Implementing real numbers with RZ

Andrej Bauer Iztok Kavkler

Faculty of mathematics and physics
University of Ljubljana
Slovenia

18 June 2007

1/14

Introduction

Currently, there are two kinds of computable real number
implementations.

@ The implementations strictly adhering to the theory, e.g.
extracted from formalizations of reals in Cog. They tend to be
rather inefficient.

©@ Fast implementations based on interval arithmetic, but with
only informal theoretical background.

Our goal is to get the best of both: provide real arithmetic that is
both efficient and easily formalizable.

@ Extract specification from the theory—automatically, if
possible.

@ Leave the programmer some freedom to produce fast
implementation.

2/14

@ Converts theories of constructive mathematics to OCaml
module type specifications.
@ Based on the realizability implementation of logic.
e The computational content is identified and translated to types
and function prototypes.
e The code is annotated with assertions (that can be proved in
classical logic).
e Allows any implementation, as long as it follows the produced
specification—it is possible to use OCaml to its full potential.

/14

RZ example

The statement that every complex number has a square root can
be expressed in RZ as

Axiom sqrt: Vz:complex, dw:complex, z = mul w w.
It produces the following OCaml specification.

val sgrt : complex — complex
(x* assertion sqgrt : V(z:|complex|),
let p=sqgrt z in p:|complex| A z®complexmMul P p *)

There is no requirement for extensionality—a multi-valued
function realizes the above specification.

4/14

Constructive and computable reals

Usually, real numbers are represented by sequences {r,} with
rapid Cauchy convergence property

|rn—Fhgq] <27 (1)

@ The corresponding OCaml implementation is a function
r: nat -> rational with property (1).

@ The problem: every operation has to preserve rapid
convergence which usually results in estimates that
overshoot the precision. We end up computing much more
than is needed.

@ Our implementation via the interval domain does not have
this drawback.

5/14

Overview of the implementation

We formally axiomatized the following theories:
@ the ring of integers (with natural numbers as subset),
@ the ring of dyadic rationals,
© the poset of intervals with dyadic endpoints,
© the interval domain,
@ the field of reals.

These were translated by RZ to OCaml specifications which were
implemented by hand.

6/14

@ Integers are defined as a decidable ordered ring with unit
whose nonnegative elements are isomorphic to natural
numbers (satisfy the axiom of induction).

@ For implementation, we use fast integer library Numerix (or
GMP).

7/14

Dyadic rationals

@ Precise rational operations are costly: the numerator and the
denominator grow rapidly with every operation.

@ As most other implementations, we use dyadic rationals

D={m-27%|meZ keN}.

@ Axiomatization. A dyadic ring is a decidable Archimedean
ordered ring in which 2 is invertible.

@ Every dyadic ring admits approximate division.

@ In a dyadic ring, every element can be approximated by an
element of the form n-2-% with the error at most 2.

8/14

Dyadic intervals

Axiomatization. A dyadic interval is an interval [p,] with p, g
dyadic rationals.

o Define order [p,q] C [p',q] as [p.q] 2 [0, q'].
@ We also adjoin the bottom element undefined.

@ Dyadic intervals form a conditional upper semilattice.

@ We axiomatize approximate interval arithmetic, which allows
us to trade precision for efficiency.

9/14

The interval domain

Axiomatization. The interval domain IR is the w-chain completion
of the poset ID of dyadic intervals.

@ An element x € IR is represented by a chain of dyadic
intervals

(o1, q1] C [p2,92] E [p3,G3] E -

@ x can be thought of as the interval [a, b] where
@ a=supp;is a lowerreal
e b=infq; is an upperreal
@ Interval arithmetic operations on IR are defined as
continuous extensions of the corresponding approximate
operations on dyadic intervals.

10/ 14

Real numbers

Axiomatization. Real numbers form a Cauchy complete
Archimedean ordered field.
Implementation. Real numbers are the maximal elements of IR.

@ Areal x € IR is represented as a chain of dyadic intervals.
Crucial: no requirement on the speed of convergence.

@ Arithmetic operations are inherited from the interval domain.

@ Archimedean property is realized by a function

val approx_to: real — nat — dyadic

that finds approximations of order 2-". Correctness depends
on Markov principle.

11 /14

Limits

The completeness of the reals is witnessed by the function lim:

val lim: (nat —real) — (nat—real) — real

The parameters are the sequence of real numbers (a,), and the
sequence of Cauchy error bounds (r,)n.

m>l|ai—al| Vij>n

This formulation is equivalent but easier to use than the strict
Cauchy sequence version.

Lemma
Assume that r, \, 0 monotonously. Then the sequence (cn)n

oo

cn="\ [a¥ —750,30 + 73] 2
k=0

is a chain in IR and the limit of (an)n is its supremum.

The Markov principle

Markov principle. A loop which does not diverge terminates.

@ A real number is represented as a chain of dyadic intervals
whose widths are not bounded away from O.

@ We can always find arbitrarily good approximation by
unbounded search (equivalent to MP).

@ The unbounded search is costly as it makes the time
complexity of the program unpredictable. Therefore it is only
used in approx_to which we (so far) avoid in the
implementation of other functions.

13 /14

Future directions

@ Improve performance and extend current implementation to a
useful library.

@ Axiomatize and implement other structures in analysis and
topology.

14/14

