Did you know that Euclid’s Elements contain both geometric constructions and 
statements of truth? Proposition 1 says “to erect an equilateral triangle on a line 
segment”.

A theory of 
constructions.

12 Mathematics started with a construction!



A theory of 
dependent 

constructions.

13 In fact, Euclid’s construction is dependent: given a segment, construct an 
equilateral triangle which depends on it.


To emphasize this aspect of type theory, let us say that it is a theory of dependent 
constructions.

Dependency is a very general idea, so let us have a closer look at it.

14 We have here a pretty video in which two kinds of dependency are presented.

First, the point p(t) depends on the point t. As t moves in space A, the point p(t) 
moves around.

Second, the space B(t) depends on t as well. This is very important. As t moves, 
the space B(t) changes.



base space

total space

fiber at t section p
15 In geometry and topology each piece of the picture has a name.


If you are familiar with it, that is good. If not, do not worry, we will not really use 
advanced geometry.

We have a base space.

The dependent space is called a fiber.

We say that a total space is over the base space.

The moving point gives us a map p from the base space to the total space, called 
a section. 
In a moment we will give these items their type-theoretic nomenclature.

Type A  type

Element p : A

Equal types A ≡ B

Equal elements p ≡A q

16 Because I said there was no logic and no set theory, I have to give you something 
else to work with. Type theory has judgments. These are not logical statements, 
they record the fact that something has been constructed, or that two 
constructions are equal. For instance, we cannot make the judgment “A is not a 
type”.


If type theory is about making houses and cars from Lego blocks, the judgments 
correspond to the kid running up to their parents and showing them what they’ve 
built. Nobody ever runs to their parents to show them that they didn’t build 
anything.


We may and should discuss whether equality is part of “logic”. We will be 
discussing equality for the rest of the week.




Space A  type

Point p : A

Equal spaces A ≡ B

Equal points p ≡ q : A

17 As I already mentioned, there are many views of type theory, and so there are 
many ways of imagining what types and elements are.

To connect this back to our geometric picture, here is the geometric explanation. 
Think of types as “spaces”, but take this word in the most general sense you can. 
It’s like a topological space. It’s like a homotopy type. It’s like a datatype. It’s like a 
computable space. Some of these explanations may mean nothing to you, but all 
have been suggested by people.

It is customary then to speak of points of a space. I emphasize again that a point 
never exists without being in a space, and in can never be in two spaces at the 
same time.

base type

∑(x:A)B(x)

dependent type at t p:∏(x:a)B(x)
18 Going back to our picture, the type-theoretic terminology is as follows.


Instead of fibers we have dependent types.

The total space becomes a construction known as “dependent sum”.

Sections are elements of “dependent products”.



Sum ∑(x:A) B(x)
•formation: 

if type B(x) depends on x : A, then ∑(x : A) B(x) is a type.

• introduction: 

if t : A and u : B(t) then (t, u) : ∑(x : A) B(x).

•elimination: 
• If p : ∑(x : A) B(x) then π1(p) : A.

• If p : ∑(x : A) B(x) then π2(p) : B(π1(p)).


•equations: 
•π1(t, u)  ≡  t 
•π2(t, u)  ≡  u 

•(π1(p), π2(p))  ≡  p

19 Let us look at dependent sums. Every type theoretic construction follows a certain 
pattern:

- first we state explain how to form the type, the formation rule 
- then we give rules for making elements of the type, these are introduction rules 
- elimination rules explain how we use or “eliminate” elements of the type

- equations explain what happens when we create an element and take it apart, or 

vice versa

20 We said that every point is always precisely in one space.

Consider a point p(t) in the fiber over t. It is a member of B(t). It is not a member of 
the dependent sum!



(t, p(t))
∑(x : A) B(x)

21 The corresponding point in the dependent sum is the pair (t, p(t)).


Note that the dependent sum is a space on its own. It is not a dependent type 
over A.

Binary product

A × B  ≡  ∑(_ : A) B

Anonymous variable  
(B does not depend on A)

22 A special case of dependent sum is the usual cartesian product. We get it when 
B(x) does not depend on A, i.e., we have a constant dependent type.



Product ∏(x:A) B(x)

• given B(x) over A, ∏(x : A) B(x) is a type


• if p(x) : B(x) then λ(x:A) p(x) : ∏(x : A) B(x).


• If f : ∏(x : A) B(x) and t : A then f(t) : B(t).


• (λ(x:A) p(x))(t)  ≡  p(t) 

• λ(x:A)(f(x))  ≡  f

23 Dependent products are spaces of sections. It is difficult to draw a picture of a 
product, but it is easy to understand what its elements are: they are maps.


How is a map constructed? If for every fiber B(x) we have a point p(x) in it, then we 
can form a map. The λ thing should be read as: “the map which takes x to p(x)”.


To use a map, we apply it to an argument.

p:∏(x:a)B(x)
24 It is difficult to draw a picture of the product, but it is easy to see one of its 

elements: a section over A.



Function space

A → B  ≡  ∏(_ : A) B

25 If we form a dependent product over the constant dependent type we get the 
(non-dependent) function space. The elements are ordinary maps from A to B.


So far we have not given any ways of constructing  a type from scratch. We need 
some primitive types from which all other constructions start.

Universe
• There is a type Type.


• The elements of Type are types.


• A dependent type is a map B : A → Type.


• Beware of paradoxes: 
there can be no type of all types!


• Type0 : Type1 : Type2 : …

26 If you think about it, types themselves get constructed too. But anything that is 
constructed should have a type, so there should be a type of types. Such a type is 
called a universe. 

Its elements are types. A dependent type is a map from the base space to the 
universe.


This is all very neat, but we have to beware of paradoxes. An early version of type 
theory stated that the universe was its own element, and that turned out to lead to 
the same sort of trouble as the set of all sets. If you need more than one universe 
you can make a hierarchy of them.



Basic types

• Unit – element is tt


• Empty – no elements


• Bool – elements true and false


• N – natural numbers

27 We do not have the time to carefully give the rules for other primitive types, so let 
us just list them.

- the unit type has just one element, called the “unit” (to confuse people), in Coq 

it is tt

- the empty type has no elements. It is instructive to give the elimination principle 

for Empty.

- Bool is the type with two elements, called “true” and “false”. Beware: this is not 

logic! It is just a type. We might have called its elements “left” and “right”.

- The natural numbers are also a basic type. We will look at it shortly.

Simple sum A + B
A B

a
b

28 Let us mention one other construction. Given types A and B, we can form their 
simple sum, also called coproduct.



Simple sum A + B
A + B

inl(a)
inr(b)

29 Once again, an element a of A cannot be an element of A + B at the same time. 
We tag it to indicate that it is an element of A + B, where “inl” stands for “left 
injection” and “inr” for “right injection”. It is the tagging that distinguishes the 
simple sum from a union: it’s possible to make the sum of two equal summands A 
+ A without overlapping them.


In set theory this construction is known as disjoint union, where we usually tag the 
elements by making pairs of the form (0, a) and (1, b). Using primitive tags inl and 
inr is more principled.

Natural numbers N
•0 : N 


•If n : N then S(n) : N.


•If P : N → Type and e : P(0) and 
f : ∏(x:N) P(x) → P(S(x)) then 
ind_nat P e f : ∏(x:N) P(x). 

•ind_nat P e f 0 ≡ e 

•ind_nat P e f (S n) ≡ f n (ind_nat P e f n)

30 The natural numbers are shown in this slide. I am not going to drag you through 
the rules. Instead I am going to give an exercise: relate the first three rules to 
Peano axioms, and explain what the equations say in terms of programming.



Path space

• If t : A and u : A then PathsA(t, u) is a type.


• If t : A then idpath(t) : PathsA(t, t).


• We write t = u for PathsA(t, u).

31 We now come to the most important type.


We shall adapt our view of what a type is: types do not tell us just 

Transport

• Given a type A and B : A → Type


• If α : PathsA(x, y) and s : B(x) then 
transport B α s : B(y).


• transport B (idpath(x)) s  ≡  s.

32 The notion of fibration, transfer



x y

u

B(x) B(y)

p

up.u

A

33

x y

u

B(x) B(y)

p

p.uu

A

34



Caveats

• Old people call path spaces “identity types”. 

• Older people call path spaces “propositional equality” 
and they call equality “judgmental equality”.


• Half of the definition of path spaces is missing. The 
other half will be given later this week.


• Path spaces are the equality you are used to. Really!

35 We have only scratched the surface. You will find out the rest about paths spaces 
throughout the week. But let me also say this (thanks to Peter Lumsdaine for 
warning me about it): the path spaces correspond not only to, well, spaces of 
paths, but also to equality as usually used in mathematics.


The equalities between types, A ≡ B and p ≡A q, are not the ones you usually want 
or need, and in fact they are invisible in Coq. The difficulty is that in most 
mathematics you only see a very trivial kind of path spaces. Martín Escardó will 
speak more about this point.

Proofs as constructions

“Every natural number is even or odd.”

36 We banished logic, but we do not want to give it up forever.

There is an ingenious way of doing logic by construction. We can prove logical 
statements by constructing elements of types.

For instance, consider the statement “every number is even or odd”. How can we 
“prove” it by constructing something?



Proofs as constructions

∏(n:nat) ∑(m:nat) (n = 2m) + (n = 2m+1)

“Every natural number is even or odd.”

37 Ask what an element of this type does. It is a map, which takes a number n and 
gives a pair. The pair tells you how to decompose n into a lowest bit and the rest 
of it. In essence, it computes the fact that every number is even or odd.

How do we deny P?

By constructing an element in


P → Empty

38 Bow how do we show that something isn’t the case?

For that we can use the empty type.



(false = true) → Empty
Definition sanity : true = false ! Empty :=  
  fun (p : true = false) ⇒ 
    transport  
      (ind_bool (fun _ ⇒ Type) Unit Empty)  
      p  
      tt.

39 Let us walk through an example by showing that true isn’t false. We need to 
construct map which takes a path p from true to false and turns it into an element 
of Empty.

Hopefully by mid-week you will be able to understand how such a map is defined 
in Coq, shown here. Let us draw the picture that this construction encodes.

true false

tt

Unit Empty

40 We start with a dependent type over Bool.

The fiber at true is the Unit type. The fiber at false is the Empty type.

(We did not actually say how such a dependent type is obtained, but let us say we 
can get it.)




true false

tt

Unit Empty

p

41 What happens if there is a path from true to false? Can we make an element of 
Empty?

true false

tt

Unit Empty

p

☠

42 Yes, we just transport tt across p.



We are not done!

• We left out precise rules!


• What about spheres, reals, groups, etc?


• Can paths be composed, or inverted?


• What is a path between paths?


• What is a path between types in Type?

43 I have to stop here. Bear in mind that this was only the introductory talk, which 
attempted to explain one possible intuition about type theory. You will learn other 
ways of looking at type theory throughout the week.


And please ask everyone many questions. Here is a list to get you started.

Further material

• Euclid: Elements


• Daniel Grayson: An introduction to univalent foundations 
for mathematicians (arXiv:1711.01477)


• UniMath library


• Talk to people here!

44 If you would like some further reading, I recommend that you look at Euclid’s 
elements and see what proportion is construction, and what proportion are 
statements.


A very good introduction to univalent foundations was written by Daniel Grayson. 
He should have been here, but had an open heart surgery a couple of weeks ago.


Of course, for the brave there is always the Coq code.


Thank you.


