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Abstract

Realizability is an interpretation of intuitionistic logic which subsumes the Curry-Howard interpretation of
propositions as types, because it allows the realizers to use computational effects such as non-termination,
store and exceptions. Therefore, we can use realizability as a framework for program development and
extraction which allows any style of programming, not just the purely functional one that is supported
by the Curry-Howard correspondence. In joint work with Christopher A. Stone we developed RZ, a tool
which uses realizability to translate specifications written in constructive logic into interface code annotated
with logical assertions. RZ does not extract code from proofs, but allows any implementation method,
from handwritten code to code extracted from proofs by other tools. In our experience, RZ is useful for
specification of non-trivial theories. While the use of computational effects does improve efficiency it also
makes it difficult to reason about programs and prove their correctness. We demonstrate this fact by
considering non-purely functional realizers for a Brouwerian continuity principle.
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Realizability, a notion introduced by Kleene [5], is a mathematical formalization
of the Brouwer-Heyting-Kolmogorov interpretation of intuitionistic logic. Under
the realizability interpretation, validity of a proposition is witnessed by a program,
or a realizer, which can be thought of as the computational content of the proposi-
tion. For example, a ∀x. ∃y. φ(x, y) statement is valid if there is a (not necessarily
extensional) program computing from x a y and a realizer for φ(x, y). Realizability
subsumes the Curry-Howard correspondence which interprets proposition as types
and proofs as programs, because a realizer need not correspond to a proof—it may
be non-terminating, or use computational effects such as store and exceptions.

We can use realizability as a mathematical framework for program extraction
and development, just as the Curry-Howard correspondence is used for the same
purpose in systems such as Coq [3] and Agda [6]. Since realizers need not correspond
to proofs, they are generally obtained as a combination of handwritten code and
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code extracted from constructive proofs. This allows us to realize statements which
are not provable in intuitionistic logic. Even when a purely functional realizer could
be extracted from a proof, we might prefer an impure handwritten one because it
is more efficient, or because it is easier to write the code than the proof. In fact,
an important advantage of realizability is the fact that it allows programmers to
implement specifications in any way they see fit. 2

In joint work with Chris Stone we developed RZ [2], a tool which employs the
realizability interpretation to translate specifications in constructive logic into an-
notated interface code in Objective Caml [7]. The system supports a rich input
language allowing descriptions of complex mathematical structures. Currently, RZ
does not extract code from proofs, but allows any implementation method, from
handwritten code to code extracted from proofs by other tools. Recently, we have
also been experimenting with translation into Coq using Matthieu Sozeau’s pro-

gram extension [8]. In a related project with Iztok Kavkler [1] we demonstrated
that RZ can be used to develop non-trivial specifications. We wrote an RZ ax-
iomatization of real numbers and the interval domain. We then implemented by
hand the specification produced by RZ, which gave us a remarkably efficient library
Era for computing with exact real numbers. Most of Era is written in a purely
functional style, and we could have easily extracted the realizers from constructive
proofs. However, the ability to use non-functional features such as caching and
in-place updates, improves performance and eases implementation.

We demonstrate the use of non-purely functional realizers by looking at the
statement

∀f ∈ NNN
. ∀a ∈ NN. ∃n ∈ N. ∀b ∈ NN. ((∀k ≤ n. a(k) = b(k)) =⇒ f(a) = f(b)).

This is a continuity principle saying that every function from Baire space NN to
N is continuous, where N is equipped with the discrete and NN with the product
topology. It has important consequences for the theory of metric spaces in Brouw-
erian intuitionistic mathematics. We cannot hope to prove the statement in pure
intuitionistic logic because such a proof would also be valid classically, but the state-
ment is incompatible with classical logic. 3 By feeding the statement to RZ we find
out that it is realized by a realizer

r : ((nat→ nat)→ nat)→ (nat→ nat)→ nat

that takes as input realizers f : (nat→ nat)→ nat and a : nat→ nat, which realize
the corresponding functions f and a, and returns a realizer n = r f a of type nat
such that f depends on at most the first n terms of the sequence a(0), a(1), a(2), . . .
Such a realizer is known as modulus of continuity. We cannot expect to construct r
in a purely functional language, 4 although there are a number of ways of getting it

2 Whether the programmers also go to the trouble of proving correctness of handwritten code is another
matter.
3 Consider f defined by f(a) = 1 if ∃n ∈ N. a(n) = 1, and f(a) = 0 otherwise. An intuitionistic proof
applied to f would essentially give a Halting Oracle.
4 This is so because there are domain-theoretic models which interpret purely functional code and invalidate
the continuity principle.
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with the aid of computational effects. For example, by using store we can implement
r as (written in Objective Caml notation)

let r f a =
let k = ref 0 in
let b n = (k := max !k n; a n) in
f b ; !k

Given f and a, r evaluates f at the argument b which behaves just like a, except
that it stores in location k the largest argument at which it was evaluated. When
f returns a value, r discards it and returns the number stored in k.

We could use exceptions instead of store:

exception Abort
let r f a =
let rec search k =
try
let b n = (if n < k then a n else raise Abort) in

f b ; k
with Abort -> search (k+1)

in
search 0

Now the argument b acts like a for arguments below the threshold value k, and raises
an exception otherwise. The program r keeps increasing k as long as exceptions are
being raised. Eventually it finds a threshold which does not raise an exception and
returns it. We leave it to the readers to construct r which uses continuations.

It is not easy to prove that the realizer r really does what it is supposed to. In
fact, the first version, using store, only works because k is local and thus inaccessible
to f. Had we used a globally accessible location k, the following f would foil r by
resetting k to 0:

let f a =
let m = a 42 in k := 0 ; m

It is somewhat unclear whether f realizes an element of NNN
. We remark that

Haskell State monad [4] implements global store. It is an interesting question how
to get r in Haskell using only monads that are definable in pure Haskell. 5

The situation is even worse with the version of r that uses exceptions. It simply
does not work because f could intercept the exception:

let f a =
try a 42 with Abort -> 23

Note that f is allowed to do this because it only has to work properly on arguments
which do not raise exceptions. To mend the situation, we would need a local excep-
tion Abort which cannot be intercepted by f. While exceptions in Objective Caml
can be declared locally, they can also be intercepted globally. One is tempted to
either ask the designers of the language for truly local exceptions, or to formulate

5 We are asking for a monad T such that r can be written in the Kleisli category for T, i.e., a function
accepting type α and returning type β has type α→ Tβ.
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an additional invariant that f should satisfy, such as “does not intercept exception
Abort”. Neither alternative is appealing.

These considerations reflect the well known wisdom that it not easy to reason
about computational effects. However, we feel that realizability still provides a
convenient mathematical framework for development and extraction of programs
and data structures, especially since it does not impose a particular programming
style.
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