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Overview

» Theme:
Explore the connections between synthetic topology
and topology induced by metric.

» Purpose:

Find sufficient conditions for the two topologies to
match when metric is nice enough (read: complete and
separable).

> Result:
Sufficient (in our setting) to assume this for NN,



The synthetic setting

» Work in a topos, assume number-number choice ACy .

» Every set (object) X is naturally equipped with an intrinsic
topology ¥X.

» > is a dominance (more details later).

» Reminder: In such a setting, all maps are continuous.
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Reminder: In such a setting, all maps are continuous.

Consider a set X with a metricd : X x X — R.

Say that X is metrized by d when the topology induced
by d matches the intrinsic topology ¥%.

v
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» But what should “induced topology” mean synthetically?



Topology induced by metric

» Consider a space X and a metricd : X x X — R.
» A (metric) ballis B(x,r) ={y € X | d(x,y) < r}.
» Classically:

U C X is open in the topology induced by d if and only
if U is a union of metric balls.



Topology induced by metric

» Consider a space X and a metricd : X x X — R.
> A (metric) ballis B(x,r) = {y € X | d(x,y) < r}.
» Classically:

U C X is open in the topology induced by d if and only
if U is a union of metric balls.

» Under mild assumptions, balls are intrinsically open,
consequently overt unions of balls are open.

» Synthetically, define:

U C X is metric open if and only if it is an overt union
of metric balls.

» Definition: (The topology of) a set X is metrized by d
when metric open sets coincide with open sets.



Connection between intrinsic and metric topology

» Typically, intrinsic topology is finer than metric topology.
» Example 1:

If ¥ = Q all subsets of R are open, but many are not
metric open for the Euclidean metric.

» We might blame Example 1 on unreasonable choice of %,
however:



Connection between intrinsic and metric topology

» Typically, intrinsic topology is finer than metric topology.
» Example 1:

If ¥ = Q all subsets of R are open, but many are not
metric open for the Euclidean metric.

» We might blame Example 1 on unreasonable choice of %,
however:

» Example 2:

In the effective topos, the usual 3 is very nice but there
still exist open subsets of R which are not metric open.

» Thus, rather than imposing conditions directly on ¥, we
take a different approach.



Transfer by metric open maps

» Definition: Amap f : (X,dx) — (Y,dy) is metric open
when it maps metric open subsets of X to metric open
subsets of Y.

» Proposition:
If X is metrized by dx and there exists a metric open
surjection f : (X,dx) — (Y,dy), then Y is metrized
by dy.

» Proof: Take U C Y open. As f is continuous, f 1 (U) is
open, hence metric open in X. Since f is a metric open
surjection, U = f(f~1(U)) is metric openin Y.



%N R,Q

» In addition to ACyp g we require:
» Y isadominance with 1, T € %,
» Nis overt.

» Observe:
» 3 is a lattice with countable \/ that distribute over finite A.
» Since N has decidable equality, it is discrete and Hausdorff.
» Dedekind and Cauchy reals coincide because of ACy .
» Relation < is open in R x R because N is overt.
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» Qis a decidable field. At least two metrics on Q:

de(r,s) = |r — s (Euclidean)
dp(r,s) = (if r = s then O else 1) (discrete)

Which is “better”?



%N R,Q

» In addition to ACyp g we require:

» Y isadominance with 1, T € %,
» Nis overt.

» Observe:

» 3 is a lattice with countable \/ that distribute over finite A.
» Since N has decidable equality, it is discrete and Hausdorff.
» Dedekind and Cauchy reals coincide because of ACq .

» Relation < is open in R x R because N is overt.

» Qis a decidable field. At least two metrics on Q:

de(r,s) = |r — s (Euclidean)
dp(r,s) = (if r = s then O else 1) (discrete)

Which is “better”?
» Topology induced by dr is strictly weaker than %2.
» Topology induced by dp is ©©. We prefer this one.



Complete separable metric spaces (CSM)

» Baire space N with comparison metric
de(a,B) =2 miny (oy7#05)

is the prototypical CSM.

» Spread Representation Theorem:
Every CSM is a metric continuous image of NV,

(The proof uses ACy.)

» Can we use the theorem to transfer metrizability of NV to
other CSMs?



Construction of surjective f : NN — X

» Unfortunately, the surjection f : N — X given by the
Spread Representation Theorem need not be metric open.

» The map f is constructed asf = gor

where 7 is a retraction.



Construction of surjective f : NN — X

» Unfortunately, the surjection f : N — X given by the
Spread Representation Theorem need not be metric open.

» The map f is constructed as f = gor

NN

where r is a retraction.
» The map g turns out to be a metric open surjection!
» But 7 need not be metric open ...

» To overcome this, we use the fact that (N¥, dc) is
ultrametric.



Retracts of ultrametric spaces

Proposition:

If Z is overt and metrized by an ultrametric then every

retract of Z is metrized in the induced metric.
Note: In an ultrametric space every point in a ball is its centre.
Proof: Given Y C Z with a retraction 7 : Z — Y, consider U € XY.
Then r=1(U) = ;¢ Bz(xi, €;) with I overt. The set

K={(,y) €IxY|ye€Bz(xi€)}

is overt and so

uUu=Yn 771(U) = Uiel YN Bz(xi, 6,‘) = U(i,y)eK YN Bz(xi, 6,‘) =
= U(i,y)eKYm Bz(y,€i) = U(i,y)eK By(y,€i) -



Putting all this together

Theorem:

If NN is metrized by dc then every CSM is metrized by its
metric (and the converse holds trivially).

In view of this, we suggest:

Axiom:

The topology of NN is induced by the comparison metric dc.



First consequences of the axiom

The axiom ensures a well behaved theory of CSMs.

» Up to topological equivalence, a set has at most one
complete separable metric (which then induces the
intrinsic topology).

» CSMs are overt.

» Continuity Principle: For a CSM X and metric Y, every
map f : X — Y is metric continuous.



First consequences of the axiom

The axiom ensures a well behaved theory of CSMs.

» Up to topological equivalence, a set has at most one
complete separable metric (which then induces the
intrinsic topology).

» CSMs are overt.

» Continuity Principle: For a CSM X and metric Y, every
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What can we say about more general spaces, e.g., Ty spaces?

» There is a surjection g : NN — 3N mapping balls to basic
opens for the Scott topology, provided one-point space is
countably based, i.e., ¥ = E(l). In this case:

» Scott’s principle: The topology of XV is the Scott topology.



Concluding remarks

» We used number choice. Can we avoid it?

» The axiom implies that the Cantor space 2" has the metric
topology. Does it also imply that 2" is (synthetically)
compact?



