
Implementing real numbers with RZ

Andrej Bauer Iztok Kavkler

Faculty of mathematics and physics
University of Ljubljana

Slovenia

18 June 2007

1 / 14

Introduction

Currently, there are two kinds of computable real number
implementations.

1 The implementations strictly adhering to the theory, e.g.
extracted from formalizations of reals in Coq. They tend to be
rather inefficient.

2 Fast implementations based on interval arithmetic, but with
only informal theoretical background.

Our goal is to get the best of both: provide real arithmetic that is
both efficient and easily formalizable.

1 Extract specification from the theory—automatically, if
possible.

2 Leave the programmer some freedom to produce fast
implementation.

2 / 14

RZ

Converts theories of constructive mathematics to OCaml
module type specifications.
Based on the realizability implementation of logic.

The computational content is identified and translated to types
and function prototypes.
The code is annotated with assertions (that can be proved in
classical logic).
Allows any implementation, as long as it follows the produced
specification—it is possible to use OCaml to its full potential.

3 / 14

RZ example

The statement that every complex number has a square root can
be expressed in RZ as

Axiom sqrt: ∀z:complex, ∃w:complex, z = mul w w.

It produces the following OCaml specification.

val sqrt : complex → complex
(** assertion sqrt : ∀(z:‖complex‖),
let p=sqrt z in p:‖complex‖ ∧ z≈complex mul p p *)

There is no requirement for extensionality—a multi-valued
function realizes the above specification.

4 / 14

Constructive and computable reals

Usually, real numbers are represented by sequences {rn} with
rapid Cauchy convergence property

|rn− rn+1|< 2−n. (1)

The corresponding OCaml implementation is a function
r: nat -> rational with property (1).
The problem: every operation has to preserve rapid
convergence which usually results in estimates that
overshoot the precision. We end up computing much more
than is needed.
Our implementation via the interval domain does not have
this drawback.

5 / 14

Overview of the implementation

We formally axiomatized the following theories:
1 the ring of integers (with natural numbers as subset),
2 the ring of dyadic rationals,
3 the poset of intervals with dyadic endpoints,
4 the interval domain,
5 the field of reals.

These were translated by RZ to OCaml specifications which were
implemented by hand.

6 / 14

Integers

Integers are defined as a decidable ordered ring with unit
whose nonnegative elements are isomorphic to natural
numbers (satisfy the axiom of induction).
For implementation, we use fast integer library Numerix (or
GMP).

7 / 14

Dyadic rationals

Precise rational operations are costly: the numerator and the
denominator grow rapidly with every operation.
As most other implementations, we use dyadic rationals

D =
{

m ·2−k ∣∣m ∈ Z, k ∈ N
}
.

Axiomatization. A dyadic ring is a decidable Archimedean
ordered ring in which 2 is invertible.
Every dyadic ring admits approximate division.
In a dyadic ring, every element can be approximated by an
element of the form n ·2−k with the error at most 2−k .

8 / 14

Dyadic intervals

Axiomatization. A dyadic interval is an interval [p,q] with p, q
dyadic rationals.

Define order [p,q]v [p′,q′] as [p,q]⊇ [p′,q′].
We also adjoin the bottom element undefined.
Dyadic intervals form a conditional upper semilattice.
We axiomatize approximate interval arithmetic, which allows
us to trade precision for efficiency.

9 / 14

The interval domain

Axiomatization. The interval domain IR is the ω-chain completion
of the poset ID of dyadic intervals.

An element x ∈ IR is represented by a chain of dyadic
intervals

[p1,q1]v [p2,q2]v [p3,q3]v ·· ·

x can be thought of as the interval [a,b] where
a = suppi is a lower real
b = infqi is an upper real

Interval arithmetic operations on IR are defined as
continuous extensions of the corresponding approximate
operations on dyadic intervals.

10 / 14

Real numbers

Axiomatization. Real numbers form a Cauchy complete
Archimedean ordered field.
Implementation. Real numbers are the maximal elements of IR.

A real x ∈ IR is represented as a chain of dyadic intervals.
Crucial: no requirement on the speed of convergence.
Arithmetic operations are inherited from the interval domain.
Archimedean property is realized by a function
val approx_to: real → nat → dyadic

that finds approximations of order 2−n. Correctness depends
on Markov principle.

11 / 14

Limits

The completeness of the reals is witnessed by the function lim:

val lim: (nat→real) → (nat→real) → real

The parameters are the sequence of real numbers (an)n and the
sequence of Cauchy error bounds (rn)n.

rn ≥
∣∣ai −aj

∣∣ ∀i , j ≥ n

This formulation is equivalent but easier to use than the strict
Cauchy sequence version.

Lemma
Assume that rn ↘ 0 monotonously. Then the sequence (cn)n

cn =
∞∨

k=0

[
a(k)

n − r (k)
n ,a(k)

n + r (k)
n

]
(2)

is a chain in IR and the limit of (an)n is its supremum.

12 / 14

The Markov principle

Markov principle. A loop which does not diverge terminates.

A real number is represented as a chain of dyadic intervals
whose widths are not bounded away from 0.
We can always find arbitrarily good approximation by
unbounded search (equivalent to MP).
The unbounded search is costly as it makes the time
complexity of the program unpredictable. Therefore it is only
used in approx_to which we (so far) avoid in the
implementation of other functions.

13 / 14

Future directions

Improve performance and extend current implementation to a
useful library.
Axiomatize and implement other structures in analysis and
topology.

14 / 14

