Efficient Computation with Dedekind Reals

Andrej Bauer (joint work with Paul Taylor)

Department of Mathematics and Physics University of Ljubljana, Slovenia

MAP, Trieste, August 2008

In this talk

We present a mathematical language which is powerful enough to let us talk about real analysis, but also simple enough to be an efficient programming language.

Foundations: Abstract Stone Duality

- Our language is based on *Abstract Stone Duality* (ASD) by Paul Taylor.
- ASD is a variant of λ-calculus which directly axiomatizes spaces and continuous maps.
- We use a fragment of ASD which can be understood on its own.
- Further material: http://www.paultaylor.eu/ASD/

A language for real analysis

- Number types \mathbb{N} , \mathbb{Q} , \mathbb{R}
- Arithmetic +, -, \times , /
- Decidable equality = and decidable order < on \mathbb{N} and \mathbb{Q}
- ▶ General recursion on N
- Semidecidable order relation < on \mathbb{R}
- Logic:
 - truth \top and falsehood \bot
 - connectives \land and \lor
 - existential quantifiers:

 $\exists x : \mathbb{R}, \quad \exists x : [a, b], \quad \exists x : (a, b), \quad \exists n : \mathbb{N}, \quad \exists q : \mathbb{Q}$

• universal quantifier: $\forall x : [a, b]$

Axioms for real numbers

The real numbers \mathbb{R} are:

- an ordered field,
- with Archimedean property,
- Dedekind complete,
- overt Hausdorff space,
- ▶ and [0,1] is compact.

Dedekind cuts

A cut is a pair of rounded, bounded, disjoint, and located open sets.

Lower and upper reals

By taking the lower rounded sets we obtain the *lower reals*, and similarly for *upper reals*. These are more fundamental than reals.

Examples of cuts

A number *a* determines a cut, which determines *a*:

 $a = \operatorname{cut} x \operatorname{left} x < a \operatorname{right} a < x$

• \sqrt{a} is the cut

cut x left (
$$x < 0 \lor x^2 < a$$
) right ($x > 0 \land x^2 > a$)

Exercise:

cut x left ($x < -a \lor x < a$) right ($-a < x \land a < x$)

The full notation for cuts is

cut x : [a, b] left $\phi(x)$ right $\psi(x)$

This means that the cut determines a number in [a, b].

"Topologic"

A logical formula $\phi(x)$ where x : A has two readings:

- logical: a predicate on A
- topological: an open subset of A
- In particular, a closed formula ϕ is
 - *logically*, a truth value
 - *topologically*, an element of Sierpinski space Σ
- We use this to express topological and analytic notions logically.

Example: \mathbb{R} is locally compact

• Classically: for open $U \subseteq \mathbb{R}$ and $x \in \mathbb{R}$,

 $x \in U \iff \exists d, u \in \mathbb{Q} . x \in (d, u) \subseteq [d, u] \subseteq U$

• Topologically: for $\phi : \mathbb{R} \to \Sigma$ and $x : \mathbb{R}$,

 $\phi(x) \iff \exists d, u \in \mathbb{Q} \, . \, d < x < u \land \forall y \in [d, u] \, . \, \phi(y)$

Example: [0, 1] is connected

• Classically: for open $U, V \subseteq [0, 1]$,

 $U \cap V = \emptyset \land U \cup V = [0,1] \implies U = [0,1] \lor V = [0,1]$

• (Topo)logically: for $\phi, \psi : [0, 1] \rightarrow \Sigma$, if

$$\bot \iff \phi(x) \land \psi(x)$$

then

$$\begin{array}{l} \forall \, x \in [0,1] \, . \, (\phi(x) \lor \psi(x)) \implies \\ (\forall \, x \in [0,1] \, . \, \phi(x)) \lor (\forall \, x \in [0,1] \, . \, \psi(x)) \end{array}$$

Example: \mathbb{R} is connected

• Classically: for open $U, V \subseteq \mathbb{R}$,

 $U \cup V = \mathbb{R} \land U \neq \emptyset \land V \neq \emptyset \implies U \cap V \neq \emptyset$

• (Topo)logically: for $\phi, \psi : \mathbb{R} \to \Sigma$, if

 $\top \iff \phi(x) \lor \psi(x)$

then

$$(\exists x \in \mathbb{R} . \phi(x)) \land (\exists x \in \mathbb{R} . \psi(x)) \implies \\ \exists x \in \mathbb{R} . \phi(x) \land \psi(x).$$

The maximum of $f : [0,1] \rightarrow \mathbb{R}$

cut x left $(\exists y \in [0, 1] . x < f(y))$ right $(\forall z \in [0, 1] . f(z) < x)$

Cauchy completeness

• A *rapid* Cauchy sequence $(a_n)_n$ satisfies

$$|a_{n+1}-a_n| < 2^{-n}.$$

Its limit is the cut

cut x left
$$(\exists n \in \mathbb{N} . x < a_n - 2^{-n+1})$$

right $(\exists n \in \mathbb{N} . a_n + 2^{-n+1} < x)$

From mathematics to programming

- We would like to *compute* with our language.
- ▶ We limit attention to logic and ℝ, and leave recursion and ℕ for future work.
- ▶ Not surprisingly, we compute with intervals.
- The prototype is written in OCaml and uses the MPFR library for fast dyadic rationals.

The interval lattice L

- ▶ The lattice of pairs [*a*, *b*], where *a* is *upper* and *b lower real*.
- Ordered by $[a,b] \sqsubseteq [c,d] \iff a \le c \land d \le b$.
- The lattice contains \mathbb{R} .

Extending arithmetic to *L*

- We extend arithmetic operations from $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ to $L \times L \to L$.
- The interesting case is *Kaucher multiplication*.
- Given an arithmetical expression *e* we compute its *lower* and *upper* approximants *e*⁻ and *e*⁺ in *L*:

$$e^{-} \sqsubseteq e \sqsubseteq e^{+}.$$

• We also extend
$$<$$
 to $L \times L \rightarrow \Sigma$:

$$[a,b] < [c,d] \iff b < c$$

Lower and upper approximants

For each sentence φ we define a *lower* and *upper* approximants φ[−], φ⁺ ∈ {⊤, ⊥} such that

$$\phi^- \implies \phi \implies \phi^+.$$

The approximants should be easy to compute.
If φ⁻ = ⊤ then φ = ⊤, and if φ⁺ = ⊥ then φ = ⊥.

► Easy cases:

$$\begin{array}{ccc} \bot^{-} = \bot & & \bot^{+} = \bot \\ \top^{-} = \top & & \top^{+} = \top \\ (\phi \land \psi)^{-} = \phi^{-} \land \psi^{-} & (\phi \land \psi)^{+} = \phi^{+} \land \psi^{+} \\ (\phi \lor \psi)^{-} = \phi^{-} \lor \psi^{-} & (\phi \lor \psi)^{+} = \phi^{+} \lor \psi^{+} \\ (e_{1} < e_{2})^{-} = (e_{1}^{-} < e_{2}^{-}) & (e_{1} < e_{2})^{+} = (e_{1}^{+} < e_{2}^{+}). \end{array}$$

Approximants for cuts and quantifiers

Cuts:

$$(\operatorname{cut} x : [a, b] \operatorname{left} \phi(x) \operatorname{right} \psi(x))^{-} = [a, b]$$
$$(\operatorname{cut} x : [a, b] \operatorname{left} \phi(x) \operatorname{right} \psi(x))^{+} = [b, a]$$

Quantifiers:

$$\phi([a,b]) \quad \Longrightarrow \quad \forall \, x \in [a,b] \, . \, \phi(x) \quad \Longrightarrow \quad \phi(\frac{a+b}{2})$$

$$\phi(\tfrac{a+b}{2}) \qquad \Longrightarrow \quad \exists \, x \, \in \, [a,b] \, . \, \phi(x) \qquad \Longrightarrow \quad \phi([b,a])$$

Refinement

- If $\phi^- = \bot$ and $\phi^+ = \top$ we cannot say much about ϕ .
- To make progress, we *refine* φ to an equivalent formula in which quantifers range over smaller intervals.
- A simple strategy is to split quantified intervals in halves:
 - $\forall x \in [a, b]$. $\phi(x)$ is refined to

$$(\forall x \in [a, \frac{a+b}{2}] \cdot \phi(x)) \land (\forall x \in [\frac{a+b}{2}, b] \cdot \phi(x))$$

• $\exists x \in [a, b] . \phi(x)$ is refined to

 $(\exists x \in [a, \frac{a+b}{2}] \cdot \phi(x)) \lor (\exists x \in [\frac{a+b}{2}, b] \cdot \phi(x))$

• This amounts to searching with *bisection*.

Refinement of cuts

To refine a cut

cut x : [a, b] left $\phi(x)$ right $\psi(x)$

we try to move $a \mapsto a'$ and $b \mapsto b'$.

- If $\phi^-(a') = \top$ then move $a \mapsto a'$.
- If $\psi^-(b') = \top$ then move $b \mapsto b'$.
- One or the other endpoint moves eventually because cuts are located.

Evaluation

• To evaluate a sentence ϕ :

- if $\phi^- = \top$ then output \top ,
- if $\phi^+ = \bot$ then output \bot ,
- otherwise refine ϕ and repeat.
- Evaluation may not terminate, but this is expected, as φ is only *semi*decidable.
- Is the procedure *semicomplete*, i.e., if ASD proves φ then φ evaluates to ⊤?

Speeding up the computation

Estimate an inequality f(x) < 0 on [a, b] by approximating f with a linear map from above and below.

This is essentially Newton's interval method.

Future

- Incorporate \mathbb{N} and recursion.
- Extend Newton's method to multivariate case.
- Write a more efficient interpreter.
- Can we do higher-type computations?
- Can this be implemented as a *library* for a standard language, rather than a specialized language?