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Overview

I Theme:
Explore the connections between synthetic topology
and topology induced by metric.

I Purpose:
Find sufficient conditions for the two topologies to
match when metric is nice enough (read: complete and
separable).

I Result:
Sufficient (in our setting) to assume this for NN.



The synthetic setting

I Work in a topos, assume number-number choice AC0,0.
I Every set (object) X is naturally equipped with an intrinsic

topology ΣX.
I Σ is a dominance (more details later).
I Reminder: In such a setting, all maps are continuous.

I Consider a set X with a metric d : X × X→ R.
I Say that X is metrized by d when the topology induced

by d matches the intrinsic topology ΣX.
I But what should “induced topology” mean synthetically?
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Topology induced by metric

I Consider a space X and a metric d : X × X→ R.
I A (metric) ball is B(x, r) = {y ∈ X | d(x, y) < r}.
I Classically:

U ⊆ X is open in the topology induced by d if and only
if U is a union of metric balls.

I Under mild assumptions, balls are intrinsically open,
consequently overt unions of balls are open.

I Synthetically, define:

U ⊆ X is metric open if and only if it is an overt union
of metric balls.

I Definition: (The topology of) a set X is metrized by d
when metric open sets coincide with open sets.



Topology induced by metric

I Consider a space X and a metric d : X × X→ R.
I A (metric) ball is B(x, r) = {y ∈ X | d(x, y) < r}.
I Classically:

U ⊆ X is open in the topology induced by d if and only
if U is a union of metric balls.

I Under mild assumptions, balls are intrinsically open,
consequently overt unions of balls are open.

I Synthetically, define:

U ⊆ X is metric open if and only if it is an overt union
of metric balls.

I Definition: (The topology of) a set X is metrized by d
when metric open sets coincide with open sets.



Connection between intrinsic and metric topology

I Typically, intrinsic topology is finer than metric topology.
I Example 1:

If Σ = Ω all subsets of R are open, but many are not
metric open for the Euclidean metric.

I We might blame Example 1 on unreasonable choice of Σ,
however:

I Example 2:
In the effective topos, the usual Σ is very nice but there
still exist open subsets of R which are not metric open.

I Thus, rather than imposing conditions directly on Σ, we
take a different approach.
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Transfer by metric open maps

I Definition: A map f : (X, dX)→ (Y, dY) is metric open
when it maps metric open subsets of X to metric open
subsets of Y.

I Proposition:
If X is metrized by dX and there exists a metric open
surjection f : (X, dX)→ (Y, dY), then Y is metrized
by dY.

I Proof: Take U ⊆ Y open. As f is continuous, f−1(U) is
open, hence metric open in X. Since f is a metric open
surjection, U = f (f−1(U)) is metric open in Y.



Σ, N, R, Q
I In addition to AC0,0 we require:

I Σ is a dominance with ⊥,> ∈ Σ,
I N is overt.

I Observe:
I Σ is a lattice with countable

∨
that distribute over finite ∧.

I Since N has decidable equality, it is discrete and Hausdorff.
I Dedekind and Cauchy reals coincide because of AC0,0.
I Relation < is open in R× R because N is overt.

I Q is a decidable field. At least two metrics on Q:

dE(r, s) = |r− s| (Euclidean)
dD(r, s) = (if r = s then 0 else 1) (discrete)

Which is “better”?
I Topology induced by dE is strictly weaker than ΣQ.
I Topology induced by dD is ΣQ. We prefer this one.
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Complete separable metric spaces (CSM)

I Baire space NN with comparison metric

dC(α, β) = 2−mink(αk 6=βk)

is the prototypical CSM.
I Spread Representation Theorem:

Every CSM is a metric continuous image of NN.

(The proof uses AC0,0.)
I Can we use the theorem to transfer metrizability of NN to

other CSMs?



Construction of surjective f : NN → X

I Unfortunately, the surjection f : NN → X given by the
Spread Representation Theorem need not be metric open.

I The map f is constructed as f = g ◦ r
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where r is a retraction.

I The map g turns out to be a metric open surjection!
I But r need not be metric open . . .
I To overcome this, we use the fact that (NN, dC) is

ultrametric.
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Retracts of ultrametric spaces

Proposition:

If Z is overt and metrized by an ultrametric then every
retract of Z is metrized in the induced metric.

Note: In an ultrametric space every point in a ball is its centre.

Proof: Given Y ⊆ Z with a retraction r : Z→ Y, consider U ∈ ΣY.
Then r−1(U) =

⋃
i∈I BZ(xi, εi) with I overt. The set

K = {(i, y) ∈ I × Y | y ∈ BZ(xi, εi)}

is overt and so

U = Y ∩ r−1(U) =
⋃

i∈I Y ∩ BZ(xi, εi) =
⋃

(i,y)∈K Y ∩ BZ(xi, εi) =

=
⋃

(i,y)∈K Y ∩ BZ(y, εi) =
⋃

(i,y)∈K BY(y, εi) .



Putting all this together

Theorem:
If NN is metrized by dC then every CSM is metrized by its
metric (and the converse holds trivially).

In view of this, we suggest:

Axiom:
The topology of NN is induced by the comparison metric dC.



First consequences of the axiom

The axiom ensures a well behaved theory of CSMs.
I Up to topological equivalence, a set has at most one

complete separable metric (which then induces the
intrinsic topology).

I CSMs are overt.
I Continuity Principle: For a CSM X and metric Y, every

map f : X→ Y is metric continuous.

What can we say about more general spaces, e.g., T0 spaces?
I There is a surjection q : NN → ΣN mapping balls to basic

opens for the Scott topology, provided one-point space is
countably based, i.e., Σ = Σ0

1. In this case:
I Scott’s principle: The topology of ΣN is the Scott topology.
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Concluding remarks

I We used number choice. Can we avoid it?

I The axiom implies that the Cantor space 2N has the metric
topology. Does it also imply that 2N is (synthetically)
compact?


