
RZ: a Tool for Bringing
Constructive and Computable
Mathematics Closer to Practice

Andrej Bauer Chris Stone

Department of Mathematics and Physics
University of Ljubljana, Slovenia

Computer Science Department
Harvey Mudd College, USA

CiE 2007, Siena, June 2007

Theory and practice
I The theory of constructive & computable mathematics:

I Structures from analysis and topology are studied.
I Informal descriptions of algorithms via Turing machines.
I Deals mostly with: “What can be computed?”
I Efficiency of computation is desired.

I Practice of computing:
I Emphasis on discrete mathematics.
I Implementations of practical data structures and algorithms.
I Deals with: “How fast can we compute?”
I Speed is essential.

Can we bring constructive math closer to practice?
I Sacrificing performance for correctness is unacceptable.

I Currently programs extracted from formal proofs are
inefficient.

I Programmers should be free to implement efficient code.
I Provide support for proving correctness of implementation.

I It is tricky to correctly implement structures from analysis
and topology.

I We should link mathematical models with practical
programming.

I Give programmers tools that automate tasks.

Our contribution
I A theory of representations based on Objective Caml.

I We replaced Turing machines (type I and II) with a
real-world programming language.

I Representations can actually be implemented.
I Other programming languages could be used.

I But we do not work with representations directly.
I Cumbersome and generally too low a level of abstraction to

do mathematics.
I How do we know which representation of a given set is the

right one?
I Instead, we use representations as a model in which to

interpret constructive mathematics.
I Use Kleene’s realizability interpretation adapted to OCaml.
I The translation of a constructive theory is a specification

describing how to implement it in OCaml.

I Most importantly, we built a tool RZ which automatically
translates constructive logic to representations.

Representations
I Representations are a successful idea in computable

mathematics:
I numbered sets,
I Type Two Effectivity representations,
I domain-theoretic representations,
I equilogical spaces.

I Phrased in various forms:
I partial surjections,
I partial equivalence relations,
I modest sets,
I assemblies,
I multi-valued partial surjections,
I realizability relations.

I Can be described to programmers without much trouble.

Representations in Objective Caml
I A representation δ : t→ X consists of:

I represented set X
I representing datatype t
I partial surjection δ : t→ X

I Define the partial equivalence relation (per) ≈ on t by

u ≈ v ⇐⇒ u, v ∈ dom(δ) ∧ δ(u) = δ(v) .

I We may recover δ : t→ X from (t,≈) up to isomorphism:

‖t‖ = {u ∈ t | u ≈ u}
X ∼= ‖t‖/≈, dom(δ) = ‖t‖, δ(u) = [u]≈

I Note: δ and ≈ are not required to be computable, they live
“outside” the programming language.

Constructions of representations
Representations, together with a suitable notion of morphisms,
form a rich category with many constructions:

I products A× B and disjoint sums A + B,
I function spaces A→ B,
I dependent sums Σi∈AB(i) and products Πi∈AB(i),
I subsets {x : A | φ(x)},
I quotients A/ρ,
I but no powersets.

This is a convenient “toolbox” for constructive mathematics.

Realizability interpretation of logic
I A formalization of Brouwer-Heyting-Kolmogorov

interpretation of intuitionistic logic.
I Validity of a proposition φ is witnessed by a realizer:

r φ “r is computational witness of φ”

I Note: r could be any OCaml value, need not correspond to
a proof under the Curry-Howard correspondence.

I The type of r and are defined inductively on the
structure of φ, e.g.:

〈r1, r2〉 φ1 ∧ φ2 iff r1 φ1 and r2 φ2

r φ =⇒ ψ iff whenever s φ then r(s) ψ

· · · · · ·

RZ
I Input: one or more theories
I Output: OCaml module type specifications
I Translation has several phases:

1. Type-checking: does the input make sense?
2. Translation via realizability interpretation
3. Thinning: remove computationally irrelevant realizers
4. Optimization: perform further simplifications to output
5. Phase splitting (will not explain here, read the paper)

Input
A theory consists of declarations, definitions, and axioms.

Definition Ab :=
thy

Parameter t : Set.
Parameter zero : t.
Parameter neg : t → t.
Parameter add : t * t → t.
Definition sub (u : t) (v : t) := add(u, neg v).
Axiom zero_neutral: ∀ u : t, add(zero,u) = zero.
Axiom neg_inverse: ∀ u : t, add(u,neg u) = zero.
Axiom add_assoc:
∀ u v w : t, add(add(u,v),w) = add(u,add(v,w)).
Axiom abelian: ∀ u v : t, add(u,v) = add(v,u).

end.

Theories can be parametrized, e.g., the theory of a vector space
parametrized by a field, VectorSpace(F:Field).

Translation and output
I Consider the input:

Axiom lpo : ∀ f : nat → nat,
[‘zero: ∀ n : nat, f n = zero] ∨
[‘nonzero: ¬ (∀ n : nat, f n = zero)].

I In the output we get a value declaration and an assertion:
val lpo : (nat → nat) → [‘zero | ‘nonzero]
(** assertion lpo :
∀ (f:‖nat → nat‖),

(match lpo f with
‘zero ⇒ ∀ (n:‖nat‖), f n ≈nat zero

| ‘nonzero ⇒ ¬ (∀ (n:‖nat‖), f n ≈nat zero))

*)

I The value lpo is the computational content of the axiom.
I An implementation of lpo must satisfy the assertion.
I Assertion is free of computational content, thus its

constructive and classical readings agree.

Example: “All functions are continuous”
I Input:

Axiom modulus:
∀ f : (nat → nat) → nat, ∀ a : nat → nat,
∃ k : nat, ∀ b : nat → nat,
(∀ m : nat, m ≤ k → a m = b m) → f a = f b.

I RZ output:
val modulus : ((nat → nat) → nat) → (nat → nat) → nat
(** Assertion modulus =
∀ (f:‖(nat → nat) → nat‖, a:‖nat → nat‖),
let p = modulus f a in p : ‖nat‖ ∧
(∀ (b:‖nat → nat‖),

(∀ (m:‖nat‖), m ≤ p → a m ≈nat b m) →
f a ≈nat f b) *)

I Implementation:
let modulus f a =

let p = ref 0 in
let a’ n = (p := max !p n; a n) in

ignore (f a’) ; !p

Remarks
I We have implemented real numbers using RZ:

I see Bauer & Kavkler at CCA 2007.
I We would like to implement more advanced structures:

I manifolds, Hilbert spaces, analytic functions, . . .
I we expect these to be painfully slow at first.

I Even if you do not want to implement anything, you can
use RZ to automatically compute representations from
constructive definitions.

I It would be interesting to connect RZ with a tool that
allows formal verification of correctness, such as Coq.

