Efficient Computation with Dedekind Reals

Andrej Bauer
(joint work with Paul Taylor)

Department of Mathematics and Physics
University of Ljubljana, Slovenia

CCA, Hagen, August 2008

In this talk

We present a mathematical language which is powerful enough to let us talk about real analysis, but also simple enough to be an efficient programming language.

Foundations

http://www.paultaylor.eu/ASD /

A language for real analysis

- Number types $\mathbb{N}, \mathbb{Q}, \mathbb{R}$
- Arithmetic,,$+- \times, /$
- Decidable equality $=$ and decidable order $<$ on \mathbb{N} and \mathbb{Q}
- General recursion on \mathbb{N}
- Real numbers:
- strict order relation $<$
- Archimedean property
- Dedekind completeness: every cut determines a number
- Logic:
- truth \top and falsehood \perp
- connectives \wedge and \vee
- existential quantifiers:

$$
\exists x: \mathbb{R}, \quad \exists x:[a, b], \quad \exists n: \mathbb{N}, \quad \exists q: \mathbb{Q}
$$

- universal quantifier: $\forall x:[a, b]$

Dedekind cuts

A cut is a pair of rounded, bounded, disjoint, and located open sets.
\square

Lower and upper reals

By taking the lower rounded sets we obtain the lower reals, and similarly for upper reals. These are more fundamental than reals.

Examples of cuts

- A number a determines a cut, which determines a :

$$
a=\operatorname{cut} x \text { left } x<a \text { right } a<x
$$

- \sqrt{a} is the cut

$$
\text { cut } x \text { left }\left(x<0 \vee x^{2}<a\right) \text { right }\left(x>0 \wedge x^{2}>a\right)
$$

- Exercise:
cut x left $(x<-a \vee x<a)$ right $(-a<x \wedge a<x)$
- The full notation for cuts is

$$
\text { cut } x:[a, b] \text { left } \phi(x) \text { right } \psi(x)
$$

This means that the cut determines a number in $[a, b]$.

"Topologic"

- A logical formula $\phi(x)$ where x : A has two readings:
- logical: a predicate on A
- topological: an open subset of A
- In particular, a closed formula ϕ is
- logically, a truth value
- topologically, an element of Sierpinski space Σ
- We use this to express topological and analytic notions logically.

Example: \mathbb{R} is locally compact

- Classically: for open $U \subseteq \mathbb{R}$ and $x \in \mathbb{R}$,

$$
x \in U \Longleftrightarrow \exists d, u \in \mathbb{Q} . x \in(d, u) \subseteq[d, u] \subseteq U
$$

- Topologically: for $\phi: \mathbb{R} \rightarrow \Sigma$ and $x: \mathbb{R}$,

$$
\phi(x) \Longleftrightarrow \exists d, u \in \mathbb{Q} \cdot d<x<u \wedge \forall y \in[d, u] . \phi(y)
$$

Example: $[0,1]$ is connected

- Classically: for open $U, V \subseteq[0,1]$,

$$
U \cap V=\emptyset \wedge U \cup V=[0,1] \Longrightarrow U=[0,1] \vee V=[0,1]
$$

- (Topo)logically: for $\phi, \psi:[0,1] \rightarrow \Sigma$, if

$$
\perp \Longleftrightarrow \phi(x) \wedge \psi(x)
$$

then

$$
\begin{aligned}
\forall x \in[0,1] \cdot(\phi(x) \vee & \psi(x)) \Longrightarrow \\
& (\forall x \in[0,1] \cdot \phi(x)) \vee(\forall x \in[0,1] \cdot \psi(x))
\end{aligned}
$$

Example: \mathbb{R} is connected

- Classically: for open $U, V \subseteq \mathbb{R}$,

$$
U \cup V=\mathbb{R} \wedge U \neq \emptyset \wedge V \neq \emptyset \Longrightarrow U \cap V \neq \emptyset
$$

- (Topo)logically: for $\phi, \psi: \mathbb{R} \rightarrow \Sigma$, if

$$
\top \Longleftrightarrow \phi(x) \vee \psi(x)
$$

then
$(\exists x \in \mathbb{R} . \phi(x)) \wedge(\exists x \in \mathbb{R} . \psi(x)) \Longrightarrow$

$$
\exists x \in \mathbb{R} . \phi(x) \wedge \psi(x)
$$

The maximum of $f:[0,1] \rightarrow \mathbb{R}$

cut x left $(\exists y \in[0,1] . x<f(y))$
right $(\forall z \in[0,1] \cdot f(z)<x)$

Cauchy completeness

- A rapid Cauchy sequence $\left(a_{n}\right)_{n}$ satisfies

$$
\left|a_{n+1}-a_{n}\right|<2^{-n} .
$$

- Its limit is the cut

$$
\begin{array}{r}
\text { cut } x \text { left }\left(\exists n \in \mathbb{N} . x<a_{n}-2^{-n+1}\right) \\
\quad \text { right }\left(\exists n \in \mathbb{N} \cdot a_{n}+2^{-n+1}<x\right)
\end{array}
$$

From mathematics to programming

- We would like to compute with our language.
- We limit attention to logic and \mathbb{R}, and leave recursion and \mathbb{N} for future work.
- Not surprisingly, we compute with intervals.
- The prototype is written in OCaml and uses the MPFR library for fast dyadic rationals.

The interval lattice L

- The lattice of pairs $[a, b]$, where a is upper and b lower real.
- Ordered by $[a, b] \sqsubseteq[c, d] \Longleftrightarrow a \leq c \wedge d \leq b$.
- The lattice contains \mathbb{R}.

Extending arithmetic to L

- We extend arithmetic operations from $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ to $L \times L \rightarrow L$.
- The interesting case is Kaucher multiplication.

$[a, b] \times[c, d]$	$a, b \leq 0$	$a \leq 0 \leq b$	$b \leq 0 \leq a$	$0 \leq a, b$
$0 \leq c, d$	$[a d, b c]$	$[a d, b d]$	$[a c, b c]$	$[a c, b d]$
$d \leq 0 \leq c$	$[b d, b c]$	$[0,0]$	$[q, p]$	$[a c, a d]$
$c \leq 0 \leq d$	$[a d, a c]$	$[p, q]$	$[0,0]$	$[b c, b d]$
$c, d \leq 0$	$[b d, a c]$	$[b c, a c]$	$[b d, a d]$	$[b c, a d]$

Where $p=\min (a d, b c) \leq 0$ and $q=\max (a c, b d) \geq 0$.

- We also extend $<$ to $L \times L \rightarrow \Sigma$:

$$
[a, b]<[c, d] \Longleftrightarrow b<c
$$

Lower and upper approximants

- For each sentence ϕ we define a lower and upper approximants $\phi^{-}, \phi^{+} \in\{\top, \perp\}$ such that

$$
\phi^{-} \Longrightarrow \phi \Longrightarrow \phi^{+}
$$

- The approximants should be easy to compute.
- If $\phi^{-}=\top$ then $\phi=\top$, and if $\phi^{+}=\perp$ then $\phi=\perp$.
- Easy cases:

$$
\begin{aligned}
\perp^{-} & =\perp & \perp^{+} & =\perp \\
\top^{-} & =\top & \top^{+} & =\top \\
(\phi \wedge \psi)^{-} & =\phi^{-} \wedge \psi^{-} & (\phi \wedge \psi)^{+} & =\phi^{+} \wedge \psi^{+} \\
(\phi \vee \psi)^{-} & =\phi^{-} \vee \psi^{-} & (\phi \vee \psi)^{+} & =\phi^{+} \vee \psi^{+} \\
\left(e_{1}<e_{2}\right)^{-} & =\left(e_{1}^{-}<e_{2}^{-}\right) & \left(e_{1}<e_{2}\right)^{+} & =\left(e_{1}^{+}<e_{2}^{+}\right) .
\end{aligned}
$$

Approximants for cuts and quantifiers

- Cuts:
$(\text { cut } x:[a, b] \text { left } \phi(x) \text { right } \psi(x))^{-}=[a, b]$
$(\text { cut } x:[a, b] \text { left } \phi(x) \text { right } \psi(x))^{+}=[b, a]$
- Quantifiers:

$$
\begin{aligned}
& \phi([a, b]) \quad \Longrightarrow \quad \forall x \in[a, b] \cdot \phi(x) \quad \Longrightarrow \quad \phi\left(\frac{a+b}{2}\right) \\
& \phi\left(\frac{a+b}{2}\right) \quad \Longrightarrow \quad \exists x \in[a, b] \cdot \phi(x) \quad \Longrightarrow \quad \phi([b, a])
\end{aligned}
$$

Refinement

- If $\phi^{-}=\perp$ and $\phi^{+}=\top$ we cannot say much about ϕ.
- To make progress, we refine ϕ to an equivalent formula in which quantifers range over smaller intervals:
- $\forall x \in[a, b] . \phi(x)$ is refined to

$$
\left(\forall x \in\left[a, \frac{a+b}{2}\right] \cdot \phi(x)\right) \wedge\left(\forall x \in\left[\frac{a+b}{2}, b\right] \cdot \phi(x)\right)
$$

- $\exists x \in[a, b] . \phi(x)$ is refined to

$$
\left(\exists x \in\left[a, \frac{a+b}{2}\right] \cdot \phi(x)\right) \vee\left(\exists x \in\left[\frac{a+b}{2}, b\right] \cdot \phi(x)\right)
$$

- This amounts to searching with bisection.

Refinement of cuts

- To refine a cut

$$
\text { cut } x:[a, b] \text { left } \phi(x) \text { right } \psi(x)
$$

we try to move $a \mapsto a^{\prime}$ and $b \mapsto b^{\prime}$.

- If $\phi^{-}\left(a^{\prime}\right)=\top$ then move $a \mapsto a^{\prime}$.
- If $\psi^{-}\left(b^{\prime}\right)=\top$ then move $b \mapsto b^{\prime}$.
- One or the other endpoint moves eventually because cuts are located.

Evaluation

- To evaluate a sentence ϕ :
- if $\phi^{-}=\mathrm{T}$ then output T ,
- if $\phi^{+}=\perp$ then output \perp,
- otherwise refine ϕ and repeat.
- Evaluation may not terminate, but this is expected, as ϕ is only semidecidable.
- Is the procedure complete, i.e., if ASD proves ϕ then ϕ evaluates to T ?

Speeding up the computation

Estimate an inequality $f(x)<0$ on $[a, b]$ by approximating f with a linear map from above and below.

This is essentially Newton's interval method.

Future

- Incorporate \mathbb{N} and recursion.
- Extend Newton's method to multivariate case.
- Write a more efficient interpreter.
- Can we do higher-type computations?
- Can this be implemented as a library for a standard language, rather than a specialized language?

