
Efficient Computation with Dedekind Reals

Andrej Bauer
(joint work with Paul Taylor)

Department of Mathematics and Physics
University of Ljubljana, Slovenia

MAP, Trieste, August 2008

In this talk

We present a mathematical language which is powerful
enough to let us talk about real analysis, but also simple
enough to be an efficient programming language.

Foundations: Abstract Stone Duality

I Our language is based on Abstract Stone Duality (ASD) by
Paul Taylor.

I ASD is a variant of λ-calculus which directly axiomatizes
spaces and continuous maps.

I We use a fragment of ASD which can be understood on its
own.

I Further material: http://www.paultaylor.eu/ASD/

http://www.paultaylor.eu/ASD/

A language for real analysis

I Number types N, Q, R
I Arithmetic +, −, ×, /
I Decidable equality = and decidable order < on N and Q
I General recursion on N
I Semidecidable order relation < on R
I Logic:

I truth > and falsehood ⊥
I connectives ∧ and ∨
I existential quantifiers:

∃x : R, ∃x : [a, b], ∃x : (a, b), ∃n : N, ∃q : Q

I universal quantifier: ∀x : [a, b]

Axioms for real numbers

The real numbers R are:
I an ordered field,
I with Archimedean property,
I Dedekind complete,
I overt Hausdorff space,
I and [0, 1] is compact.

Dedekind cuts

A cut is a pair of rounded, bounded, disjoint, and located open sets.

Lower and upper reals

By taking the lower rounded sets we obtain the lower reals, and
similarly for upper reals. These are more fundamental than reals.

Examples of cuts

I A number a determines a cut, which determines a:

a = cut x left x < a right a < x

I
√

a is the cut

cut x left (x < 0 ∨ x2 < a) right (x > 0 ∧ x2 > a)

I Exercise:

cut x left (x < −a ∨ x < a) right (−a < x ∧ a < x)

I The full notation for cuts is

cut x : [a, b] left φ(x) right ψ(x)

This means that the cut determines a number in [a, b].

“Topologic”

I A logical formula φ(x) where x : A has two readings:
I logical: a predicate on A
I topological: an open subset of A

I In particular, a closed formula φ is
I logically, a truth value
I topologically, an element of Sierpinski space Σ

I We use this to express topological and analytic notions
logically.

Example: R is locally compact

I Classically: for open U ⊆ R and x ∈ R,

x ∈ U ⇐⇒ ∃ d,u∈Q . x ∈ (d,u) ⊆ [d,u] ⊆ U

I Topologically: for φ : R→ Σ and x : R,

φ(x) ⇐⇒ ∃ d,u∈Q . d < x < u ∧ ∀ y∈ [d,u] . φ(y)

Example: [0, 1] is connected

I Classically: for open U,V ⊆ [0, 1],

U ∩ V = ∅ ∧U ∪ V = [0, 1] =⇒ U = [0, 1] ∨ V = [0, 1]

I (Topo)logically: for φ, ψ : [0, 1]→ Σ, if

⊥ ⇐⇒ φ(x) ∧ ψ(x)

then

∀ x∈ [0, 1] . (φ(x) ∨ ψ(x)) =⇒
(∀ x∈ [0, 1] . φ(x)) ∨ (∀ x∈ [0, 1] . ψ(x))

Example: R is connected

I Classically: for open U,V ⊆ R,

U ∪ V = R ∧U 6= ∅ ∧ V 6= ∅ =⇒ U ∩ V 6= ∅

I (Topo)logically: for φ, ψ : R→ Σ, if

> ⇐⇒ φ(x) ∨ ψ(x)

then

(∃ x∈R . φ(x)) ∧ (∃ x∈R . ψ(x)) =⇒
∃ x∈R . φ(x) ∧ ψ(x).

The maximum of f : [0, 1]→ R

cut x left (∃ y∈ [0, 1] . x < f (y))
right (∀ z∈ [0, 1] . f (z) < x)

Cauchy completeness

I A rapid Cauchy sequence (an)n satisfies

|an+1 − an| < 2−n.

I Its limit is the cut

cut x left (∃n∈N . x < an − 2−n+1)

right (∃n∈N . an + 2−n+1 < x)

From mathematics to programming

I We would like to compute with our language.
I We limit attention to logic and R, and leave recursion and

N for future work.
I Not surprisingly, we compute with intervals.
I The prototype is written in OCaml and uses the MPFR

library for fast dyadic rationals.

The interval lattice L

I The lattice of pairs [a, b], where a is upper and b lower real.
I Ordered by [a, b] v [c, d] ⇐⇒ a ≤ c ∧ d ≤ b.
I The lattice contains R.

[∞,−∞]

[−∞,∞]

Extending arithmetic to L

I We extend arithmetic operations from R× R→ R to
L× L→ L.

I The interesting case is Kaucher multiplication.
I Given an arithmetical expression e we compute its lower

and upper approximants e− and e+ in L:

e− v e v e+.

I We also extend < to L× L→ Σ:

[a, b] < [c, d] ⇐⇒ b < c

Lower and upper approximants

I For each sentence φ we define a lower and upper
approximants φ−, φ+ ∈ {>,⊥} such that

φ− =⇒ φ =⇒ φ+.

I The approximants should be easy to compute.
I If φ− = > then φ = >, and if φ+ = ⊥ then φ = ⊥.
I Easy cases:

⊥− = ⊥ ⊥+ = ⊥
>− = > >+ = >

(φ ∧ ψ)− = φ− ∧ ψ− (φ ∧ ψ)+ = φ+ ∧ ψ+

(φ ∨ ψ)− = φ− ∨ ψ− (φ ∨ ψ)+ = φ+ ∨ ψ+

(e1 < e2)− = (e−1 < e−2) (e1 < e2)+ = (e+
1 < e+

2).

Approximants for cuts and quantifiers

I Cuts:

(cut x : [a, b] left φ(x) right ψ(x))− = [a, b]
(cut x : [a, b] left φ(x) right ψ(x))+ = [b, a]

I Quantifiers:

φ([a, b]) =⇒ ∀ x∈ [a, b] . φ(x) =⇒ φ(a+b
2)

φ(a+b
2) =⇒ ∃ x∈ [a, b] . φ(x) =⇒ φ([b, a])

Refinement

I If φ− = ⊥ and φ+ = >we cannot say much about φ.
I To make progress, we refine φ to an equivalent formula in

which quantifers range over smaller intervals.
I A simple strategy is to split quantified intervals in halves:

I ∀ x∈ [a, b] . φ(x) is refined to

(∀ x∈ [a, a+b
2] . φ(x)) ∧ (∀ x∈ [a+b

2 , b] . φ(x))

I ∃ x∈ [a, b] . φ(x) is refined to

(∃ x∈ [a, a+b
2] . φ(x)) ∨ (∃ x∈ [a+b

2 , b] . φ(x))

I This amounts to searching with bisection.

Refinement of cuts

I To refine a cut

cut x : [a, b] left φ(x) right ψ(x)

we try to move a 7→ a′ and b 7→ b′.

a a’ b’ b

I If φ−(a′) = > then move a 7→ a′.
I If ψ−(b′) = > then move b 7→ b′.
I One or the other endpoint moves eventually because cuts

are located.

Evaluation

I To evaluate a sentence φ:
I if φ− = > then output >,
I if φ+ = ⊥ then output ⊥,
I otherwise refine φ and repeat.

I Evaluation may not terminate, but this is expected, as φ is
only semidecidable.

I Is the procedure semicomplete, i.e., if ASD proves φ then φ
evaluates to >?

Speeding up the computation

Estimate an inequality f (x) < 0 on [a, b] by approximating f
with a linear map from above and below.

This is essentially Newton’s interval method.

Future

I Incorporate N and recursion.
I Extend Newton’s method to multivariate case.
I Write a more efficient interpreter.
I Can we do higher-type computations?
I Can this be implemented as a library for a standard

language, rather than a specialized language?

