
Mathematically Structured but
not Necessarily Functional Programming

Andrej Bauer

Department of Mathematics and Physics
University of Ljubljana, Slovenia

Mathematically Structured Functional Programming
Reykjavik, July 2008

Ways of Mathematically Structured Programming
I Use math to develop new programming constructs

(monads).
I Use math to reason and construct programs (Coq).
I Programming by proving theorems (propositions as types).
I Proving theorems by programing (types as propositions).

Outline
I Programming = Proving (propositions as types)
I Programming = Proving (realizability)
I RZ – specifications via realizability
I Examples of non-functional realizers in constructive

mathematics

Programming by proving
I The Curry-Howard correspondence:

Type = Prop = Set
program = proof = element

I Programming by proving theorems:
“Constructive proofs of

mathematically meaningful theorems
give useful programs.”

Example: Fundamental Theorem of Algebra
I “Every non-constant polynomial has a complex root.”
I First-order logic:

∀p ∈ Q[x]. 0 < deg(p) =⇒ ∃z ∈ C. p(z) = 0.

I Type theory:∏
p:poly less(0,deg(p))→

∑
z:complex eq(p(z), 0).

I Must also define poly, less, complex, and eq.
I Can we get rid of less and eq?
I Can we get rid of dependent types and have just

poly→ complex ?

Programming by proving a la Coq
I Distinguish between computational and

non-computational types:

Set : the sort of computational types
Prop : the sort of non-computational types

I We also need setoids, which are (computational) types with
(non-computational) equivalence relations.

I In the previous example:
I Non-computational: less, eq.
I Setoids: poly, complex.

I Coq’s extraction mechanism gives an Ocaml or Haskell
program of type poly→ complex.

Does it actually work?
I Programmers want to write programs, not proofs.
I And often it really is easier to just write a program.
I The most efficient proof may not correspond to the most

efficient program.
I When we use complex tactics, we may lose control of what

the extracted program does.
I Proofs give purely functional code. What if we want to use

computational effects (store, exceptions, non-termination)?

What really happens
I Write programs directly, not as proofs.
I Then prove that the programs are correct.
I Coq’s PROGRAM extension does this.
I By adapting the type theory and the extraction

mechanism, we can even handle non-functional programs.

The connection to constructive math is almost lost.

Programming by proving (a la realizability)
I Pick a reasonable programming language.
I Proofs (Programs.
I Programs realize propositions.
I To each proposition φ we assign a (simple) type of

realizers |φ|.
I We we define a realizability predicate on values of |φ|:

p
 φ “p realizers φ.”

This is necessary because not every value in |φ| is a valid
realizer.

Types of realizer

|>| = unit

|⊥| = unit

|e1 =A e2| = unit

|φ1 ∧ φ2| = |φ1| × |φ2|
|φ1 ∨ φ2| = |φ1|+ |φ2|

φ1 =⇒ φ2	=	φ1	→	φ2
∀x ∈ A. φ	=	A	→	φ
∃x ∈ A. φ	=	A	×	φ

Propositions built only from>, ⊥, =, ∧,→ have trivial realizers.

Realizability predicate

()
 >
()
 e1 =A e2 iff t1 'A t2

(p1, p2)
 φ1 ∧ φ2 iff p1
 φ1 and p2
 φ2

inl(p)
 φ1 ∨ φ2 iff p
 φ1

inr(p)
 φ1 ∨ φ2 iff p
 φ2

p
 φ1 =⇒ φ2 iff if q
 φ1 then p q↓ and p q
 φ2

(p, q)
 ∃x ∈ A. φ(x) iff for some u, q
A u and p
 φ(u)
p
 ∀x ∈ A. φ(x) iff if q
A u then p q↓ and p q
 φ(u)

Setoids in realizability
I In realizability setoids are types equipped with partial

equivalence relations (symmetric, transitive).
I This is necessary because not every value realizes an

element.
I Even when the programming language is simply typed,

we can interpret dependent setoid types.

RZ — specifications via realizability
I A tool written by Chris Stone and me.
I It uses realizability to translate mathematical theories to

program specifications.
I Input: mathematical theories

I first-order logic
I rich set constructions, including dependent types
I support for parameterized theories, e.g., the theory of a

vector space parameterized by a field.
I Output: program specifications

I Ocaml signatures
I Assertions about programs

I Automatically eliminates non-computational realizers.

Test case: Era
I A package for exact real numbers.
I Written by Iztok Kavkler and me.
I What we did:

I wrote down theories of ω-cpos, the interval domain and
real numbers,

I translated them to specifications with RZ,
I implemented the specification efficiently.

I Conclusion: it works, but we have no tool to prove that
our programs satisfy the assertions.

I Plan: extend RZ so that it translates to Coq using the
PROGRAM extension.

Non-functional realizers
I There are constructive reasoning principles which cannot

be proved in pure intuitionistic logic.
I They cannot be realized in pure type theory or pure

Haskell.
I They are realized by non-functionals programs.
I Such principles express the mathematical meaning of

non-functional programs.

Markov Principle
I “A sequence of 0’s and 1’s whose terms are not all 0

contains a 1.”
I “A program which does not run forever terminates.”
I Provable in classical logic.
I Cannot be proved in intuitionistic logic.
I ∀a : {0, 1}N. (¬∀n : N. a(n) = 0) =⇒ ∃n : N. a(n) = 1.
I RZ tells us that the realizer has type

(nat→ bool)→ nat.

I Realized by unbounded search:
let mp a =
let n = ref 0 in
while not (a !n) do n := !n + 1 done ;
!n

Brouwer’s Continuity Principle
I “Every map is continuous.”
I “Every map f : NN → N is continuous.”
I In other words, f (a) depends only on a finite prefix of

a(0), a(1), a(2),
I Incompatible with classical logic.
I Cannot be proved in intuitionistic logic.
I As a formula:

∀f ∈ NNN
.∀a ∈ NN.∃n ∈ N. ∀b ∈ NN.

((∀k ≤ n. a(k) = b(k)) =⇒ f (a) = f (b)).

I Realizers of type

((nat→ nat)→ nat)→ (nat→ nat)→ nat

Continuity principle with store
I How can we discover how many terms of a(0), a(1), . . . are

used by f?
I Feed f a sequence which is just like a, except that it also

stores the largest argument at which f evaluated it.
I The code:
let cont f a =
let k = ref 0 in
let b n = (k := max !k n; a n) in
f b ; !k

Continuity principle with exceptions
I Similar idea: throw an exception if f looks past a

threshold, and keep increasing the threshold until no
exception is raise.

I The code
exception Abort
let cont f a =
let rec search k =
try

let b n =
if n < k then a n else raise Abort

in
f b ; k

with Abort -> search (k+1)
in
search 0

Can we prove these realizers work?
I Store: presumably yes, using separation logic.
I But with global store it does not work:

let k = ref 0
let cont f a =
let b n = (k := max !k n; a n) in
f b ; !k

I This version is foiled by

let f a =
let m = a 42 in k := 0 ; m

I Note: Haskell’s State monad is global store.

Realizer with exceptions does not work!
I The realizer using exceptions does not work.
I Foiled by

let f a =
try a 42 with Abort -> 23

I Even if Abort is declared locally, we can still catch all
exceptions in ML:

let f a =
try a 42 with _ -> 23

I Haskell also has global exceptions.

Conclusion
I Realizability is a useful alternative to propositions as types.
I We can keep the connection between constructive math

and programming tight, without sacrificing either
mathematical elegance or efficiency of programs.

I Constructive reasoning principles are a mathematical
abstraction of non-functional programming features.

I We need to study non-functional features more carefully.

