Metric Spaces in Synthetic Topology

Andrej Bauer Davorin Lešnik

Institute for Mathematics, Physics and Mechanics Ljubljana, Slovenia

3rd Workshop on Formal Topology May 2007, Padova, Italy

Overview

► Theme:

Explore the connections between synthetic topology and topology induced by metric.

▶ Purpose:

Find sufficient conditions for the two topologies to match when metric is nice enough (read: complete and separable).

► Result:

Sufficient (in our setting) to assume this for $\mathbb{N}^{\mathbb{N}}$.

The synthetic setting

- ▶ Work in a topos, assume number-number choice $AC_{0,0}$.
- ▶ Every set (object) X is naturally equipped with an intrinsic topology Σ^X .
- \triangleright Σ is a dominance (more details later).
- ▶ **Reminder:** In such a setting, all maps are continuous.

The synthetic setting

- ▶ Work in a topos, assume number-number choice $AC_{0,0}$.
- ▶ Every set (object) X is naturally equipped with an intrinsic topology Σ^X .
- \triangleright Σ is a dominance (more details later).
- ▶ Reminder: In such a setting, all maps are continuous.
- ▶ Consider a set *X* with a metric $d: X \times X \to \mathbb{R}$.
- Say that X is metrized by d when the topology induced by d matches the intrinsic topology Σ^X .
- ▶ But what should "induced topology" mean synthetically?

Topology induced by metric

- ▶ Consider a space *X* and a metric $d: X \times X \to \mathbb{R}$.
- ▶ A (metric) ball is $B(x,r) = \{y \in X \mid d(x,y) < r\}$.
- ► Classically:

 $U \subseteq X$ is open in the topology induced by d if and only if U is a union of metric balls.

Topology induced by metric

- ▶ Consider a space *X* and a metric $d: X \times X \rightarrow \mathbb{R}$.
- ▶ A (metric) ball is $B(x,r) = \{y \in X \mid d(x,y) < r\}$.
- ► Classically:

 $U \subseteq X$ is open in the topology induced by d if and only if U is a union of metric balls.

- ▶ Under mild assumptions, balls are intrinsically open, consequently overt unions of balls are open.
- Synthetically, define:

 $U \subseteq X$ is metric open if and only if it is an overt union of metric balls.

▶ **Definition:** (The topology of) a set *X* is metrized by *d* when metric open sets coincide with open sets.

Connection between intrinsic and metric topology

- ► Typically, intrinsic topology is finer than metric topology.
- **Example 1:**

If $\Sigma = \Omega$ all subsets of \mathbb{R} are open, but many are not metric open for the Euclidean metric.

▶ We might blame Example 1 on unreasonable choice of Σ , however:

Connection between intrinsic and metric topology

- Typically, intrinsic topology is finer than metric topology.
- ► Example 1:

If $\Sigma = \Omega$ all subsets of \mathbb{R} are open, but many are not metric open for the Euclidean metric.

- ▶ We might blame Example 1 on unreasonable choice of Σ , however:
- ► Example 2:

In the effective topos, the usual Σ is very nice but there still exist open subsets of \mathbb{R} which are not metric open.

▶ Thus, rather than imposing conditions directly on Σ , we take a different approach.

Transfer by metric open maps

- ▶ **Definition:** A map $f:(X,d_X) \rightarrow (Y,d_Y)$ is metric open when it maps metric open subsets of X to metric open subsets of Y.
- **▶** Proposition:

If X is metrized by d_X and there exists a metric open surjection $f:(X,d_X) \to (Y,d_Y)$, then Y is metrized by d_Y .

▶ **Proof:** Take $U \subseteq Y$ open. As f is continuous, $f^{-1}(U)$ is open, hence metric open in X. Since f is a metric open surjection, $U = f(f^{-1}(U))$ is metric open in Y.

Σ , \mathbb{N} , \mathbb{R} , \mathbb{Q}

- ▶ In addition to $AC_{0,0}$ we require:
 - ▶ Σ is a dominance with \bot , $\top \in \Sigma$,
 - ▶ N is overt.
- Observe:
 - \triangleright Σ is a lattice with countable \bigvee that distribute over finite \land .
 - \blacktriangleright Since $\mathbb N$ has decidable equality, it is discrete and Hausdorff.
 - ▶ Dedekind and Cauchy reals coincide because of $AC_{0,0}$.
 - ▶ Relation < is open in $\mathbb{R} \times \mathbb{R}$ because \mathbb{N} is overt.

Σ , \mathbb{N} , \mathbb{R} , \mathbb{Q}

- ▶ In addition to $AC_{0,0}$ we require:
 - ▶ Σ is a dominance with \bot , $\top \in \Sigma$,
 - ▶ N is overt.
- ► Observe:
 - ▶ Σ is a lattice with countable \bigvee that distribute over finite \wedge .
 - Since N has decidable equality, it is discrete and Hausdorff.
 - ▶ Dedekind and Cauchy reals coincide because of $AC_{0,0}$.
 - ▶ Relation < is open in $\mathbb{R} \times \mathbb{R}$ because \mathbb{N} is overt.
- $ightharpoonup \mathbb{Q}$ is a decidable field. At least two metrics on \mathbb{Q} :

$$d_E(r,s) = |r-s|$$
 (Euclidean)
 $d_D(r,s) = (\text{if } r = s \text{ then } 0 \text{ else } 1)$ (discrete)

Which is "better"?

Σ , \mathbb{N} , \mathbb{R} , \mathbb{Q}

- ▶ In addition to $AC_{0,0}$ we require:
 - Σ is a dominance with \bot , $\top \in \Sigma$,
 - ▶ N is overt.
- ▶ Observe:
 - \triangleright Σ is a lattice with countable \bigvee that distribute over finite \land .
 - Since N has decidable equality, it is discrete and Hausdorff.
 - ▶ Dedekind and Cauchy reals coincide because of $AC_{0,0}$.
 - ▶ Relation < is open in $\mathbb{R} \times \mathbb{R}$ because \mathbb{N} is overt.
- $ightharpoonup \mathbb{Q}$ is a decidable field. At least two metrics on \mathbb{Q} :

$$d_E(r,s) = |r-s|$$
 (Euclidean)
 $d_D(r,s) = (\text{if } r = s \text{ then } 0 \text{ else } 1)$ (discrete)

Which is "better"?

- ▶ Topology induced by d_E is strictly weaker than $\Sigma^{\mathbb{Q}}$.
- ▶ Topology induced by d_D is $\Sigma^{\mathbb{Q}}$. We prefer this one.

Complete separable metric spaces (CSM)

▶ Baire space $\mathbb{N}^{\mathbb{N}}$ with comparison metric

$$d_{\mathcal{C}}(\alpha,\beta) = 2^{-\min_k(\alpha_k \neq \beta_k)}$$

is the prototypical CSM.

Spread Representation Theorem:

Every CSM is a metric continuous image of $\mathbb{N}^{\mathbb{N}}$.

(The proof uses $AC_{0,0}$.)

▶ Can we use the theorem to transfer metrizability of $\mathbb{N}^{\mathbb{N}}$ to other CSMs?

Construction of surjective $f : \mathbb{N}^{\mathbb{N}} \to X$

- ▶ Unfortunately, the surjection $f : \mathbb{N}^{\mathbb{N}} \to X$ given by the Spread Representation Theorem need not be metric open.
- ▶ The map f is constructed as $f = g \circ r$

where r is a retraction.

Construction of surjective $f : \mathbb{N}^{\mathbb{N}} \to X$

- ▶ Unfortunately, the surjection $f : \mathbb{N}^{\mathbb{N}} \to X$ given by the Spread Representation Theorem need not be metric open.
- ▶ The map f is constructed as $f = g \circ r$

where *r* is a retraction.

- ► The map *g* turns out to be a metric open surjection!
- ▶ But *r* need not be metric open . . .
- ▶ To overcome this, we use the fact that $(\mathbb{N}^{\mathbb{N}}, d_{\mathbb{C}})$ is ultrametric.

Retracts of ultrametric spaces

Proposition:

If Z is overt and metrized by an ultrametric then every retract of Z is metrized in the induced metric.

Note: In an ultrametric space every point in a ball is its centre.

Proof: Given $Y \subseteq Z$ with a retraction $r: Z \to Y$, consider $U \in \Sigma^Y$. Then $r^{-1}(U) = \bigcup_{i \in I} B_Z(x_i, \epsilon_i)$ with I overt. The set

$$K = \{(i, y) \in I \times Y \mid y \in B_Z(x_i, \epsilon_i)\}\$$

is overt and so

$$U = Y \cap r^{-1}(U) = \bigcup_{i \in I} Y \cap B_Z(x_i, \epsilon_i) = \bigcup_{(i,y) \in K} Y \cap B_Z(x_i, \epsilon_i) =$$

=
$$\bigcup_{(i,y) \in K} Y \cap B_Z(y, \epsilon_i) = \bigcup_{(i,y) \in K} B_Y(y, \epsilon_i) .$$

Putting all this together

Theorem:

If $\mathbb{N}^{\mathbb{N}}$ is metrized by $d_{\mathbb{C}}$ then every CSM is metrized by its metric (and the converse holds trivially).

In view of this, we suggest:

Axiom:

The topology of $\mathbb{N}^{\mathbb{N}}$ is induced by the comparison metric $d_{\mathbb{C}}$.

First consequences of the axiom

The axiom ensures a well behaved theory of CSMs.

- ▶ Up to topological equivalence, a set has at most one complete separable metric (which then induces the intrinsic topology).
- CSMs are overt.
- Continuity Principle: For a CSM *X* and metric *Y*, every map *f* : *X* → *Y* is metric continuous.

First consequences of the axiom

The axiom ensures a well behaved theory of CSMs.

- ▶ Up to topological equivalence, a set has at most one complete separable metric (which then induces the intrinsic topology).
- CSMs are overt.
- Continuity Principle: For a CSM *X* and metric *Y*, every map *f* : *X* → *Y* is metric continuous.

What can we say about more general spaces, e.g., T_0 spaces?

- ▶ There is a surjection $q: \mathbb{N}^{\mathbb{N}} \to \Sigma^{\mathbb{N}}$ mapping balls to basic opens for the Scott topology, provided one-point space is countably based, i.e., $\Sigma = \Sigma_1^0$. In this case:
- ▶ Scott's principle: The topology of $\Sigma^{\mathbb{N}}$ is the Scott topology.

Concluding remarks

- We used number choice. Can we avoid it?
- ▶ The axiom implies that the *Cantor space* $2^{\mathbb{N}}$ has the metric topology. Does it also imply that $2^{\mathbb{N}}$ is (synthetically) compact?