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Abstract

We formulate a predicative, constructive theory of continuous do-
mains whose realizability interpretation gives a practical implementa-
tion of continuous w-chain complete posets and continuous maps be-
tween them. We apply the theory to implementation of the interval
domain and exact real numbers.

1 Introduction

In computation with exact real numbers, and in computable analysis gen-
erally, we usually use sequences or streams of approximations to represent
reals, or points of a space. We order approximations according to their
quality, which leads to order-theoretic constructions of spaces. We took
this approach in our implementation of intervals and real numbers Era [3],
which uses the tool RZ [4] to derive specifications (program templates) from
axiomatizations of constructive mathematical theories. Therefore, we first
looked for a suitable axiomatization of the space of approximations of real
numbers. This is a subject studied by domain theory [1, 15]. It turned
out that the usual formulations of domains did not quite serve our purposes
because their RZ translations were impractical. In this paper we present a
predicative constructive theory of continuous predomains whose realizabil-
ity interpretation allows an efficient implementation of the interval domain,
and consequently exact real numbers.

From other implementers of exact real arithmetic, most notably Norbert
Miiller with iRRAM [13] and Branimir Lambov with RealLib [12, 11], we
learned how an efficient implementation of reals should work:
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1. Reals should be represented by sequences of dyadic intervals, i.e., those
whose endpoints are rationals of the form n/2¥. This allows us to
use high-performance numerical libraries such as Numerix [14] and
MPFR [9] for low-level calculations.

2. As few conditions as possible should be imposed on the approximating
sequences. For example, they should not have a prescribed rate of
convergence, and we should not require that each next approximation
makes definite progress.!

3. Computation is performed in stages, where at stage n we compute
only with n-th approximations, if possible. This helps curb memory
consumption, as we do not have to store information about previous
or future approximations.

While other design choices are possible, these ideas have turned out to be
successful in practice. They suggest what kind of domain theoretic model we
should look at. For example, because elements are represented as sequences
of approximations, we should look at posets closed under suprema of chains,
rather than arbitrary directed sets. There are many other considerations
that one has to take into account to get just the right kind of theory that
is suitable for an actual implementation. The main contribution of this
paper is to show that theories of constructive mathematics can be “logically
engineered” in such a way that their realizability interpretations directly
correspond to the practical implementations.

The paper is organized as follows. In Section 2 we discuss constructive
logic and our choice of axioms. In Sections 3 and 4 we develop basic con-
structive theory of predomains and continuous maps, which we apply to the
interval domain and real numbers in Section 7. In Section 8 we prove exten-
sion theorems for the interval domain, while in the final section we discuss
possible improvements to our approach.

2 Predicative constructive logic

We assume familiarity with Bishop style constructive mathematics [6, 7] and
the realizability interpretation of constructive logic in a category of modest
sets, see e.g. [16, 2, 4].

Our choice of logic and axioms is dictated by the fact that we actually
want to implement (the realizability interpretations of) the theories we de-
velop. For example, we reject the general Law of Excluded Middle because it
would have to be implemented by (non-existent) Halting Oracle, while pow-
ersets are not allowed because they cannot be represented by realizability
relations on datatypes.

!By requiring definite progress at each step we are forced to artificially represent dyadic
intervals by inexact approximations.



The realizability interpretation validates the extra-logical principles Num-
ber Choice, Dependent Choice, and Markov Principle?. Throughout we use
Number Choice to choose sequences of representatives from sequences of
equivalence classes. Computationally speaking, this is a harmless applica-
tion of Choice because equivalence classes are represented by their members,
anyhow, so there is nothing to choose. We use the closely related Dependent
Choice once in Section 3.

We crucially rely on Markov Principle which states that a binary se-
quence whose terms are not all 0 contains a 1. Again, this is not a mat-
ter of taste but a choice that leads to more efficient implementation. As
stated in the introduction, we want to represent a real number as a chain
of nested intervals [pg, o] 2 [p1,q1] 2 --- with rational endpoints whose
widths converge to 0. But how do we state the convergence? Unfortunately,
the constructively acceptable condition

VkeN.IneN.q, —p, < 27F (1)

would force us to represent a real as a nested sequence of intervals with an
explicitly given modulus of convergence realizing (1). We could avoid the
explicit modulus by requiring a fixed rate of convergence, say g, —p, < 27".
Implementations of exact real arithmetic along these lines tend to suffer
from various inefficiencies. We can express convergence of widths to 0 with
the weaker condition

Ve>0.((VneN.¢g, —pn >€) = €=0) (2)

which has a trivial realizer and states the same thing, classically. In addition,
(2) is precisely what is needed for the chain ([pn, ¢n|)nen to converge to a
maximal element of the interval domain. However, in order to show that
every chain satisfying (2) determines a real number we need to know that
the sequence (py,), satisfies the Cauchy condition, which it does if Markov
Principle holds. Thus we accept it, even though we believe that all efforts
should be made to develop constructive mathematics with as few extra-
logical principles as possible.

The computational content of Markov Principle is unbounded search,
which means that indiscriminate use can result in inefficient implementation.
In our case Markov Principle is not used to perform unbounded search but
to allow representation of real numbers without explicit information about
the speed of convergence of the approximating sequence. The only use of
unbounded search occurs at the “top level” when the user explicitly asks for
an approximation with given precision.

ZCaveat: believing that realizability validates Markov Principle requires one to believe
in Markov Principle at the meta-level. We do, as we prefer to think that programs which
do not run forever terminate.



To summarize, the text is written in Bishop style constructive mathe-
matics without powersets and with Markov Principle. All uses of Markov
Principle are explicitly marked, and in fact we do not use it until Section 5.
Thus the statements we prove are valid classically, as well as in (relative)
realizability models, which cover many well known models of computability.

3 Predomains and their bases

We first review basic order-theoretic definitions. A partially ordered set
(poset) (P, <) is a set P with a reflexive, transitive and antisymmetric rela-
tion <. A chain in a poset is a monotone sequence (ay),. The supremum
of a chain, if it exists, is denoted by \/, a,. An w-complete poset (w-cpo)
(P, <) is a poset in which every increasing chain has a supremum. If x and
y are elements of a poset P, we say that x approrimates y, or that x is way
below y, written x << y, when for every chain (ay), with a supremum, if
y < \/,an then z < a,, for some n € N. We define |y = {z € P | z < y}.
A <<-chain is a sequence (a,), which is monotone with respect to <<.

A map f: P — @ between posets is continuous if it is monotone and
preserves existing suprema of chains.

It is customary to define the approximation relation and continuous maps
only for w-cpos, but we need definitions that apply to posets. Still, the
approximation relation has the usual properties, e.g., x < y<<zorz<<y < z
implies « << z. Continuous maps behave as expected, also. Identities and
projections are continuous, continuous maps are closed under composition,
and a map of several arguments is continuous if, and only if, it is continuous
in each argument separately.

An w-cpo D is continuous when every x € D is the supremum of a chain
in {z. A continuous w-cpo is called a (continuous) predomain and one with a
least element a (continuous) domain. In a predomain D the approximation
relation has the property that whenever x << z then z << y << z for some
y € D. From this we can prove, using Dependent Choice, that every x € D is
the supremum of a <<-chain (ay,),, which we call an approzimating sequence
for . The notion of an approximating sequence makes sense in any poset.

A base Dg for a predomain D is a subset Dy C D such that every x € D
is the supremum of a chain in {x N Dy. Because a predomain D might be a
very complex space, an important question is how to find a suitable simple
base, and how to reconstruct the predomain from it. For this purpose we
first need to identify the structure of a base on its own.

Definition 3.1 A predomain base is a poset (B, <) in which every element
has an approximating sequence.

A predomain base has the usual interpolation property which states that,



for every finite® subset M C B and u € B,
M<xu = JveB. M<Kv<<u,

where M << uw means that every element of M is way below u. Indeed,
suppose (a,), is an approximating sequence for u. If M << u then there is
n € N such that w < a,, for all w € M but then M < a,, << ap41 << u.

If Dy C D is a base for a predomain D, then (Dg, <) is a predomain
base on its own. The interesting question is how to go in the opposite
direction and construct a domain out of a predomain base. We shall provide
three answers: a construction by rounded ideal completion, an abstract
characterization, and a construction suitable for implementation.

3.1 Conditional upper semilattices

We say that x and y in a poset are bounded or consistent, written = T y, if
there is z such that x < z and y < z. A conditional V-semilattice (cusl) is a
poset P such that if x T y then their least upper bound z V y exists. Several
constructions simplify significantly for predomains that are conditional V-
semilattices. We call them cusl predomains.

In a cusl predomain, the consistency relation T is continuous, by which
we mean that, given chains (ay), and (by)n, if a, 1 b, for all n € N, then
(\V'pan) T (\V,bn). This is so because \/, (an V by,) exists, and is easily
verified to be the supremum of \/, a, and \/, by,.

The base Dy C D of a predomain cusl D need not itself be a cusl, and
even if it is, the consistency relation in Dy need not be continuous, so we
require these extra properties of Dy, cf. Proposition 3.8.

Proposition 3.2 Suppose a predomain base B is a cusl. Let (an), and
(bn)n are approximating sequences for u and v, respectively. If u\V v exists
then (an V by)y is its approximating sequence.

Proof. Because B is a cusl, each a, V b, exists. We must show that
(an V by)p is a <<-chain whose supremum is u V v.

It is easily verified that x <<y and 2’ <<y implies zVy <<z’ Vy/, as long
as zVy and 2/ V¢ exist. From this it follows that (a, V by,), is a <<-chain.

The join u Vv is an upper bound for (a,, V b,), because, for every n € N,
an < u and b, < v, hence a, Vb, < uVv. To see that it is the least one,
suppose w is an upper bound for (a, V b,),. Then w is an upper bound for
(@n)n, hence u =\/, a, < w, and similarly v < w, therefore u Vv <w. =

Proposition 3.3 Suppose a predomain base B is a cusl and u << v V w.
Then there exist v',w’ such that u << v' V', v < v, and v’ < w.

3By finite we mean Kuratowski finite, or listed by a finite sequence, possibly with
repetitions.



Proof. Let (an)n, and (b,), be approximating sequences for u and v,
respectively. By Proposition 3.2, (a, V by,) is an approximating sequence for
u V v. There exists n € N such that v < a, V b,. Taking v = a,41 and
w’ = byy1 does the job. n

3.2 Completion by rounded ideals

Let (B, <) be a predomain base. A rounded ideal in B is a subset I C B
such that there exists an <<-chain (a,), in B for which

uel «<— dneN.u<a, .

We say that (ay,), generates the ideal I, which we denote as I = (ay,),. We
use lower-case Greek letters for rounded ideals. Needless to say, a rounded
ideal in our sense is so in the usual sense: an ideal [ is a lower set and
whenever u,v € I then {u,v} << w for some w € I. But, importantly,
we have restricted attention only to those ideals that are generated by <<-
chains. This allows us to collect all such ideals into a set RIdI(B) without
resorting to general powersets, because we may define RIdI(B) as a suitable
quotient of the set of all <<-chains in B.

We order the set of rounded ideals RIdI(B) by inclusion C. For every u €
B the set [u is a rounded ideal because it is generated by an approximating
sequence for u. Thus we may define a map e : B — RIdI(B) by e(u) = {u. It
preserves and reflects <, i.e., u < v if, and only if e(u) < e(v). For suppose
(an)n and (by,), are approximating sequences for u and v, respectively. If
u < v then every a,, is way below some b,,, hence e(u) = (am)m C (bn)n =
e(v). Conversely, if e(u) C e(v) then every a,, is way below some by, hence
u=\/,,am < \/, by =v. In particular, e is injective and we may view B as
a subset of RIdI(B).

Lemma 3.4 Suppose (ampn)mn s a double sequence in a poset such that
(@mn)n is a <<-chain for every m, and whenever m < n then every ap; is
way below some ay j. Then there exists a subsequence b; = a; i, which is a
< -chain and such that every apm, is way below some b;.

Proof. For all m,n € N there exists k € N such that a; ; << a1 for all
0<i<mandO0<j<n. By Number Choice there is a map ¢: Nx N — N
such that a;; << @yyq1.c(mn) for all 0 < ¢ < m and 0 < j < n. Define
ko = ¢(0,0), kit1 = c(i,max(i, k;)), and b; = a;y,. Observe that (b;); is
a <<-chain because b; = a;r, << Qi1 c(imax(ik;)) = i+l ki1 = biv1. By
construction we also have @y, n << byax(m,n) for all m,n € N. [

Proposition 3.5 The poset (RIdI(B),C) is a predomain with a base B.



Proof. First we show that a chain (&), in RIdI(B) has a supremum.
By Number Choice there exists a double sequence (@ n)m,n such that &,
is generated by the <<-chain (amn)n. Let (b;); be a sequence which we
get by applying Lemma 3.4 to (amn)mn. Clearly, by, € &, which shows
(bim)m € U, &m- Conversely, if x € J,,&m then 2 << ap, y, for some m,n € N,
and then z << ay, n << b; for some i € N. This shows J,,&m = (bm)m.-

Next we show that RIdI(B) is continuous with a base B. Suppose ¢ is
a rounded ideal generated by a <<-chain (by,)n,. Because e(by,) C e(bp+1)
and § = ,,e(bn) it suffices to show e(by,) << £ for all m € N. If (¢p)n is
a chain whose supremum is £ then there is n € N such that b,, € (,, hence

e(bm) C G- n

Proposition 3.6 The inclusion e : B — RIdI(B) preserves and reflects <<
and s continuous.

Proof. Suppose u,v € N, u << v, and let (a,;), be an approximating
sequence for v. There is m such that u < a,,. If (§,), is a chain such that
e(v) C U,,&n then ap, € &, for some n, therefore u € &, from which e(u) C &,
follows.

Conversely, suppose e(u) << e(v) and let a, be a chain in B with a
supremum such that v < \/, a,. Let (b,), be an approximating sequence
for \/,,an. Then e(v) C e(\/', an) = (bn)n = U, €(bn), hence e(u) < e(by) for
some n € N. Because e reflects < we get u < b, << \/,,an, whence v << a,
for some m € N, as required.

It remains to show that e is continuous. Suppose (a,)n is a chain in B
with supremum v = \/,a,, and let (b,), be an approximating sequence
for u. We want to show that e(u) = J,,e(an). Trivially, e(u) 2 [, e(an).
For the other inclusion, if v € e(u) then v << b,, for some n € N. Because
b, << u there exists m € N such that b, < a,,, from which it follows that
v € e(am). ]

Proposition 3.7 Let B be a predomain base and fiz B — D a continuous
map. There exists a unique continuous extension f : RIdI(B) — D of f
along e : B — RIdI(B).

Proof. First we show uniqueness. If both g : RIdI(B) — D and h :
RIdI(B) — D continuously extend f then for every ¢ € RIdI(B) with £ =
(an)n we have

9(&) = V' pg(elan)) = V', fan) =\, hle(an)) = h(E) -

Define f : RldI(B) — E by f({(an)n) = \V',,f(an). If {an)n = (by)n then
the sequences (ay,), and (by), are interleaved, hence so are (f(ay)), and
(f(bn))n, which means that \?, f(a,) = \/,,f(bn). Thus f is well defined.



To see that f extends f, consider any u € B and an approximating
sequence (ay)p for u. Then

fle(w) = F({an)n) =\ f(an) = F(Vyan) = f(u) .

Finally, we verify that f is continuous. Given a chain (&), there is a
double sequence (@pm n)mn in B such that &, = (amn)n. We can find a
subsequence b; = a; j, which is a <<-chain and such that every a,,, is way
below some b;. Then it follows that

We remark that the previous proof used only monotonicity of f to show
that the map f is well defined and continuous. We needed continuity of f
only to show that f = foe. In fact, for every monotone map f : B — D
there exists the greatest continuous f : RIdI(B) — D such that f > foe.
This situation is analogous to the classical treatment of abstract bases for
continuous domains [1].

Proposition 3.8 If a predomain base B is a cusl then so is RIdI(B) and the
embedding e : B — RIdI(B) preserves existing binary joins. Furthermore, if
the consistency relation on B is continuous, the embedding e reflects it.

Proof. Suppose £ = (an)n, and ( = (by), are contained in 6 = (c,)p in
RIdI(B). For every n € N, a, and b, are bounded by some ¢,,, therefore
an V by, exists. We claim that n = (J, e(an V by,) is the least upper bound of £
and ¢. It is an upper bound because £ = |J, e(an) C U, e(an V by) = n, and
similarly ¢ C 7. It is the least one because if p = (d,,), is an upper bound
for £ and ¢ then, for every n € N, there exists m € N such that a,, Vb, < d;,,
hence e(a, V b,) C e(dy,) C p, from which n C p follows.

Next we check that e preserves existing joins. Suppose u V v exists in B,
and let (ay,)y, and (b, ), be approximating sequences for u and v, respectively.
By Proposition 3.2 (a, V by,), is an approximating sequence for u Vv, and so
e(uV )= (apV by),. Because e is monotone e(u V v) is an upper bound for
e(u) and e(v). If € = (¢,)p is another upper bound for e(u) and e(v) then
for every n € N there is m € N such that a, < ¢, and b, < ¢, but then
an V by, < ¢ This shows e(u Vv) C &.

Let us show that e(u) T e(v) implies v T v when T is continuous in B.
Let (ay), and (b,), be approximating sequences for u and v, respectively,
and suppose £ = (¢y),, is an upper bound for e(u) and e(v). Then for every
n there is m such that both a, and b, are below c¢,,, hence a, T b,. By
continuity of 1 it follows that u = (\/,,an) T (\/',,bn) = v. ]



3.3 A characterization of rounded ideal completion

The most evident characterization of the rounded ideal completion is as
reflection from the category of predomain bases and continuous maps to the
category of predomains (with chosen bases) and continuous maps. However,
we desire an intrinsic characterization which does not refer to all objects of
a category.4

Theorem 3.9 Suppose (B, <) is a predomain base and f : B — D a con-
tinuous map into a continuous domain D. The following are equivalent:

1. f reflects <, preserves <<, and for every x € D there exists a chain

(an)n such that x =\/, f(an),

2. the unique continuous extension f : RIdI(B) — D of f is an isomor-
phism of posets.

In this situation we say that f : B — D is a (continuous) completion of B.

Proof. If f is an isomorphism, the desired properties of f follow easily
because we proved that e : B — RldI(B) has them.

Conversely, suppose f has the stated properties. First we show that
the unique continuous extension f : RldI(B) — D reflects <. Suppose
fllan)n) < f((bm)m), ie, \V, flan) <\, f(bn). Because f preserves <<
it holds that f(a,) << \/,,f(bm), therefore f(a,) < f(by) for some m.
Because f reflects < this implies that every a, is below some b,,, hence
{an)n C (bm)m. This shows that f reflects <, an immediate consequence of
which is that it is injective.

To see that f is surjective, consider an arbitrary x € D. There exists a
chain (ayn)n in B such that @ = \/,, f(a,), and then

?(Une(an)) = \fnf(e(an)) = \fnf(an) =x.

Because f is a bijection which preserves and reflects partial order, it is an
isomorphism of posets. u

3.4 Algebraic predomains and ideal completion

Closely related to continuous domains and completion by rounded ideals are
algebraic domains and completion by ideals.

An element x € P in a poset (P, <) is compact when x << z, or equiva-
lently when for every chain (a,), with a supremum in P,  <\/, a, implies
z < ay for some n € N. An w-cpo D is an algebraic predomain when every

“In RZ we can express the fact that the rounded ideal completion is a reflection, but
the resulting specification is somewhat heavy-weight and not easy to use.



x € D is the supremum of chain of compact elements. Evidently, every alge-
braic predomain is a continuous predomain with compact elements forming
a base.

A poset (P, <) may be completed to an algebraic domain as follows. A
subset I C P of a poset (P, <) is an ideal if there exists a chain (ay,), in P
such that, for all u € P,

uel «<— dneN.u<a, .

We denote the ideal generated by a chain a = (an), by (@) = (an)n. Just
like in the case of rounded ideals, we have restricted to ideals generated by
chains. This allows us to form the ideal completion |dI(P) as the set of all
ideals without resorting to powersets. Ordered by C, IdI(P) is an w-cpo in
which suprema of chains are computed as unions. The compact elements
of IdI(P) are precisely those of the form |u, u € P. For every monotone
f P — D to an w-cpo D there exists a unique continuous extension
f :1dI(P) — D of f along the embedding u +— |u of P into IdI(P). These
fact are all very familiar from domain theory so we omit the proofs.

Since ideal completions are simpler than rounded ideal completions, you
may wonder why we are bothering with the continuous predomains in the
first place. To tell the truth, our implementation indirectly uses algebraic
domains, as we describe in the next section. However, we are interested in
the (continuous) interval domain on its own merits, and not just as a domain
which contains the real numbers. There are many examples where a partial
map on the reals is most naturally viewed as a (total) continuous map into
the interval domain, e.g., when it has a pole or a sudden jump. Thus we
want to understand the structure of the interval domain directly, and not
just through a quotient of its algebraic cousin.

3.5 An alternative construction of rounded ideal completion

If (B, <) is a domain base we can complete it to IdI(B) as well as to RldI(B).
The completions are related by a continuous section-retraction pair. Because
every rounded ideal is an ideal, the section s : RIdI(B) — IdI(B) is just
inclusion. The retraction r : Idl(B) — RIdI(B) maps an ideal {(a,), to
r({an)n) = U, tan.

The rounded ideal completion RIdI(B) has a mathematically pleasing
universal property but lacks practical usefulness, because an implementa-
tion of RIdI(B) would represent its elements as <<-chains of basic elements.
In the case of the interval domain, see Section 7, this would mean that a
real number must be represented by a sequence of strictly nested intervals,
which we want to avoid. In contrast, the ideal completion does have its
elements represented by ordinary chains of basic elements. Thus we may
represent elements of RIdI(B) as ordinary chains if we pass them through

10



the retraction r : Idl(B) — RIdI(B). We work out an explicit description of
such a representation.

Let Chain(B) be the set of chains in B. Because ((—)) : Chain(B) —
IdI(B) and r : IdI(B) — RIdI(B) are quotient maps, RldI(B) is isomorphic
to the quotient B = Chain(B)/~ by the equivalence relation ~ defined for
a,b € Chain(B) by

a~b < r((a)) =r((b))-
We denote the equivalence class of a by [a] or [ay],. Explicitly, a ~ b means
VueB.(AneN.u<a,) <= (GneN.u<b,)) .
Similarly, the partial order on Bis given by
[a] < [b] <= VueB.(3neN.u<xa,) = (IneN.u<xby,)) .

The base B is embedded in B by the map i : u — [u],, which maps a basic
element u to the constant chain (u)y.

3.6 Computation of suprema of sequences

The supremum of a chain (z,,),, in B may be computed as follows. By
Number Choice there exists a double sequence (@, n)mn such that, for ev-
ery m € N, (amn)n is a <<-chain and z,, = [amn]n. The supremum \/, z,,
equals [b;]; where (b;); is obtained from (@ n)m,n by Lemma 3.4. How-
ever, because computing with <<-chains is undesirable and the realizer for
Lemma 3.4 gives an inefficient algorithm, we seek seek conditions that allow
us to improve the calculation. _

Suppose then B is a predomain base and let (z,,),, be a chain in B. As
before, there is a double sequence (@, n)mn in B such that z,, = [amnln,
but this time we assume that (am,n)n is only an ordinary chain. How can
we compute \/', Ty in terms of (@mn)mn,? One may think at first that the
sequence b, = a, , represents the supremum, but this is not so because it
may fail to be a chain, and even if it is, it may still give the wrong value.
For a simple counterexample consider a,,, = L for n < m and an,, = u
otherwise, for a fixed u > L. B

We describe a general method for computing suprema in B when B is
a cusl with continuous consistency relation. In this case we may compute
suprema of a sequence (x,), which is not necessarily a chain, as long as its
finite prefixes are consistent. So suppose (7,), is a sequence of consistent
elements in B, and let (4 n)m,n be a double sequence in B such that z,, =
[@m.n]n- The idea is to represent \/, ., by a chain (b;); where

bi = ag k0,) V a1 k(1) VoV QG k(i) - (3)

for suitably chosen indices k(i,7). In particular we require the map k :
{(i,7) | i < j} — N to be monotone and unbounded in the second argument:

11



e for all i,n € N there exists j > ¢ such that k(i,j) > n, and
o foralli,j €N, k(i,7) < k(i,j+1).

First observe that the set {i(amn,) | m,n € N}, where i : B — B is the
embedding, is bounded in B by an upper bound for (z,)m,, whence by
Proposition 3.8 any finite set of terms of (@5 )m,n is bounded in B, so the
join in (3) exists. Because (am, n)m,n and k are both monotone in the second
argument, (b;); is a chain.

Every a, » is below some b;, from which it follows easily that [b;]; is an
upper bound for (Z,,)m. Suppose [¢/], is another upper bound for (z,)m,. If
u << b; then by Proposition 3.3 there exist vy, ..., v; such that v; << a; (4
and u << vg V...V v, There exists £ such that v; < ¢, for j = 0,...,4
therefore u << ¢y. This means that [b;]; < [c¢]s, which concludes the proof
that Vm Ty = [bz]l

Depending on implementation details some choices of k may work better
than others. A reasonable one is k(i, j) = j, giving us

Vi Zm =V pl@mnln = [a0i Vairi V- Vaili = [bii

which has the advantage that the i-th approximation of the supremum in-
volves only the i-th approximations of terms of the chain (z,).,. The disad-
vantage is that a typical calculation of b; may take i times longer than the
calculation of a;;. Assuming each next approximation takes twice as long
as the previous one, a better choice for £ is

ki) = {U/zJ, if i < 1j/2).

1, otherwise.

Calculating b; using this sequence typically takes only about twice the time
needed for a;;. Naturally, extra information about the chain () or
(@m,n)m,n can help significantly speed up the computation of \/, z,.

4 Representation of continuous maps

Suppose D and E are domains with bases Dy and FEjy, respectively, and let
ip : Dgp — D and ig : Eg — FE be the inclusions. We seek a representa-
tion of continuous maps D — F in terms of functions on the underlying
bases. Because a continuous map f : D — FE is determined by its restric-
tion f : Dy — E and every element in F is the supremum of a chain in
Ey, we represent f by a map fo : Dg Xx N — Ej so that for u € Dy we
have f(u) = \/,ig(fo(u,n)). For this to make sense (fo(u,n)), must be
a chain. We shall require more, namely that fy be monotone in both ar-
guments so that v < v and m < n implies fo(u,m) < fo(v,n). This is
expected behavior (better input gives better output), and it also makes it
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possible to efficiently compute composition of functions in terms of their
representatives, see below.

If fo: Do x N — FEj is monotone in each argument then the map f :
Dy — E, defined by f(a) =\/,,ie(fo(a,n)) is continuous if, and only if,

VoV mie(folam, n)) =\, i (fo(V pam, n)) (4)

for every chain (a,), in Dy that has a supremum in Dy. Indeed, if fy
satisfies (4) and (@), is a chain in Dy with a supremum in Dy then

\fmf(am) = \fm\/\niE(fO(amyn)) =
=V Vnie(folam n)) =\, ie(fo(\V pam, n) = f(\V,am) ,

hence f is continuous. Conversely, if f is continuous then

VoV mie(folam,n) =\, ie(folam, n)) =
=V flam) = f(Vam) = Vs (fo(\V am,n)) -

Condition (4) can be expressed in terms of bases only. For a monotone fy
the left-hand side of (4) is less or equal to the right-hand side. The opposite
inequality means that for all u € Ep, if u << fo(\/,,,am,n) for some n € N
then there exists m € N such that u << fo(am,n). We summarize this in a
definition.

Definition 4.1 Let D and F be predomains with bases Dy and Ejy, respec-
tively. A representation of a continuous map f : D — F is a monotone map
fo: Dy x N — Ej satisfying, for all u € Fy, n € N, and chains (a,,)m, in Dy
with supremum in Dy,

u << fo(\/,,am,n) = ImeN.u < folam,m) .
This is equivalent to fy satisfying (4).

The map f may be computed from fy as follows. If z € D and (a;,)n is a
chain in Dg such that z =\/, ip(an) in D, then

f@) =V yie(folan)) -

In particular, if a continuous map f : B — C is represented by a map
fo: BxN — C we have the simple relationship f([an]n) = [fo(an)]n. This
formula tells us that the value of a continuous maps at stage n depends only
on the value of the argument at stage n.

Suppose D, E, F are predomains with bases Dy, Fy, Fy, respectively,
and that continuous maps f : D — F and g : E — F are represented by
fo:DgxN — Eyand gg : B9 x N — F, respectively. Then for every u € Dy

9(f(w) = g(Vie(fo(u,n))) =\ 9(ie(fo(u,n))) =
= \fn\fmiF(g()(fO(u7 n)? m)) = \/\kiF(QO(f()(u? k)? k)) )

13



which shows that the composition h = g o f is represented by the map
ho : Dy x N — Ej defined by ho(u, k) = go(fo(u, k), k), provided that hg is
monotone, which it clearly is, and it satisfies (4), which it does because the
map h(u) = \/ ho(u, k) is continuous.

Does every continuous map f : D — FE have a representation? If Dy
is enumerated by dp,d1,..., by Number Choice there is always a double
sequence (a;;)i;j in Ey such that f(d;) = \/',a;;. The question then is
whether the sequence (a; ;);j, which is monotone in j, can be rectified to
a function fy : Dy X N — FEy which is monotone in both arguments. The
following proposition covers all cases that we intend to implement.

Proposition 4.2 Let D be a predomain with a decidable base Dy which
s either finite or countably infinite. Let E be a predomain with base Ey
such that Eg is a cusl and has finite meets. Then every continuous map
f: D — E has a representation fo: Dy x N — Ej.

Proof. We give the proof for Dy a countably infinite set. It is easy to
adapt the construction to the case when Dy is finite. Let (d;); be an enumer-
ation of Dy without repetitions. By Number Choice there exists a double
sequence (a; ;)i ; in Ey such that, for all i € N, (a;;); is an approximating
sequence for f(d;). The sets

Li:{k<’i’dk§di} and Ulz{k‘<z‘d1§dk}

are finite decidable subsets of N. Define a map fp : Dg x N — FEy by

foldi, ) = (ai,j v\ fo(dk,j)> AN foldm, d) (5)

keL; meU;

where we omit the join if L; = () and omit the meet if U; = ). In particular,
this gives us fo(do,j) = aoj. First we verify that fo is well defined by
showing that the join in (5) exists. More precisely, we prove:

Claim 1: For all i € N, if k € L; then fo(dk, )<< f(dg), fo(di,7)
is defined, and fo(d;, j) << f(d;).

Proof by induction on i: given ¢ € N and k € L;, by induction hypothesis
fo(dg, j) is defined. Because dj, < d; and f is monotone, fo(dg,7) << f(dy) <
f(d;). All the terms appearing in the join in (5) are way below f(d;),
therefore they are consistent in Ey, hence the join exists and fo(d;,7) is
defined. Furthermore, fo(di,j) < ai;j V Vyer, fo(dk,j) << f(di). The claim
is proved.

Monotonicity of fy follows from the following two claims.

Claim 2: If i € N and m € U; then fy(i,5) < fo(m, 7).

Proof: the claim holds because fy(m,j) appears in the infimum in (5).
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Claim 3: If i € N and k € L; then f(k,7) < fo(,7).

Proof by induction on i: if m € U; then di < d; < d,,, hence either k € L,,
or m € Ug. In the former case, we apply the induction hypothesis to get
fo(k,j) < fo(m,7), while in the latter case we apply claim 2 to get the same
conclusion. Therefore, fo(k,7) is smaller than every term of the infimum
appearing in (5). Because fy(k,j) appears in the supremum in (5) this
means fo(k,j) < fo(i,7). The claim is proved.

To conclude that fy(d;,7) is monotone, observe that it is monotone in j
because (a;;); is monotone in j. It is also monotone in the first argument
because, assuming d < d;, the inequality f(dg,j) < f(di,j) is either a
triviality, or follows from claim 2, or from claim 3, depending on whether
k=1, k>1, or k <1, respectively.

Finally, we prove that f(d;) =\/ ; fo(di, ) for all i € N. Claim 1 implies
that f(d;) > \/ j fo(di,j). The opposite inequality holds provided that for
all i,k € N, there exists j € N such that fo(d;,j) > aix, which we prove
by induction on ¢. For every m € U; there exists £ € N such that a,,, >
a; ., because a; << f(d;i) < f(dm) = \V/yamye. Furthermore, by induction
hypothesis there is j* € N such that fo(dm, ') > amye > air. As U; is finite,
there exists a single j € N such that fo(dm,j") > a; for all m € U;. By
taking j = max(k, j') we get

foldi,3) = aig A N\ foldm, ) = aij Aaig > aig .
meU;

Proposition 4.2 is useful, but not because we would want to apply its
realizer to compute a representation fy from a map f. Rather, we want to
define f by giving fop, and the proposition tells us that we will always be
able to do so.

5 DBases with semidecidable partial order

We would like to use predomain bases as datatypes which represent contin-
uous domains. In order to be able to perform concrete calculations on bases
they should not be arbitrarily complicated, which means that we need to
impose restrictions on the (logical) complexity of predomain bases.

Recall that a predicate ¢ on a set A is decidable when ¢(z)V —¢(x) holds
for all z € A. This is equivalent to saying that ¢ is represented as a map
¢:A—{0,1}. A predicate ¢ on a set A is semidecidable when, for all z € A
there exists f : N — {0, 1} such that ¢(x) is equivalent to 3neN. f(n) = 1.
A predicate ¢ is ——-stable if =—¢(x) implies ¢(x) for all x € A.

Under the realizability interpretation decidable and semidecidable predi-
cates correspond to decision and semidecision procedures, respectively, while
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the ——-stable predicates have no computational content, i.e., their realizers
do not compute anything useful and may be omitted. Markov Principle
implies that semidecidable predicates are ——-stable.

Without any simplifying assumptions the partial order on the completion
of a predomain base cannot be shown ——-stable, which annoyingly requires
us to implement realizers for <. For example, we would have to represent a
chain (z,,), as a sequence of elements together with a sequence of realizers
showing that z,, < x,4+1 for all n € N. We would prefer < to be =—-stable.

Proposition 5.1 Suppose Markov Principle holds. If the partial order on
a base is semidecidable then the partial order on the predomain is ~—-stable.

Proof. Suppose D is a predomain and Dy a base with semidecidable
<. Consider any z,y € Dy. There exist approximating sequences (a,), and
(bn)n in Dg for z and y, respectively. It is easily seen that x < y is equivalent
to

VneN.dmeN.a, < b, .

This is a ~—-stable proposition because the inner existential is, thanks to
Markov Principle and the assumption that < on Dy is semidecidable. =

Similarly, we would like to avoid implementing explicit realizers for <<.
Fortunately, the same simplifying assumption works in the case we care
about.

Proposition 5.2 Suppose D is a predomain and Dy C D a base with
semidecidable <. Then the relation u << x, with w € Dy and © € D, is
semidecidable.

Proof. Consider any u € Dy and z € D. There exists an approximating
sequence (ay), in Dy for x. The statement u << x is equivalent to the
statement dn € N. u < a,, which is semidecidable because < restricted to Dy
is semidecidable by assumption. =

6 Constructions and examples

6.1 Products

Given posets P and (), we order P x () component-wise by
(z,y) < (@y) &= z<a'Ay<y,
where z,2’ € P and y,vy’ € Q. It follows that

(r,y) << (2',y) = << Ny<y . (6)
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Indeed, if z << 2’ and y << ¢ and (2/,y') < \/,,(an,bn) then z < a,, and
y < by, for some m,n € N because < and \/' are computed component-wise.
Then (z,y) < (ag, br) where k = max(m,n). The converse is similarly easy
to check.

If D and F are predomains then the cartesian product D x FE is also a
predomain and the projection maps are continuous. Furthermore, using (6)
we can show that if Dy and Ey are bases for D and FE, respectively, then
Dy x Ey is a base for D x E. It is easily checked that D x F is a cusl
predomain if D and E are.

6.2 Flat domains

For any set A we define the flat domain A, as the ideal completion IdI(Ap)
of the set Ay = A + {undef}, ordered by

z<y < rx=undefVr=y.
A map f: A— B may be extended to a continuous map f, : A — B by

fr({an)n) = (bu)n

where b, = undef if a,, = undef and b, = f(a,) if a, € A. We say that A
and f| are liftings of A and f, respectively.

Our first application is the domain ¥ of semidecidable truth values, which
is the lifting of the singleton set, 3 = {0} . The smallest element of ¥ is
1 and is represented by a constant sequence of undef’s. The element T
represented by sequences that contain a 1 is the largest element of 3.

Proposition 6.1 A predicate ¢ on a set A is semidecidable if, and only if,
it is characterized by a map x : A — X, by which we mean that ¢(x) <~
x(z) =1, for all x € A.

Proof. Suppose ¢ is semidecidable. For each x € A there exist f : N — 2
such that ¢(x) <= IneN. f(n) = 1. Define the chain (a,), in {undef, 1}
by

R if 3k <n. f(k) =1,
n = undef otherwise.

and let x(z) = {(an)n. Now if ¢(x) holds then (a,), contains a 1, hence

x(z) = T. On the other hand, if x(x) = T then there is n € N such that

an =1, hence f(m) =1 for some m < n. We see that y characterizes ¢.
Conversely, suppose x : A — 3 characterizes ¢. For every x € A there is

a chain (ay,), such that x(z) = ((an))n. Then ¢(z) is equivalent to x(z) = T,

which in turn is equivalent to 3n €N .a, = 1, so we can take

{O if a,, = undef,

F =91 ofa, = 1.
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It is perhaps worth pointing out that {1,undef}, ordered as undef < 1,
is not an w-cpo and X does not coincide with it, unless we accept the non-
constructive Limited Principle of Omniscience.’

A second example is the domain of partial booleans B = 2. An element
of B is represented by a sequence bg, b1, bo, ...of basic elements, an initial
segment of which consists of undef’s, and as soon as a term b; equals 0 or
1, the subsequent terms are equal to it. The domain of partial booleans is
used for comparison of real numbers, see Section 7.

6.3 Examples of decidable predomain bases

We constructed flat domains A, ¥ and B as completions by ideals. We
would also like to show instances of simple predomain bases that we can
complete by rounded ideals. Surprisingly, existence of non-trivial such ex-
amples implies Markov Principle.

Proposition 6.2 Suppose B is a predomain base with decidable partial or-
der and x,y,z € B such that x <y << z. Then Markov Principle holds.

Proof. By x < y we mean x < y and x # y. Suppose (ay), is a sequence
of 0’s and 1’s not all of which are 0. We must show that ap = 1 for some
k € N. Define a chain (b,), in B by

by, =

z otherwise.

{w ifVk<n.ap=0,

Each b, is equal to z or z and not all of them equal to z. We claim that
z is the supremum of (b,),. Clearly, z is an upper bound for (b,),. If ¢ is
another upper bound and —(z < t) then z does not appear in (b,,), because
b, < t for all n € N. But this contradicts the fact that not all b, are x,
therefore z < t. This proves the claim. Because y << z = \/, b, there exists
n € N such that y < b,. Now z < y < b, implies b, = z, hence a; = 1 for
some k < n. n

If Markov Principle holds, examples of predomains bases are easily obtained.

Proposition 6.3 If Markov Principle holds, a flat domain A | is continu-
ous and A + {undef} is its base.

Proof. We just need to show that << z for every x € A + {undef}. If
x = undef this is obvious. For the other case, suppose € A and < \/', yn.
Not all of y,, are undef, otherwise we would have = undef. By Markov
principle there exists m € N such that y,, € A. Because = and y,, are both
bounded by \/, y» we see that = yp, = \/, yn. m

The principle states that every infinite binary sequence is either all zeroes or it contains
a one [6]. Its computational power is that of a Halting Oracle.
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Lemma 6.4 Suppose P is a poset with decidable order and (x,), a chain
with a supremum such that x, < \/'xy for all n € N. If Markov Principle
holds then P 1is infinite.

Proof. Consider any n € N. If x, = x,, for all m > n then z, <
V' ;pZm = Zn, a contradiction. By Markov Principle and Number Choice
we obtain a function ¢ : N — N such that z, < z., for all n € N. The
sequence o, Te(0)s Le(c(0))s - - - 1 strictly increasing, hence P is infinite. =

Proposition 6.5 If Markov Principle holds then a finite poset with decid-
able order is a predomain base in which << coincides with <.

Proof. Let P be a finite poset with decidable order. It suffices to show
that every « € P is compact. Suppose (yy ) is a chain such that < \/, y.
By Lemma 6.4 it is not the case that y, < \/,yx for all n € N. By Markov
Principle there exists n € N such that v, = \/,yx, therefore x < yp,. =

We still have not exhibited any predomain bases whose rounded ideal
completion differs from the ideal completion. It is time we proceed to our
main example, the interval domain.

7 The interval domain and real numbers

Henceforth we assume Markov Principle, as most of the following construc-
tions rely on it. We quickly review our main objects of interest are the real
numbers and the interval domain.

Real numbers. Thereals R are characterized as a Cauchy-complete Archi-
medean ordered field. Because Number Choice is valid, the constructions
of real numbers by Dedekind cuts and by Cauchy sequences agree. For ev-
ery real number x € R there exists a sequence of nested intervals [pg, go] 2
[p1,q1] 2 - -+ such that p, <z < g, for all n € N and

Ve>0.dneN.q, —pp, <e€. (7)

The endpoints p,, g, can be chosen to be rationals, or elements of any
dense subset of R with decidable order. Every sequence of nested inter-
vals [po, qo] 2 [p1,q1] 2 -+ satisfying (7) determines a unique z € R such
that x € [pp,q,] for all n € N, namely z is the limit of Cauchy sequence

(pn)n'
Markov Principle allows us to reformulate (7) as the ——-stable formula

Ve>0.((VneN.g, —pp>¢€) = €=0) . (8)
The implication from (7) to (8) is an easy exercise. For the converse, sup-
pose (8) holds and let € > 0. By Markov Principle it suffices to show
“VneN.g, —pp > € if VneN.g, — p, > € then (8) implies € = 0, which
contradicts € > 0.
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Lower and upper reals. In close relation to the real numbers are the
lower reals R.. These are constructed either by lower Dedekind cuts or by
bounded strictly increasing rational sequences py < p1 < pn < ---. With
a slight abuse of notation we denote the lower real represented by such a
sequence by sup,, pn,. We define a partial order < on R by

SUp,, Pn < SUpP,, ¢m < VYneN.dmeN.p, < qpn .

This also makes it clear that (py), and (g, ), represent the same lower real
when each p,, is below some ¢,,, and vice versa.

While classically the lower reals are isomorphic to the reals, construc-
tively we can only prove that the reals form a subspace of the lower reals,
using the fact that every real is the supremum of a strictly increasing ratio-
nal sequence. Consequently, we must be careful with arithmetic on R.. We
shall only need addition, defined by

Sup,, Pn + SUpP,, ¢n = SUP, (Pn + qn) -

It is an associative and commutative operation with the neutral element
0 = sup,(—27"). Even though we cannot show constructively that R.
forms an additive group, there is still a cancellation law.

Proposition 7.1 Forallz,y,z € R, ife+y < x4z theny < z. Therefore,
T+y=2x+z impliesy = z.

Proof. Suppose x = sup,, pn, ¥ = SUp,, ¢n, and z = sup,, 7, and z +y <
x + z. Consider any n € N. We need to show that ¢, < r, for some
m € N. By Markov Principle it suffices to show that -Vm eN.r,, < q¢,.
So suppose 1, < qp for all m € N. Let € = gn+1 — ¢n. We claim that for
every k € N there exist k', k” > k such that p — ppr > €. Let k € N be
given. Because x = sup; px+; and z + y < x + 2, there exists m € N such

that print1 + @nr1 < Prtm + Tm, hence gur1 — T < Pt — Prtnt1 and

€=Gn+1 — qn < qn+1 — Tm < Pk+m — Pktn+1 -

By taking k¥’ = k +m and k” = k + n + 1 we see that the claim holds. But
the claim contradicts the assumption that (p,, ), is bounded, which concludes
the proof. [

In fact, the “negation” of x = sup,, p,, is the upper real —x = sup,,(—pp)-
The upper reals R~ are formed just like R, except that strictly decreasing
bounded sequences are used. Thus, even though we cannot subtract lower
reals from each other, we may subtract an upper real from a lower one, or
vice versa.

If £ = sup,, p,, is a lower and y = inf,, ¢, an upper real, we define x <y
to mean that every p,, is below every ¢,,, and y < x that some g, is below
some py,.
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The interval domain. In classical accounts of domain theory the interval
domain is defined as the poset whose elements are closed intervals [z, y] with
real endpoints x,y € R, ordered by reverse inclusion. This is not a good
constructive definition because the resulting poset fails to be an w-cpo. The
trouble is that a chain [zg,y0] 2 [z1,%1] 2 --- has a supremum only if the
supremum of (z,), and the infimum of (y,), exist. However, knowing just
that (z,)y is a bounded monotone sequence is not enough to conclude that
it has a supremum, unless we assume the Limited Principle of Omniscience.
We shall see below that the endpoints of intervals must be lower and upper
reals.

We construct the interval domain as the rounded ideal completion of a
suitable predomain base. Let D C R be a subring of R such that 1/2 € D
and < restricted to D is decidable. Such a ring is dense in R and contains the
integers. The smallest example is the ring of dyadic rationals D = {a/2* |
a,k € Z}. The fields of rational and algebraic numbers are examples, too.
Define the set

ID={(p,¢) eDxD|p<q}+{L}.

For u = (p,q) we define u = p and © = ¢ and let C be a decidable partial
order on ID, defined by

uCv <= u=1V@u#lAv# Ll Au<v<v<7T).
Proposition 7.2 For all u,v € ID,

UKy <= u=1V@u#LAv#LAu<v<T

A

u) .

Proof. The case u = 1 is easy so we only consider v # 1 and v # 1.
Suppose u << v. Because \/, (v —27",7 + 27") = v there exists an n € N
such that v C (v — 27", 0+ 27"), therefore

u<v—2""<v<v<v+2"<u.

Conversely, suppose u < v < ¥ < u and v < \/' wy,. Let t = \/, w,. It
is not hard to check that ¢ is the supremum of (w,,), in D. Because u is
strictly smaller than the supremum t of (w,,),, by Markov Principle there
exists n € N such that u < w,,. Similarly, there exists m € N such that
W, < U, and then u C Wyax(m,n)- =

Corollary 7.3 The poset ID is a predomain base.

Proof. An approximating chain for u € ID is ((u — 27", u+27")),. =
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The interval domain IR is the continuous completion of ID. Concretely,
the construction IR = ID is suitable for implementation, while for proving
theorems it is sometimes more convenient to take IR = RIdI(ID).

For every z € IR there is a <<-chain (uy), in ID such that x = \/ e(uy),
where e : ID — IR is the embedding of the base. If x # | we define
z = sup,, u, and T = inf,, w,. The values x and Z are independent of the
choice of approximating sequence (uy,),. Conversely, any a € R. and b € R
satisfying a < b determine a unique x € IR such that x = a and T = b. Thus
IR\ {L} is isomorphic to the set {(a,b) € Rc x Ry | a < b}.

Every z € IR determines the subset of R

veR|z# 1L = z2<y<7},

which can be thought of as an interval whose left endpoint is the lower
real  and the right endpoint is the upper real . Because of this we write
x = [z, 7] and call the elements of IR intervals, and those that are different
from L proper intervals. It is convenient to write [z,7] C [y,7] for y E x
and u € [z,7] for x # L = z <u < 7. If z and y are proper intervals,
x E y is equivalent to z <y <y < 7.

The width of a proper interval [z, 7] is the upper real w(z) = T — z.
We do not assign a width to L, and whenever we speak of the width of an
interval we tacitly assume it proper.

Lemma 7.4 For proper intervals x and y:
1. if x Cy then w(y) < w(zx), and
2. ifx Ty and w(x) = w(y) then = =y.

Proof. The first statement follows directly from the fact that x C y is
the same as x < y <7 < T. For the second statement, observe that y < T
implies 7 —z < T —z = w(z) = w(y) = 7 — y, therefore y < z by the
cancellation law. The proof of T < 7 is analogous. a ]

Proposition 7.5 An interval has zero width if, and only if, it is a maximal
element of IR.

Proof. If z,y € IR are proper, z C y, and w(z) = 0 then the first part
of Lemma 7.4 implies w(y) = 0, and then the second part implies © = y.
Therefore, if w(z) = 0 then x is maximal.

Conversely, suppose z € IR is maximal. Clearly, it is a proper interval so
there exists an approximating sequence (uy), for x such that L # ug. By
Markov Principle w(z) = 0 follows from ¥k € N.=(w(x) > 27%), which we
prove. Suppose w(z) > 27% and let qo, ..., ¢, € D be a subdivision of uy,
namely

Ug=q <q1 << gm=T1gp,
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such that gi41 — ¢ < 2751, The interval = cannot contain any of the p;’s
because p; € r and maximality of x would imply = = [p;,p;] and 27%F <
w(x) = p; — p; = 0, which is nonsense. By Markov Principle, for each
i =20,...,m there is n; € N such that p; € u,,. Let N = max(ng,...,nm).
Because p; & u,, T upy the interval ux does not contain any p;’s. But this
cannot be the case, as the width of uy is at least twice as large as the gap
between two consecutive p;’s. =

We can now identify the maximal elements of IR as the real numbers,
up to isomorphism. Every real a € R determines a maximal interval [a, a],
where a plays the role of a lower (upper) real at the left (right) endpoint.
Conversely, if the supremum of an approximating sequence (uy,),, is maximal
and u, # L for all n € N, then (u,), satisfies (8) because the width of its
supremum is zero. There is then a unique z € R such that = € u, for all
n € N.

We next describe how to compute with reals in view of the fact that R
is a subspace of IR. The plan is to extend maps on R to continuous maps on
IR, preferably in such a way that the extensions make sense on their own.
Because IR with base ID satisfies the conditions of Proposition 4.2, such
extensions will have representations that we can actually use to compute
the original maps. In this section we consider linear order and limits of
Cauchy sequences. Basic arithmetic and general real functions are the topic
of Section 8.

Comparison functions. The strict order relation < on R is semidecid-
able. By Proposition 6.1 it is characterized by a map less : R xR — X
which maps (z,y) to T when x < y and to L when y < z. We can extend it
to a map less : IRXIR — X so that less(z,y) = T if, and only if, T < y. A
more useful version of comparison function is cmp : IR x IR — B such that:

1. cmp(z,y) =0if T <y,
2. cmp(x,y) =1ify < z,
3. cmp(z,y) = L if x and y are consistent.

Note that this is not a definition of cmp, because we may not be able to
constructively decide which of the three cases holds. Essentially the same
definition of a map c: ID x ID — {0, 1, undef},

0 ifu <,
c(u,v) =<1 if 7 < u,

undef otherwise,

is valid because the base ID has decidable order. We then define
Cmp(\/\nun’ vnvn) = \/\nc(u’fh vn)‘
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The map c is actually used in Era.

Limits of Cauchy sequences. We would like to compute the limit of a
Cauchy sequence as the supremum of a sequence of consistent intervals, as
described in Section 3.6.

We say that a real sequence (ry,), is a remainder sequence for a real
sequence (ay), when m > n implies |a,, — ap| < ry, for all m,n € N. The
sequence (ay)n converges if there are arbitrarily small remainders, i.e., for
every € > 0 there is n € N such that r, < e. By Markov Principle, this
condition is equivalent to the ——-stable proposition

Ve>0.(VkeN.ry>e€) = e=0) . 9)

As the input for computation of the limit of a sequence we take a real
sequence (an), with a remainder sequence (7,)y satisfying (9). From this
we may form the sequence of proper intervals z,, = [ay,, — 7y, an + 7] Which
are consistent because a; — a; < |a; — a;| < max(r;,r;) < r; + r; implies
that every left endpoint a; — r; is below every right endpoint a; 4 ;. We
described the procedure for computing the supremum y =/, =, of such a
chain in Section 3.6. Because w(y) < w(x,) = 2r, for all n € N and (r,),
satisfies (9), w(y) = 0 so that y is a maximal element of IR. It is easily
checked that y is the limit of (ay),. Observe that we can compute y even if
(rn)n does not satisfy (9), except that in this case y need not be maximal.
In the implementation we require (r,,), to be a sequence in D which speeds
up the computation, and nothing is gained by allowing r,’s to be real.

8 Extensions of real functions

Every continuous map IR? — IR has a representation because the conditions
of Proposition 4.2 are satisfied. This gives us a way of computing with a
real map RY — R, as long as we can extend it continuously to the interval
domain. The theoretical question is which real maps can be so extended,
and the practical one is how to obtain concrete representations for them.
These are the topics of the present section.

Throughout we consider a multivariate real map defined on a subset
of § C R%. This covers most common functions such as basic arithmetic,
including division, and elementary functions. An element a € IR? all of
whose components are proper intervals is called a proper box. We identify it
with the set

{reRY|Vie{l,...,d}.a; <z <G},

and write x € a instead of a C z for x € R". The width w(a) of a proper
box is the maximum of the widths of its components.
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Lemma 8.1 Suppose f : S — R is a map defined on S C R". Then [ has
a continuous extension [ : IR™ — IR if, and only if, there exists a monotone
map g : ID™ — IR such that:

1. for allxz € S and a € ID", if x € a then f(x) € g(a), and

2. if a chain (ap), in ID" converges to x € S then \/, g(an) is a real
number, i.e., a maximal element of IR.

Proof. If f has a continuous extension f, we may simply take ¢ to be the
restriction of f to ID™. For the converse, suppose g t ID" — IR is monotone
and satisfies the stated conditions. Define the map f : IR" — IR by

?((an>n) =\, 9(an) .

This definition is the same as the definition of continuous extension in Propo-
sition 3.7, except that in the present situation g need not be continuous.
Nevertheless, f is still well defined and continuous, as was already remarked
in the paragraph following the proof of Proposition 3.7. We just need to
check that f coincides with f. If x = (a,), € S then x € a,, hence by the
first condition g(a,) C f(z). Therefore f(z) = \/,g(an) C f(z) and then
by the second condition f(x) is maximal, which implies f(z) = f(z). ]
It is tempting to think that f from the previous lemma must be bounded
on closed intervals if the corresponding g exists. But there is a counterexam-
ple in the effective topos [10], because in it there exists a continuous real map
which is unbounded on a closed interval [16], and Ulrich Berger [5] showed
that every real map has a continuous extension to the interval domain.®
Lemma 8.1 is not very deep, but it allows us to easily cover the common
cases. A basic open box in R? determined by a proper box a € ID¢ is the

set a={z eRY|Vie{l,...,n}.q; < x; <@}

Proposition 8.2 Suppose S CR" is a countable union of basic open boxes.
If f+ S — R is uniformly continuous on every closed box contained in S
then it has an extension f :IR™ — IR.

Proof. Let (by)r be a sequence in ID™ such that S = |J,,cybn. Define
h:ID" x N — IR by

h(a,n) [minge, f(2), maxzeq f(2)] if Im <n.b, K a,
a,n) =
uE otherwise.

The map h is well defined because b; << a implies that f(z) is defined for
every x € a, and since f is uniformly continuous it has the minimum and the

5To be precise, Berger’s result shows that maps can be extended to the algebraic interval
domain. This does not present a problem because the interval domains is a continuous
retract of its algebraic variant, with the retraction-section preserving the real numbers.
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maximum on the closed and totally bounded set a. Now define g : ID? — IR
by
g(a) = \/\nh(a’n) :

Let us verify that g satisfies the conditions of Lemma 8.1. Suppose x € 5,
a € IDY and = € a. Then h(a,n) C f(z) for all n € N, therefore g(a) =
\/,,h(a,n) C f(x), which is the first condition. If \/, a, = « € S then, since
z € by for some k € N, for sufficiently large n we have a, C S. Because f
is continuous at x the width of g(a,) can be made as small as desired by
sufficiently increasing n. Therefore, \/', g(ay) is maximal. (]

Corollary 8.3 Suppose S C R? is a uniformly continuous retract of a
countable union of basic open bozxes. If f : S — R is uniformly continu-
ous on every intersection S Na with a closed proper box a € IR? then it has
a continuous extension f : IR? — IR.

Proof. Let T C R? be a countable union of basic open boxes and r : T —
S a uniformly continuous retraction, i.e., r(z) = z for x € S. If we apply
Proposition 8.2 to the map for: T — R we get the desired extension. =

Proposition 8.2 and Corollary 8.3 ensure that basic elementary functions
have continuous extensions to the interval domain. The former takes care of
+, —, X, /, trigonometric, logarithmic, and exponential functions, and the
latter of roots, inverse trigonometric functions, and more. In fact, construc-
tively we cannot exhibit a map R™ — R which fails to satisfy Proposition 8.2.

Realizers for Proposition 8.2, Corollary 8.3, and Proposition 4.2 comprise
a general procedure for computing a representation of a continuous extension
7+ IR? — IR from realizers for f : S — R and its uniform continuity on closed
boxes. However, such a procedure is extremely inefficient. In practice we
start with a representation of a continuous f : IR? — IR which coincides
with a desired f : RY — R on maximal elements of IR?.

It may sound surprising, but already the identity map idg : R — R
has a computationally useful representation, called normalization. A proper
basic interval [a,a] whose endpoints are dyadic rationals a = my - 2°! and
a = my - 2°% takes approximately logy [mi| 4 logy |e1] + logy [ma| + logs |e2]
bits of memory. In practice the exponents e; and ey never exceed a fixed
size, say 64 bits, but the size of mantissas m; and mo can quickly grow
large. The normalization operation norm : ID x N — ID takes ([a,a],n) to
an interval [b, b] such that b and b have at most n-bit mantissas and b C a.
For large enough n we have a = b, which means that norm is a representation
in the sense of Definition 4.1. It represents none other than the identity map
idjr. Thus, by composing with norm we can always sacrifice a little bit of
precision for better space and time complexity.

Addition, subtraction and multiplication are examples of maps f : R x
R — R which restrict to D x D — D and are monotone in each argument,
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by which we mean that z; < x < x5 and y; < y < ys implies

min(f(xlvy)a f(l??y)) < f(xvy) < max(f(:vl,y), f(ﬂfQ,y))

and
min(f(z,y1), f(z,y2)) < f(x,y) < max(f(z,y1), f(7,y2)) -

In this case an explicitly given representation of an extension f : IRXIR — IR
is the map fo : ID x ID x N — ID defined by fo([a,b], [c,d]) = [m, M] where

m= min(f(av C)a f(av d)a f(bv C), f(b7 d)) )
M = max(f(a,c), f(a,d), f(b,c), f(b,d)) .

An optimized algorithm does not actually compute all four values f(a,c),
fla,d), f(b,c), and f(b,d), but rather determines the smallest and the
largest directly. In the case of 4+, —, and x we get the usual interval arith-
metic operations, e.g., [a,b] + [c,d] = [a+ b, c+ d]. We may further compose
these with the normalization function norm to obtain representations that
save space.

Because D may not be a subfield of R, division may not restrict to a
map D x (D\ {0}) — D. However, since D is dense in R, it has approzimate
division which computes arbitrarily good approximations of quotients. This
suffices for a representation of division as an operation on R.

Lastly, let us describe a representation of a typical elementary function.
A monotone function, let us take exp, is represented by amap e : IDxN — ID
that takes ([a, @], n) to [b, b] such that exp(a) —27" < b < exp(a) < exp(a) <
b < exp(@) + 27™. Numerical libraries such as MPFR [9], GMP [8], and
Numerix [14] have readily available routines that compute b from a.

A piece-wise monotone function such as sin is represented by a map
s :ID x N — ID that computes an output interval from ([a,a],n) in much
the same way as e above, except that it first needs to determine how [a,a]
is related to piece-wise monotonicity of sin. Once again, numerical libraries
are able to perform these tasks efficiently, so we omit details.

9 Discussion

In this paper we focused on exact real arithmetic within the framework
of domain theory. In particular, the interval domain IR was our primary
datatype, while the reals R were viewed as a subspace of IR. We insisted
that maps R? — R be implemented via their domain-theoretic extensions
IRY — IR.

It was already observed by Norbert Miieller, Branimir Lambov, and
others that one may “sacrifice” the interval domain, or domain theory alto-
gether, to further improve performance of exact real arithmetic. We discuss
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two such options which we would like to understand better from the domain-
theoretic point of view.

First, we may replace the interval domain with a mathematically less
elegant, but practically more efficient domain. Too see how this is done,
consider an approximating interval a = [a,a] € ID. Typically, the dyadic
rationals ¢ and @ will take similar amounts of memory, say n bits for each.
If the intervals serve only as approximations to real numbers, we do not
particularly care about the exact values of their endpoints. In this case it
is better to use lean intervals, i.e., those of the form [c — r,¢ + r| where
the center c still takes n bits, but the mantissa of r has a fixed small size,
say 32 bits. This saves not only half the space compared to [a,a], but
also makes the basic arithmetic functions faster. For example, addition
of [e1 — r1,e1 + 1] and [ca — r9,ca + 73] only requires one long addition
c1 + co and one short one r1 + 19, as opposed to two long additions in case of
[ay,@1]+[by, by] = [ay +by,@2+b2]. The lean intervals form a predomain base
whose continuous completion can be used in place of the interval domain
because the maximal elements are (isomorphic to) the reals R.

Second, we may relax the notion of approximation and allow an element
x € D of a continuous domain D to be represented by a possibly non-
monotone sequence (ay), of elements from a base Dy C D. The question is
what conditions (an), should satisfy. Clearly, we would expect =/, an,
but this is not enough because continuous maps do not generally preserve
non-directed joins. We also need to know when a sequence (ay), in Dy,
without a given z, is a representing sequence. Assuming Dy and D are
cusls, the correct condition seems to be that, for all n € N, u € Dg, and a
strictly increasing sequence (m;);en of numbers,

u<Ka, = FieN.u<<apy,. (10)

Essentially, this says that (a,), converges in the Scott topology on D, but is
phrased carefully so that the corresponding realizers are trivial when Markov
principle holds and << is semidecidable on Dy. While we could well represent
the elements of D with such sequences, it is not clear how this would interact
with representations of continuous maps.

Too see how non-monotone approximating sequences help improve per-
formance, consider again a lean interval [c — r,c + r]. If r is large, it makes
little sense to keep a very precise c. By increasing the least significant bit of
we get a slightly larger 7’ and room for rounding ¢ to a nearby value ¢’ which
uses fewer bits. Even though the resulting map [c—r, c+7r] — [/ =7/, +7] is
not monotone we can safely apply it to an approximating sequence for a real
number (but not to an approximating sequence for an interval), provided we
allow non-monotone sequences. It remains to be seen whether these ideas,
which are used in practice, have a domain-theoretic explanation.
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