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Department of Mathematics

University of Ljubljana

Jadranska 19, 1111 Ljubljana, Slovenia

Marko.Petkovsek@fmf.uni-lj.si

Abstract

Gosper’s summation algorithm finds a hypergeometric closed form of an indefinite sum of hyperge-
ometric terms, if such a closed form exists. We extend his algorithm to the case when the terms are
simultaneously hypergeometric and multibasic hypergeometric. We also provide algorithms for finding
polynomial as well as hypergeometric solutions of recurrences in the mixed case. We do not require the
bases to be transcendental, but only that qk1

1 · · · qkm
m 6= 1 unless k1 = · · · = km = 0. Finally, we generalize

the concept of greatest factorial factorization to the mixed hypergeometric case.

1 Introduction and notation

Let F be a field of characteristic zero and 〈tn〉∞n=0 a sequence of elements from F which is eventually
non-zero. Call tn:

• hypergeometric, if there are polynomials p1, p2 ∈ F[x] such that p1(n)tn+1 = p2(n)tn for all n;

• q-hypergeometric or basic hypergeometric, if there are polynomials p1, p2 ∈ F[x] such that
p1(q

n)tn+1 = p2(q
n)tn for all n, where q ∈ F \ {0} is the base;

• multibasic hypergeometric, if there are polynomials p1, p2 ∈ F[y1, . . . , ym] such that
p1(q

n
1 , . . . , qn

m)tn+1 = p2(q
n
1 , . . . , qn

m)tn for all n, where q1, . . . , qm ∈ F \ {0} are the bases;

• mixed hypergeometric, if there are polynomials p1, p2 ∈ F[x, y1, . . . , ym] such that
p1(n, qn

1 , . . . , qn
m)tn+1 = p2(n, qn

1 , . . . , qn
m)tn for all n.

The well-known Gosper’s algorithm [8, 9] finds hypergeometric solutions fn of the nonhomogeneous
first-order recurrence

fn+1 − fn = tn

where tn is a given hypergeometric sequence. Besides its obvious use for indefinite hypergeometric sum-
mation, it also plays a crucial role in the algorithms for definite hypergeometric summation, construction
of annihilating recurrences, and automated verification of identities [25, 26, 23]. Therefore it is not
surprising that analogous algorithms have been designed for many other settings, e.g., integration of hy-
perexponential functions [4], basic [24, 13, 17] and bibasic [20] hypergeometric summation. We generalize
Gosper’s algorithm, as well as some related ones, to the mixed hypergeometric case.

The algebraic setting of the paper (with the exception of Section 8) is the rational-function field
F(x,y) where F is an arbitrary field of characteristic zero, together with an F-automorphism E which
acts by Ex = x + 1 and Eyi = qiyi. This is discussed in detail in Section 2. Some auxiliary algorithms
used later as subroutines are sketched in Section 3, while in Sections 4 and 5 the necessary ingredients for
Gosper’s algorithm are developed. Although there only first-order recurrences are checked for polynomial
solutions, we provide in Section 4 algorithm MixedPoly1 which finds all polynomial solutions of a paramet-
ric nonhomogeneous polynomial-coefficient recurrence of any order. A mixed hypergeometric canonical

∗corresponding author
1available at http://www.cis.upenn.edu/˜wilf/AeqB.html in the Mathematica package gosper.m as MixedPoly
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form of rational functions is described in Section 5. After these preparations, we present in Section 6
an analogue of Gosper’s algorithm for the mixed hypergeometric case. Our algorithm MixedGosper2 is
a common generalization of the algorithms presented in [9, 24, 20]. When specialized to the bibasic
case, it essentially agrees with the algorithm given in [20]. However, looking at the case analysis in the
computation of the multiplicities γ and δ [20, pp. 7–8], it is not immediately clear how to extend that to
the multibasic case. In Section 7 we provide algorithm MixedHyper which finds all mixed hypergeometric
solutions of a homogeneous polynomial-coefficient recurrence of any order. This is a common generaliza-
tion of the algorithms presented in [19] and [3]. In Section 8 we extend the concept of greatest factorial
factorization [16] to an arbitrary automorphism σ of the multivariate polynomial ring.

Notation. The set of integers is denoted by Z, the set of nonnegative integers by N0, and the field
of rational numbers by Q.

If n, m ∈ N0 and a = (a1, a2, . . . , am), b = (b1, b2, . . . , bm) are m-tuples of elements of a ring, we
write ab for the componentwise product (a1b1, a2b2, . . . , ambm), and an for the componentwise power
(an

1 , an
2 , . . . , an

m). If α = (α1, α2, . . . , αm) ∈ N
m
0 then we write aα for the power product aα1

1 aα2

2 · · · aαm
m .

We say that two multivariate polynomials over a field are coprime if they do not have a non-constant
common factor. When a and b are coprime, we write a ⊥ b. When S is a set of polynomials and a ⊥ b
for all b ∈ S, we write a ⊥ S.

2 Algebraic preliminaries

Let F be a field of characteristic zero. Let q1, . . . , qm ∈ F \ {0}, and suppose that for any integers
k1, . . . , km ∈ Z,

qk1

1 qk2

2 · · · qkm
m = 1 =⇒ k1 = k2 = · · · = km = 0. (1)

This generalizes the condition that q is not a root of unity in the q-hypergeometric case [3]. For example,
if F = R, q1 = 3

√
2 and q2 = 5

√
2, then q3

1q−5
2 = 1 and we should have chosen q = 15

√
2 in the first place.

On the other hand, q1 = 2 and q2 = 3 would be a legitimate choice in this case. We call qi’s the bases,
and write q = (q1, q2, . . . , qm).

Let y = (y1, y2, . . . , ym) be an m-tuple of variables, F[x,y] the ring of polynomials over F in x and y,
and F(x,y) the corresponding rational function field. We define an F-automorphism E of F(x,y) (i.e.,
E is a field automorphism of F(x,y) which fixes each element of F ⊆ F(x,y)) by stipulating further that
Ex = x + 1 and Eyk = qkyk for k = 1, . . . , m. Then F(x,y) together with E is a difference field and
F[x,y] is a difference subring of F(x,y) (see [6] for the relevant definitions).

Let M be the set of power products in y1, y2, . . . , ym:

M = {yk1

1 yk2

2 · · · ykm
m

˛

˛

˛
ki ∈ N0 for i = 1, . . . , m}.

If u = yk1

1 yk2

2 · · · ykm
m ∈ M, we write u(q) for the corresponding power product of the bases qk1

1 qk2

2 · · · qkm
m .

Note that Eu = u(q)u for all u ∈ M.
As a multiplicative monoid, M is obviously isomorphic to N

m
0 , the direct product of m copies of the

additive monoid N0. We denote by ¹ an admissible term order in N
m
0 , which is a total order satisfying

1. 0 ¹ α,

2. α ¹ β ⇒ α+ γ ¹ β + γ

for all α,β,γ ∈ N
m
0 . An example of an admissible term order is the lexicographic order ¹lex, with

α ≺lex β when α 6= β and αk < βk where k = min{i; αi 6= βi}.
Definition 2.1 Let α,β ∈ N

m
0 . Then we write

α ⊆ β

whenever αi ≤ βi for all i between 1 and m.

Clearly, (Nm
0 ,⊆) is a partial order isomorphic to (M, |) where | denotes divisibility of power products,

and is contained in any admissible term order:

α ⊆ β ⇒ α ¹ β, for all α,β ∈ N
m
0 .

2available at http://www.cis.upenn.edu/˜wilf/AeqB.html in the Mathematica package gosper.m as GosperSum
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We adjoin to N
m
0 an absorbing bottom element3, ⊥, such that for all α ∈ N

m
0

⊥ ≺ α,

⊥ + α = α+ ⊥ = ⊥.

Definition 2.2 Let p ∈ F[x,y]. Write

p(x,y) =
X

α∈Nm
0

pα(x)yα =
X

i∈N0

ci(y)xi (2)

where only finitely many pα ∈ F[x] and ci ∈ F[y] are non-zero.

1. We define the multidegree of p in y as

degy p(x,y) =



max¹{α ∈ N
m
0 ; pα 6= 0}, p 6= 0,

⊥, p = 0.

2. Similarly,

mindegyp(x,y) =



min¹{α ∈ N
m
0 ; pα 6= 0}, p 6= 0,

⊥, p = 0.

3. We write [yα ] p(x,y) for pα(x) and [xi] p(x,y) for ci(y) in (2).

4. When degy p ≺ α we write p = o(yα).

5. Let δ = degyp. We call p mixed monic when [yδ ] p(x,y) is monic as a univariate polynomial in x.

Note that the concepts of multidegree and mixed monicity are relative to the chosen term order ¹. By
convention, gcd(a, b) always denotes a mixed monic greatest common divisor of a, b ∈ F[x,y].

We need the following well-known result from the theory of linear recurrent sequences.

Lemma 2.1 Let F be a field of characteristic zero and r1, . . . , rk ∈ F \ {0}, with ri 6= rj for i 6= j.
Let d1, d2, . . . , dk ∈ N0 and d = d1 + d2 + · · · + dk. Then the d functions gij : N0 → F, defined by
gij(n) = nj rn

i , for i = 1, . . . , k, j = 0, . . . , di − 1, are linearly independent in the vector space N0 → F
over F.

For a proof, see, e.g., [22, Thm. 4.1.1].
The main object of our interest is the ring of sequences N0 → F. To simplify notation, we denote the

sequence 〈0, 1, 2, . . .〉 by n, and 〈1, qi, q
2
i , . . .〉 by qn

i , for i = 1, 2, . . . , m. We write F[n,qn] for the subring
of N0 → F generated by n, qn

1 , . . . , qn
m and the constant sequences, and call its elements the polynomial

sequences. This is justified by the following theorem.

Theorem 2.2 Let Φ : F[x,y] → F[n,qn] be the ring homomorphism mapping x 7→ n and yi 7→ qn
i .

Then Φ is an isomorphism between the ring of polynomials F[x,y] and the ring of polynomial sequences
F[n,qn].

Proof: It is obvious that Φ is an epimorphism. We show that it is a monomorphism. Let f ∈ F[x,y].
Write f as

f =
k
X

i=1

piui,

where p1, . . . , pk ∈ F[x], u1, . . . , uk ∈ M, and ui 6= uj for i 6= j. Suppose Φf = 0:

0 = Φf =
k
X

i=1

pi(n)ui(q)n.

Because q1, . . . , qm satisfy condition (1), ui(q) 6= uj(q) for i 6= j. The result now follows from Lemma
2.1.

3not to be confused with the notation for coprime polynomials introduced at the end of Section 1
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As a consequence, F[n,qn] is an integral domain, and its field of fractions F(n,qn) whose elements
we call the rational sequences is isomorphic to the rational function field F(x,y). The map Φ : F[x,y] →
F[n,qn] defined in Theorem 2.2 can be naturally extended to a map from F(x,y) to F(n,qn).

We define a homomorphism S on N0 → F by setting (Sa)(n) = a(n + 1) for all a : N0 → F. This
makes F(n,qn) into a difference field and F[n,qn] into a difference subring of F(n,qn). As Φ◦E = S◦Φ,
we see that Φ extended to F(x,y) is a difference isomorphism of the two fields F(x,y) and F(n,qn), as
well as of the two rings F[x,y] and F[n,qn]. This allows us to work in F(x,y) resp. F[x,y] instead of in
F(n,qn) resp. F[n,qn] whenever suitable.

We conclude this section by two simple technical lemmas.

Lemma 2.3 Let p ∈ F[x,y] \ {0}, k ∈ Z \ {0}, and a ∈ F. Then Ekp = ap if and only if p = ru for
some r ∈ F, u ∈ M, and a = u(q)k.

Proof: Sufficiency is obvious. Suppose Ekp = ap. Write p as

p(x,y) =
n
X

i=1

pi(x) ui(y),

where u1, . . . , un ∈ M are pairwise different and p1, . . . , pn ∈ F[x] \ {0}. It follows that

n
X

i=1

a pi(x) ui(y) = ap = Ekp =
n
X

i=1

pi(x + k) ui(q)k ui(y).

Hence, for i = 1, . . . , n
a pi(x) = ui(q)k pi(x + k).

By comparing the leading coefficients in the above equation, we conclude that a = ui(q)k for i = 1, . . . , n.
However, if it were the case that ui(q)k = uj(q)k for some i 6= j, condition (1) would be violated. It
follows that n = 1, and p(x,y) = r(x) u(y) for some r ∈ F[x] \ {0} and u ∈ M. From Ekp = ap we get
r(x + k) = r(x), which is only possible if r is a constant.

Definition 2.3 For 1 ≤ i ≤ m, we denote by πi the endomorphism of F[x,y] which substitutes 0 for yi.

Lemma 2.4 The endomorphisms πi, 1 ≤ i ≤ m, commute with E and E−1.

Proof: Let Yi = {y1, y2, . . . , ym} \ {yi} and p ∈ F[x,y]. Consider p to be a polynomial in F[x,Yi][yi]. It
is easy to check that Eπip = πiEp and E−1πip = πiE

−1p.

3 Algorithmic preliminaries

The main algorithmic subproblems that we encounter are the following:

1. (disp) For polynomials a, b ∈ F[x,y] \ {0} such that a, b ⊥ M, compute the dispersion set

D(a, b) = {n ∈ N0; a 6⊥ Enb}

containing all nonnegative integers n such that a and Enb have a non-constant common divisor.

2. (introot) Find the set of all nonnegative integer roots n of P (n,qn) = 0 where P ∈ F[x,y] \ {0}.
3. (qmon) Given a ∈ F \ {0}, find integers k1, . . . , km (if any) such that a = qk1

1 · · · qkm
m . Note that by

(1) such integers are unique.

In Section 3.1 we reduce disp to introot. In Sections 3.2 and 3.3 we show how to solve introot in two
important special cases when F = Q(q1, . . . , qm) is a purely transcendental extension of Q, and when
F = Q (and hence q1, . . . , qm ∈ Q), respectively. We do not elaborate on qmon, because in the two special
cases of transcendental resp. rational bases it is rather obvious how to solve it.

4



3.1 Computing the dispersion set

Define polynomials R1, R2, . . . , Rm, R ∈ F[x,y][ξ,η] as polynomial resultants

Ri(ξ,η) = Resyi
(a(x,y), b(x + ξ,ηy)) (1 ≤ i ≤ m),

R(ξ,η) = Resx(a(x,y), b(x + ξ,ηy)).

Here ξ is a variable and η = (η1, η2, . . . , ηm) is an m-tuple of variables. Let

P (ξ,η) = R(ξ,η)
m
Y

i=1

Ri(ξ,η). (3)

The following lemma leads to an algorithm for computing D(a, b):

Lemma 3.1 D(a, b) = {n ∈ N0; P (n,qn) = 0}.
Proof: For n ∈ N0, let φn : F[x,y, ξ,η] → F[x,y] be the evaluation homomorphism which substitutes n
for ξ and qn for η. It is easy to see that for any non-zero polynomial p ∈ F[x,y], the homomorphic image
φn(p(x + ξ,ηy)) = p(x + n,qny) = Enp(x,y) is non-zero. Therefore, by the Homomorphism Lemma for
resultants (see, e.g., [14, Lemma 7.3.1]),

Ri(n,qn) = φn(Ri(ξ,η)) = Resyi
(φn(a(x,y)), φn(b(x + ξ,ηy))) = Resyi

(a,Enb)

(1 ≤ i ≤ m),

R(n,qn) = φn(R(ξ,η)) = Resx(φn(a(x,y)), φn(b(x + ξ,ηy))) = Resx(a,Enb).

Thus we have the following chain of equivalences:

n ∈ D(a, b) ⇐⇒ one of degx gcd(a,Enb), degyi
gcd(a,Enb) is positive

⇐⇒ one of Resx(a,Enb), Resyi
(a,Enb) vanishes

⇐⇒ one of R(n,qn), Ri(n,qn) vanishes

⇐⇒ R(n,qn)

m
Y

i=1

Ri(n,qn) = 0

⇐⇒ P (n,qn) = 0. (4)

The second equivalence above follows from the well-known properties of polynomial resultants.

Next we show how to find integral solutions n of equation (4) in two special cases.

3.2 Transcendental bases

Let F = Q(q1, . . . , qm) where q1, . . . , qm are algebraically independent over Q. Let p ∈ F[x,y] \ {0}. We
look for n ∈ N0 such that

p(n, qn
1 , . . . , qn

m) = 0. (5)

We present a recursive algorithm for finding an upper bound for n. Once the bound is known, all integers
between zero and the bound can be checked.

In equation (5), the coefficients are elements of F, which are rational functions of q1, . . . , qm. We can
clear the denominators and obtain an equation in which qi occur polynomially:

r(n, q1, . . . , qm, qn
1 , . . . , qn

m) = 0, (6)

where r ∈ Q[x, z1, . . . , zm, y1, . . . , ym] \ {0}. We show how to reduce recursively the problem of finding
an upper bound for solutions of (6). Consider all terms of r with lowest degree of ym, and let that degree
be j. Among these terms, consider the one with the lowest degree of zm, and let d be that degree. The
term has the form szd

myj
m for some s ∈ Q[x, z1, . . . , zm−1, y1, . . . , ym−1] \ {0}. Let M be an upper bound

on natural solutions of equation

s(n, q1, . . . , qm−1, q
n
1 , . . . , qn

m−1) = 0, (7)

which we can get recursively. Then max(M, d) is an upper bound for solutions of (6). Suppose n >
max(M, d). Then n is not a solution of (7), and the lowest power of qm that occurs in (6) is d+nj. Since
this power occurs only in the term s(n)qd

mqnj
m , the term does not cancel, and n is not a solution of (6).

The base case of the recursion is an equation r(n) = 0, where r ∈ Q[x] \ {0}. This can be handled
easily, since any natural solution of this equation must divide the constant term (after we have cleared
the denominators).
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3.3 Rational bases

Suppose q1, . . . , qm ∈ Q. Let p ∈ Q[x,y] \ {0}. Again we consider the problem of finding n ∈ N0 such
that

p(n, qn
1 , . . . , qn

m) = 0. (8)

Write p as

p =

k
X

i=1

piui,

where p1, . . . , pk ∈ Q[x] \ {0}, u1, . . . , uk ∈ M, and ui 6= uj for i 6= j. Equation (8) can be written as

k
X

i=1

pi(n)ui(q)n = 0. (9)

Because bases q1, . . . , qm satisfy condition (1), |ui(q)| 6= |uj(q)| for i 6= j. Let si = ui(q) for i = 1, . . . , k.
We may assume that |s1| < |s2| < · · · < |sk|. Suppose pk(x) = adxd + ad−1x

d−1 + · · ·+ a0. Equation (9)
is equivalent to

adndsn
k +

d−1
X

i=0

ain
isn

k +

k−1
X

i=1

pi(n) sn
i = 0. (10)

The first term in (10) dominates the sum of the others. We only need a lower bound on n, such that the
absolute value of the first term is greater than the absolute value of the sum of the other terms. Then
we can check all integers between zero and the lower bound.

Let dom(a, b, k) be a function which gives an integer lower bound, such that for all n ≥ dom(a, b, k)
it is true that an > bnk. Here a > 1, b > 0 and k ∈ Z.

Let δ = 1/(d + k). For i = 0, . . . , d − 1, define

Mi =

&

˛

˛

˛

˛

ai

adδ

˛

˛

˛

˛

1
d−i

’

.

Let Ki be the maximum absolute value of the coefficients of pi. For i = 1, . . . , k − 1, define

Ni = dom

„˛

˛

˛

˛

sk

si

˛

˛

˛

˛

,

˛

˛

˛

˛

2Ki

δad

˛

˛

˛

˛

, deg pi − d

«

.

Let N = max(2, M0, . . . , Md−1, N1, . . . , Nk−1). The choice of Mi ensures that

|δadndsn
k | > |ain

isn
k |

for all n ≥ N . The choice of Ki ensures that |pi(n)| < 2Kin
deg pi for all n ≥ 2. Therefore,

|δadndsn
k | > |pi(n)sn

i |

for all n > N . This means that equation (8) does not have any solutions larger than N . We can find all
solutions of (8) by checking all integers between 0 and N .

4 Polynomial solutions

In this section we present an algorithm for finding all polynomial solutions f ∈ F[x,y] of parametric
nonhomogeneous equations of the form

Lf = g +
s
X

j=1

λjhj (11)

where

L =

ρ
X

i=0

piE
i (12)

is a linear recurrence operator with polynomial coefficients pi ∈ F[x,y], λj are free parameters (ranging
over F) to be determined, and g, hj ∈ F[x,y] are given polynomials. More precisely, the problem is
to compute a basis of the affine space L−1

p (g) where Lp : F[x,y] ⊕ F
s → F[x,y] and Lp : (f,λ) 7→

6



Lf −Ps

j=1 λjhj for f ∈ F[x,y] and λ ∈ F
s. Thus by a solution of (11) we mean a pair (f,λ) with

f ∈ F[x,y] and λ ∈ F
s such that (11) is satisfied.

As a special case, (11) includes nonhomogeneous equations without parameters (when all hj = 0)
as well as homogeneous equations (when also g = 0). The ability to solve parametric nonhomogeneous
equations is crucial if one wants to apply Zeilberger’s Creative Telescoping algorithm [26] in the mixed
hypergeometric case. Another reason for allowing linear parameters in the equation is the nature of our
algorithm which finds the terms of the solution one by one, introducing new free parameters into the
right-hand side at each step.

Let f(x,y) be a polynomial solution of (11). Write

α = max
0≤i≤ρ

degy pi, (13)

pi,α(x) = [yα ] pi, (14)

d = max
0≤i≤ρ

degx pi,α(x), (15)

pi,α,d = [xd] pi,α(x), (16)

rhs(λ) = g +
s
X

j=1

λjhj , (17)

ϕ = degy f(x,y), (18)

t(x) = [yϕ] f(x,y), (19)

β = degy rhs(λ), (20)

rβ = [yβ ] rhs(λ), (21)

where t ∈ F[x]\{0}, pi,α ∈ F[x] and pi,α,d ∈ F. In (20) we regard λj ’s as variables over F(x), and rhs(λ)
as belonging to F(x,λ)[y]. This means that after the parameters λj are given specific values λ′j ∈ F, the
multidegree of rhs(λ′) = g +

Ps

j=1 λ′jhj in y can be lower than β.

Lemma 4.1 Let L,α, pi,α,d and ϕ be as given in (12)–(18). If degy Lf ≺ α + ϕ, then ϕ = degy f
satisfies P (qϕ) = 0 where

P (x) =

ρ
X

i=0

pi,α,dxi (22)

is the characteristic polynomial of L.

Proof: From (19), Eif = t(x + i)qiϕyϕ + o(yϕ), so Lf = T (x)yα+ϕ + o(yα+ϕ) where

T (x) =

ρ
X

i=0

pi,α(x)qiϕt(x + i). (23)

If degy Lf ≺ α + ϕ then T = 0. This is an ordinary recurrence relation with non-zero polynomial

solution t(x). As the coefficient of xd+degx t in T (x) must vanish,
Pρ

i=0 pi,α,dq
iϕ = 0 as claimed.

Let R denote the set of exponents of those roots of the characteristic polynomial (22) (if any) which
are power products of the bases:

R = {σ ∈ N
m
0 ; P (qσ) = 0}. (24)

When R is empty we take maxR = ⊥. The following lemma gives rise to an algorithm for finding all
polynomial solutions of equation (11).

Lemma 4.2 Let (f,λ′) be a solution of (11) with f ∈ F[x,y] and λ′ ∈ Fs.

1. If α+ maxR Â β then degy f ¹ maxR.

2. Let α+ maxR ¹ β.

(a) If α ⊆ β then degy f ¹ β − α.

(b) If α 6⊆ β then degy rhs(λ′) ≺ β.

7



Proof: Let ϕ = degy f . Let T be as in (23).

1. α+ maxR Â β

If T = 0 then degy Lf ≺ α + ϕ and ϕ ∈ R, by Lemma 4.1. If T 6= 0 then degy Lf = α + ϕ.
As degy rhs(λ′) ¹ β, it follows that α + ϕ ¹ β ≺ α + maxR, so ϕ ≺ maxR. In either case,
ϕ ¹ maxR as claimed.

2. α+ maxR ¹ β

(a) α ⊆ β

If T = 0 then degy Lf ≺ α + ϕ and ϕ ∈ R by Lemma 4.1, so ϕ ¹ maxR and therefore
α+ ϕ ¹ β. If T 6= 0 then degy Lf = α+ ϕ. As degy rhs(λ′) ¹ β, it follows that α+ ϕ ¹ β.
In either case, ϕ ¹ β − α as claimed.

(b) α 6⊆ β

Assume that degy rhs(λ′) = β. If T = 0 then degy Lf ≺ α+ ϕ and ϕ ∈ R by Lemma 4.1, so
degy Lf ≺ α+ϕ ¹ α+ maxR ¹ β = degy rhs(λ′), a contradiction. If T 6= 0 then α+ϕ = β

which implies that α ⊆ β, contrary to the assumption. Both cases lead to contradiction, so
degy rhs(λ′) ≺ β as claimed.

Based on Lemma 4.2, we can find the general solution (f,λ) of equation (11) as follows: First compute
the set R as given in (24). Then distinguish three cases:

1. α+ maxR Â β

Set ϕ = maxR and look for f in the form

f = t(x)yϕ + f1 (25)

where f1 = o(yϕ). To find t(x), apply the algorithm of [2] to T = 0 (an ordinary homogeneous
recurrence relation). Then remove maxR from R and find f1 recursively by solving

Lf1 = rhs(λ) − L (t(x)yϕ) . (26)

2. α+ maxR ¹ β

(a) α ⊆ β

Set ϕ = β − α and look for f in the form (25). To find t(x), apply the algorithm of [2] to
T = rβ (an ordinary parametric nonhomogeneous recurrence relation). Then remove maxR
from R (only in case that α+ maxR = β), and find f1 recursively by solving (26).

(b) α 6⊆ β

Let λ = λ′ be the solution of the system of linear algebraic equations for the free parameters
λ obtained by equating the coefficients of powers of x in rβ to zero. Then find f recursively
by solving Lf = rhs(λ′).

Remarks:

1. Note that in steps 1 and 2(a), t(x) can contain new free parameters which are then joined with the
existing ones. This explains the need for allowing parameters in the right-hand side of the equation.

2. In step 2(b), the number of free parameters will drop by the rank of the linear system to be solved.

3. If the ordinary recurrence in steps 1 or 2(a) has no polynomial solution, or the linear system in
step 2(b) is unsolvable, then the original parametric recurrence has no polynomial solution, and the
algorithm terminates unsuccessfully.

4. At each step, either the cardinality of the set R drops, or else it stays the same but the multidegree
β = degy rhs(λ) decreases in the admissible term order ≺. It follows that the pair (cardR,β)
decreases in the lexicographic ordering of N0 × N

m
0 which uses < in the first component and ≺ in

the second component. As every admissible term order is a well-order, this assures termination of
the algorithm.

5. Unless the algorithm terminates unsuccessfully, eventually R becomes empty and rhs(λ) becomes
0. Then the only polynomial solution of (11) is f = 0.

An iterative version of this tail-recursive algorithm called MixedPoly is given in Appendix A.
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5 A canonical form for rational functions

Let r ∈ F(x,y) \ {0}. Write r as

r =
u

v
· a0

b0
,

where u, v ∈ M, a0, b0 ∈ F[x,y], a0b0 ⊥ M, ua0 ⊥ vb0, and b0 is mixed monic (Def. 2.2).
There are finitely many values h ∈ N0 such that a0 6⊥ Ehb0. These values are the elements of the

dispersion set D(a0, b0) which can be found as described in Section 3. So let D(a0, b0) = {h1, h2, . . . , hN}
where 0 ≤ h1 < h2 < · · · < hN .

Lemma 5.1 Consider the algorithm CanonicalForm in Appendix B. Define hN+1 = ∞, and let 0 ≤ k ≤
i, j ≤ N , h ∈ N0 and h < hk+1. Then ai ⊥ Ehbj .

Proof: Let S = {h1, . . . , hN}. Suppose h 6∈ S. Since ai | a0 and bj | b0 and a0 ⊥ Ehb0, it follows that
ai ⊥ Ehbj .

To prove the lemma for h ∈ S, we use induction on k. When k = 0, there is nothing to prove because
there is no h ∈ S such that h < h1. Assume that the lemma holds for all h ∈ S, h < hk. We show
that it holds for h = hk. Since ai | ak and bj | bk, it follows that gcd(ai,E

hkbj) divides gcd(ak,Ehkbk).
Furthermore,

gcd(ak,Ehkbk) = gcd(
ak−1

sk

,
Ehkbk−1

sk

) = 1

by the definition of ak, bk and sk in algorithm CanonicalForm. This completes the proof.

Theorem 5.2 Let r ∈ F(x,y) \ {0}. There exist polynomials a, b, c ∈ F[x,y] \ {0} such that

1. b, c are mixed monic,

2. c ⊥ M,

3. a ⊥ Ekb for all k ∈ N0,

4. a ⊥ c,

5. b ⊥ Ec, and

r =
a

b
· Ec

c
. (27)

Proof: Let a, b, c be constructed by the algorithm CanonicalForm from Appendix B. Conditions 1 and 2
are satisfied by construction, and condition 3 follows from Lemma 5.1 by taking i = j = k = N . Identity
(27) is verified directly,

a

b
· Ec

c
=

u · aN

v · bN

·
N
Y

i=1

hi
Y

j=1

E−j+1si

E−jsi

=

=
u · a0
QN

i=1 si

·
QN

i=1 E−hisi

v · b0
·

N
Y

i=1

si

E−hisi

=
u · a0

v · b0
= r.

Proof of 4: Suppose a 6⊥ c. Then also aN 6⊥ E−jsi for some i and j such that 1 ≤ i ≤ N and
1 ≤ j ≤ hi. By definition Ehi−jbi−1 = Ehi−jbi · E−jsi, so it follows that aN 6⊥ Ehi−jbi−1. Since
hi − j < hi, this contradicts Lemma 5.1.

Proof of 5: Suppose b 6⊥ Ec. Then also bN 6⊥ E−jsi for some i and j such that 1 ≤ i ≤ N and
0 ≤ j ≤ hi − 1. By definition E−jai−1 = E−jai · E−jsi, so it follows that ai−1 6⊥ EjbN . Since j < hi,
this contradicts Lemma 5.1.

Lemma 5.3 Let a, b, c, A, B, C ∈ F[x,y] \ {0} be polynomials such that a ⊥ c, b ⊥ Ec, c ⊥ M, and
A ⊥ EkB for all k ∈ N0. If

a

b
· Ec

c
=

A

B
· EC

C
, (28)

then c divides C.
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Proof: Let g = gcd(c, C), d = c/g, and D = C/g. Then d ⊥ D, a ⊥ d, and b ⊥ Ed. Clear denominators
in (28) and cancel g · Eg on both sides. The result

A · b · d · ED = a · B · D · Ed

shows that d | B · Ed and Ed | A · d. Using these two relations repeatedly, we find that

d | B · EB · · ·Ek−1B · Ekd

d | E−1A · E−2A · · ·E−kA · E−kd

for all k ∈ N0. Because d ⊥ M, and F has characteristic zero, d ⊥ Ekd and d ⊥ E−kd for large enough
k. It follows that d divides both B · EB · · ·Ek−1B and E−1A · E−2A · · ·E−kA for large enough k. But
these two polynomials are coprime by assumption, so d must be a constant. Hence, c divides C.

Theorem 5.4 Let r ∈ F[x,y] \ {0}. Then the factorization of r described in Theorem 5.2 is unique.

Proof: Suppose that a, b, c and A, B, C are two factorizations of r, as described in Theorem 5.2. Then

r =
a

b
· Ec

c
=

A

B
· EC

C
.

By Lemma 5.3, c divides C, and vice versa. As c and C are mixed monic they must be equal, hence
a/b = A/B. As a ⊥ b, A ⊥ B, and b, B are mixed monic, it follows that b = B and a = A as well.

The factorization of non-zero rational functions described in Theorem 5.2 is thus a canonical form.
We introduce special notation for it.

Definition 5.1 Let r ∈ F(x,y) \ {0} be a non-zero rational function. We write

(a, b, c) = C.f.(r)

to denote the unique polynomials a, b, c ∈ F[x,y] which satisfy the conditions of Theorem 5.2.

Theorem 5.5 Let a, b ∈ F[x,y]\{0}, and (A, B, C) = C.f.(b/a). The homogeneous first-order recurrence

a · Ef − bf = 0 (29)

has a non-zero polynomial solution f ∈ F[x,y] if and only if A/B = u(q) for some u ∈ M. In that case,
f = λ · u · C for some λ ∈ F \ {0}.
Proof: Suppose (29) has a non-zero solution f ∈ F[x,y]. Write f = λ · u · g where λ ∈ F \ {0}, u ∈ M
and g ⊥ M is mixed monic. Then C.f.(Ef/f) = (u(q), 1, g). Since from (29)

Ef

f
=

b

a
=

A

B
· EC

C
,

(A, B, C) = C.f.(Ef/f) as well. By Theorem 5.4 it follows that A = u(q), B = 1 and C = g, so
A/B = u(q) and f = λ · u · C.

Conversely, if A/B = u(q) for some u ∈ M, then f = u · C is a non-zero solution of (29).

We remark that our canonical form differs from the Paule/Riese/Strehl form (PRS, for short) de-
scribed in [18, 17] for the basic and in [20] for the bibasic case, in the following three respects:

1. In the PRS form the monomial factors of the numerator and denominator of r are listed separately
while in our form they are included with A resp. B.

2. In the PRS form all polynomials either have unit constant terms or else are primitive and the overall
constant factor is listed separately, while in our form B and C have unit leading coefficients in the
chosen term order and the overall constant factor is included with A.

3. In the PRS form the polynomial corresponding to our B is given by a constant multiple of E−1B.

10



6 Mixed Gosper’s algorithm

Let Sn =
Pn−1

k=0 tk. Clearly substituting Sn for sn satisfies the first-order recurrence

sn+1 − sn = tn. (30)

Conversely, any solution sn of (30) differs from Sn only by an additive constant – more precisely, Sn =
sn − s0. Therefore we consider the following problem:

Given a sequence tn, decide if equation (30) has a mixed hypergeometric solution sn, and if so, find
it.

Let sn and tn satisfy (30), with
sn+1

sn

=: Tn ∈ F(n,qn).

Then the two quotients

rn :=
tn+1

tn

=
sn+2 − sn+1

sn+1 − sn

=
Tn+1 − 1

1 − 1/Tn

and

Rn :=
sn

tn

=
sn

sn+1 − sn

=
1

Tn − 1

both belong to F(n,qn). So tn must be mixed hypergeometric itself, and sn is a rational multiple of tn:
sn = Rntn. Using this, (30) yields a recurrence for the unknown rational sequence Rn,

rnRn+1 − Rn = 1. (31)

By Theorem 2.2, equation (31) is equivalent to

r · ER − R = 1, (32)

where r, R ∈ F(x,y) are Φ−1-isomorphic images of rn and Rn, respectively.
Next we show how to find rational solutions R ∈ F(x,y) of equation (32). The following theorem

provides a multiple of the denominator and a divisor of the numerator of R. The missing factor in the
numerator can then be found using algorithm MixedPoly of Section 4.

Definition 6.1 Let r ∈ F(x,y) \ {0} be a non-zero rational function, and (a, b, c) = C.f.(r). For
1 ≤ i ≤ m define exponents ei(r) as follows: If πi(a)πi(b) 6= 0, let (ai, bi, ci) = C.f.(πi(b)/πi(a)).
If there are v, w ∈ M such that v ⊥ w and ai/bi = v(q)/w(q), then ei(r) = degyi

w. If not, or if
πi(a)πi(b) = 0, then ei(r) = 0.

Theorem 6.1 Let R = f/(ug) be a rational solution of (32) with f, g ∈ F[x,y], u ∈ M, g ⊥ M, and
f ⊥ ug. Then

1. g | c where (a, b, c) = C.f.(r),

2. degyi
u ≤ ei(r),

3. E−1b | f .

Proof:

1. From (32),

r =
R + 1

ER
=

(f + ug)u(q)

Ef
· Eg

g
. (33)

On the other hand, (a, b, c) = C.f.(r), so

r =
a

b
· Ec

c
. (34)

As Ef ⊥ Eg, g ⊥ (f + ug)u(q), g ⊥ M, and a ⊥ Ekb for all k ∈ N0, it follows by Lemma 5.3 that
g divides c.
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2. Write F = fc/g ∈ F[x,y]. Then R = f/(ug) = F/(uc). Combining this with (33) and (34), we find
that

(F + uc) · u(q) · b = a · EF. (35)

Now assume that yi | u. Then applying πi (see Def. 2.3) to Eqn. (35) and rearranging yields

πi(a) · Eπi(F ) − u(q) · πi(b) · πi(F ) = 0. (36)

Because F | fc, f ⊥ u and c ⊥ M, it follows that yi 6 | F and πi(F ) 6= 0. Assume that πi(a) = 0.
Then yi | a and from (35), yi | b · F . But yi 6 | b because a ⊥ b, so yi | F . This contradiction shows
that πi(a) 6= 0. In an analogous way we conclude that πi(b) 6= 0.

Let (ai, bi, ci) = C.f.(πi(b)/πi(a)). Then ((u(q)·ai, bi, ci) = C.f.(u(q)·πi(b)/πi(a)). Since equation
(36) has a non-zero polynomial solution πi(F ), it follows by Theorem 5.5 that there is u1 ∈ M
such that u(q) · ai/bi = u1(q), and that πi(F ) = λu1ci for some λ ∈ F. Then ai/bi = u1(q)/u(q)
is a quotient of two monomials. Write u1 = v · t and u = w · t where t, v, w ∈ M and v ⊥ w. By
Definiton 6.1, ei(r) = degyi

w. As t | u1 | πi(F ) it follows that t ⊥ yi, so

degyi
u = degyi

w = ei(r).

We have shown that degyi
u is either 0 or ei(r), so in either case degyi

u ≤ ei(r).

3. From (35) it follows that b | a ·EF . As a ⊥ b, we have that b | EF | EfEc. But b ⊥ Ec, so E−1b | f .

From Theorem 6.1 it follows that we can look for R in the form

R =
E−1b · p

u · c (37)

where (a, b, c) = C.f.(r) and u =
Qm

i=1 y
ei(r)
i are known while p ∈ F[x,y] is an unknown polynomial.

Inserting (37) and (34) into (32) yields

a · Ep − u(q) · E−1b · p = u(q)u · c, (38)

an nonhomogeneous first-order linear recurrence relation with polynomial coefficients satisfied by p.
Algorithm MixedPoly of Section 4 can now be applied to find a polynomial solution p of Eqn. (38). The
full algorithm is given in Appendix C.

We conclude this section by giving some examples of sums which can be evaluated automatically by
MixedGosper. We write (a; q)n =

Qn−1
i=0 (1 − aqi).

Many bibasic examples can be found in [7] and [20]. An indefinite multibasic summation formula
(too big to reproduce it here) is proved in [21]. The formula contains an arbitrary number, k, of bases.
Such formulæ cannot be proved by our algorithm. However, any specialization of this formula in which
k is replaced by a specific natural number can be, at least in principle, not only proved, but also derived
by MixedGosper. In [21], it is shown that several well-known basic and bibasic summation formulæ can
be obtained as specializations of this k-basic master formula.

The following two examples are due to Gosper [10].

Example 6.1 In this tribasic example F = Q(a, b, c, p, q, r) where a, b, c are parameters and p, q, r are
the bases.

n
X

k=0

(−a)kp(k
2)(1 − abpkqk)(1 − acpkrk)(b; q)k(c; r)k

(ap; p)k(abcpqr; pqr)k

= (a − 1)(abc − 1) +
(−a)nap(n+1

2 )(b; q)n+1(c; r)n+1

(ap; p)n(abcpqr; pqr)n

.

Example 6.2 In this quadbasic example F = Q(a, b, c, d, p, q, r, s) where a, b, c, d are parameters and
p, q, r, s are the bases.

n
X

k=0

bkq(
k+1

2 )(1 − apk

bqk )(1 − abpkqk)(1 − dsk

crk )(1 − cdrksk)(a
c
; p

r
)k(ac; pr)k( d

b
; s

q
)k(bd; qs)k

akp(k+1

2 )( bq

cr
; q

r
)k(bcqr; qr)k( ds

ap
; s

p
)k(adps; ps)k
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= (b − c)(1 − 1

bc
)(a − d)(ad − 1) +

bnq(
n
2)(crn − apn)(acpnrn − 1)(bqn − dsn)(bdqnsn − 1)( a

c
; p

r
)n(ac; pr)n( d

b
; s

q
)n(bd; qs)n

anbcp(n+1

2 )rn( bq

cr
; q

r
)n(bcqr; qr)n( ds

ap
; s

p
)n(adps; ps)n

.

Example 6.3 For a simple mixed hypegeometric example, define

ϕq,n(a, b, c) =

n−1
Y

i=0

(a + bi + cqi).

Then, using MixedGosper, one obtains

n
X

k=0

(bk + cqk)ϕq,k(1, b, c) = ϕq,n+1(1, b, c) − 1. (39)

As ϕq,n(1, 1, 0) = n! and ϕq,n(1, 0,−a) = (a; q)n, both well-known summation formulæ

n
X

k=0

k k! = (n + 1)! − 1,
n
X

k=0

(a; q)kqk =
1 − (a; q)n+1

a
,

turn out to be special cases of (39). – It is not hard to imagine how more complex mixed hypergeometric
formulæ could be built using ϕ or similar functions.

7 Mixed hypergeometric solutions

In this section we derive algorithm MixedHyper for finding all mixed hypergeometric solutions f of Lf = 0
where L is as in (12). Let Ef = rf where r ∈ F(x,y), then Eif =

Qi−1
j=0

`

Ejr
´

f . The crucial idea is
to look for r in the canonical form described in Theorem 5.2. More precisely, we use a slightly modified
canonical form

r = z
a

b

Ec

c
(40)

where z ∈ F \ {0}, a ∈ F[x,y] is mixed monic, and a, b, c satisfy conditions 1–5 of Theorem 5.2. After
inserting (40) into Lf = 0, clearing denominators and cancelling f we obtain

ρ
X

i=0

ziPi · Eic = 0 (41)

where

Pi = pi

i−1
Y

j=0

Eja

ρ−1
Y

j=i

Ejb.

Since all terms in (41) except for i = 0 contain a as an explicit factor, it follows that a divides
p0c

Qρ−1
j=0 Ejb. Because of properties 3 and 4 of the canonical form, a divides p0. Similarly, all terms

in (41) except for i = ρ contain Eρ−1b as an explicit factor, therefore Eρ−1b divides zρpρE
ρc
Qρ−1

j=0 Eja.

Because of properties 3 and 5 of the canonical form, Eρ−1b divides pρ. Thus we have a finite number of
choices for a and b: they are mixed monic factors of p0 and E1−ρpρ, respectively.

For each choice of a and b, equation (41) is a linear recurrence with polynomial coefficients satisfied
by the unknown polynomial c(x,y). However, z ∈ F \ {0} is also unknown. To find z(Ec/c), write
α = min0≤i≤ρ mindegyPi, pi,α(x) = [yα ] Pi, d = max0≤i≤ρ degx pi,α(x), pi,α,d = [xd] pi,α(x), and

ϕ = mindegyc(x,y). Looking at the coefficient of yα+ϕ in (41), we find that P (zqϕ) = 0 where

P (x) =

ρ
X

i=0

pi,α,dxi. (42)

Write zqϕ = τ where τ is a root of P . Then z = τq−ϕ, hence (41) can be rewritten as

ρ
X

i=0

τ iq−iϕPi · Eic = 0.
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Dividing by yϕ we obtain finally
ρ
X

i=0

τ iPi · Ei(c/yϕ) = 0.

Suppose that we know c̄ = c/yϕ. Then

τ
Ec̄

c̄
= τq−ϕ

Ec

c
= z

Ec

c

which is just what we are looking for. It remains to see how to find all Laurent polynomial solutions
c̄ ∈ F[x,y,y−1] of

ρ
X

i=0

τ iPi · Ei(c̄) = 0. (43)

Obviously, if we know lower bounds bj for the degrees of yj in c̄, then we can substitute c̄ = d̄yb1
1 · · · ybm

m

in (43) and use MixedPoly to find polynomial solutions d̄ of the resulting equation. Observe that any
lexicographic order ¹ on Z

m is total (though not well-founded) and satisfies α ¹ β ⇒ α+ γ ¹ β + γ

for all α,β,γ ∈ Z
m. To obtain bj , we order the terms lexicographically with yj as the first variable,

and write once again αj = min0≤i≤ρ mindegyPi, pi,αj
(x) = [yαj ] τ iPi, dj = max0≤i≤ρ degx pi,αj

(x),

pi,αj ,dj
= [xdj ] pi,αj

(x), and ϕj = mindegy c̄(x,y). Then P (j)(qϕj ) = 0 where

P (j)(x) =

ρ
X

i=0

pi,αj ,dj
xi.

The bound bj can now be read off as the j-th component of ϕj .

In summary, we find the factors of r = τ(a/b)(Ec̄/c̄) as follows:

1. a is a mixed monic factor of p0,

2. b is a mixed monic factor of E1−ρpρ,

3. τ is a root of polynomial P (x) defined in (42),

4. c̄ is a non-zero Laurent polynomial solution of (43).

Checking each admissible triple a, b, τ for Laurent polynomial solutions c̄ of recurrence (43) constitutes
algorithm MixedHyper which is given in appendix D.

8 Greatest factorial factorization

The concept of greatest factorial factorization of polynomials (GFF, for short) which is an analogue of
the well-known square-free factorization (SFF), plays a fundamental role in symbolic summation. It has
been introduced by Paule in [16] for the hypergeometric case, and subsequently extended to the basic
[18, 17] as well as bibasic cases [20]. Here we sketch an extension of the GFF concept to an arbitrary
polynomial ring with an automorphism σ, including the hypergeometric, basic, bibasic, multibasic, and
mixed hypergeometric GFF, as well as SFF, as special cases.

Let F be a field of characteristic zero and F[x] = F[x1, x2, . . . , xn] the ring of n-variate polynomials
over F. For p, q ∈ F[x], we write p ∼ q if there is an a ∈ F \ {0} such that p = aq. Such p and q are
called associated.

Let σ be an F-automorphism of F[x] (i.e., a ring automorphism of F[x] which fixes each element
of F ⊆ F[x]). To specify σ it suffices to give the n polynomials σx1, . . . , σxn. Note that σ preserves
irreducibility of polynomials, and so for any irreducible p ∈ F[x] \ F, either σp ∼ p or σp ⊥ p.

In analogy to Moenck [15] we write

[p]kσ =

k−1
Y

i=0

σ−ip

for the k-th falling σ-factorial of p.

Definition 8.1 Let p ∈ F[x] \ {0}. Then

σ-span(p) = max{k ∈ N0; [q]kσ divides p, for some q ∈ F[x] \ F}.

Note that 0 ≤ σ-span(p) ≤ max1≤i≤n degxi
p.
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Definition 8.2 Let p ∈ F[x] \ {0}. A list of polynomials 〈p1, . . . , pk〉 from F[x] where k ≥ 0 is a σ-GFF
of p if the following conditions are satisfied:

(σ-GFF1) p ∼ [p1]
1
σ · · · [pk]

k
σ,

(σ-GFF2) if k > 0 then pk ∈ F[x] \ F,

(σ-GFF3) for all 1 ≤ i ≤ k, either pi = 1, or pi ∈ F[x] \ F and σ-span
“

[p1]
1
σ · · · [pi]

i
σ

”

= i.

It is clear that every polynomial p ∈ F[x] \ {0} has a σ-GFF. To find it, factor p into non-constant
irreducible factors, combine those which compose falling σ-factorials of length k = σ-span(p) into [pk]

k
σ,

then repeat this procedure with p/[pk]
k
σ. Note that the σ-GFF of a constant polynomial p ∈ F \ {0} is

〈 〉, the empty list.

Example 8.1 1. When σ is the identity automorphism, σ-GFF agrees with SFF.

2. When the polynomial ring is F[x] and σx = x + 1, σ-GFF agrees, up to a constant normalization
factor, with GFF as defined in [16].

3. Let F = K(q) where K is a field of characteristic zero and q is transcendental over K. When the
polynomial ring is F[x] and σx = qx, σ-GFF agrees (on polynomials which are not divisible by x),
up to a constant normalization factor, with qGFF as defined in [17].

4. Let F = K(p, q) where K is a field of characteristic zero and p, q are algebraically independent over
K. When the polynomial ring is F[x, y] and σx = qx, σy = py, σ-GFF agrees (on polynomials
divisible by neither x nor y), up to a constant normalization factor, with GFFp,q as defined in [20].

5. When the polynomial ring is F[x,y], σ = E as defined in Section 2, and q1, . . . , qm satisfy (1),
σ-GFF provides GFF for the mixed hypergeometric case.

Note that cases 2, 3 and 4 are all contained in case 5.

As shown by the following example, σ-GFFs are in general not unique.

Example 8.2 Let σ be the F-automorphism of F[x] defined by σx = −x. Obviously both 〈1, 1 + x〉 and
〈1, 1 − x〉 are σ-GFFs of 1 − x2 in this case.

In order to have unique σ-GFF’s (up to associated factors), we restrict our attention to a subclass of
automorphisms σ.

Definition 8.3 An F-automorphism σ of F[x] is aperiodic if for every irreducible p ∈ F[x] \ F either

a) σp ∼ p, or

b) σmp ⊥ p, for all m ∈ Z \ {0}.
Example 8.3 1. The identity automorphism is aperiodic because in this case σp ∼ p for all p ∈ F[x].

2. Let q ∈ F be a primitive m-th root of unity. Then the F-automorphism σ of F[x] defined by σx = qx
is not aperiodic because, e.g., σ(x + 1) = qx + 1 6∼ x + 1 while σm(x + 1) = qmx + 1 ∼ x + 1.

3. If q1, . . . , qm ∈ F satisfy (1) it follows from Lemma 2.3 that the F-automorphism σ = E of F[x] as
defined in Section 2 is aperiodic. This includes cases 2 – 5 of Example 8.1.

Lemma 8.1 Assume that σ is an aperiodic F-automorphism of F[x]. Let q ∈ F[x], and let p1, . . . , pk−1 ∈
F[x] \ {0}, pk ∈ F[x] \ F satisfy

(D1) σpj , σ
−jpj ⊥ [pi]

i
σ, for any 1 ≤ i < j ≤ k,

(D2) rσjr does not divide pi, for any r ∈ F[x] \ F and 1 ≤ j ≤ i ≤ k.

If [q]
k
σ divides [p1]

1
σ · · · [pk]

k
σ, then q divides pk.

Proof: Assume first that q is irreducible. As σ is aperiodic, we distinguish two cases.

a) σq ∼ q
In this case [q]

k
σ ∼ qk and so qk | [p1]

1
σ · · · [pk]

k
σ. Let i ≤ k be minimal such that q | pi. Assume that

i < k. If there is j > i such that q | pj then σpj 6⊥ [pi]
i
σ, contrary to (D1). Otherwise qk | [pi]

i
σ and hence

q2 | pi, contrary to (D2). So in case a) we must have i = k. It follows that q | pk.

b) σmq ⊥ q, for all m ∈ Z \ {0}
Let j ≤ k be maximal such that [q]

k
σ 6⊥ [pj ]

j
σ. Then there are u and v, 0 ≤ u < k and 0 ≤ v < j, such

that σ−uq | σ−vpj . Hence σv−uq | pj . We are going to prove that u = v and j = k, by distinguishing
two subcases.

b1) u > v
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In this case σv−u+1 | [q]
k
σ | [p1]

1
σ · · · [pj ]

j
σ. If σv−u+1 | [pl]

l
σ for some l < j then σpj 6⊥ [pl]

l
σ, contrary

to (D1). Otherwise σv−u+1 | [pj ]
j
σ and so σv−u+1 | σ−wpj for some w such that 0 ≤ w < j. Hence

r, σw+1r | pj where r = σv−uq. As 1 ≤ w + 1 ≤ j, it follows from b) that r ⊥ σw+1r whence rσw+1r | pj ,
contrary to (D2). So this case is not possible.

b2) u ≤ v

Unless u = v and j = k, we have σv−u−j | [q]
k
σ | [p1]

1
σ · · · [pj ]

j
σ. If σv−u−j | [pl]

l
σ for some l < j then

σ−jpj 6⊥ [pl]
l
σ, contrary to (D1). Otherwise σv−u−j | [pj ]

j
σ and so σv−u−j | σ−wpj for some w such that

0 ≤ w < j. Hence r, σj−wr | pj where r = σw+v−u−jq. As 1 ≤ j − w ≤ j, it follows from b) that
r ⊥ σj−wr whence rσj−wr | pj , contrary to (D2).

So in case b) we must have u = v and j = k. It follows that q | pk.

Finally, if q is reducible write q = q1 · · · qm where m > 1 and the qi’s are irreducible. As [qm]
k
σ | [q]

k
σ |

[p1]
1
σ · · · [pk]

k
σ and qm is irreducible, we already know that qm | pk. Therefore

[q1 · · · qm−1]
k
σ | [p1]

1
σ · · · [pk−1]

k−1
σ [

pk

qm

]kσ.

Clearly, replacing pk by pk/qm invalidates neither (D1) nor (D2). Hence, by induction on m, q1 · · · qm−1 |
pk/qm. It follows that q = q1 · · · qm | pk.

We can now give a characterization of σ-GFFs which is akin to the definition of GFF in [16].

Corollary 8.2 Assume that σ is an aperiodic F-automorphism of F[x]. Let p = [p1]
1
σ · · · [pk]

k
σ where

p1, . . . , pk−1 ∈ F[x] \ {0} and pk ∈ F[x] \ F. Then 〈p1, . . . , pk〉 is a σ-GFF for p if and only if p1, . . . , pk

satisfy conditions (D1) and (D2) of Lemma 8.1.

Proof: (⇒) Let 〈p1, . . . , pk〉 be a σ-GFF for p.

(D1) Assume that q | [pi]
i
σ where q ∈ F[x] \ F is irreducible and 1 ≤ i < j ≤ k. If q | σpj then

[σ−1q]
j
σ | [pj ]

j
σ, so [q]

j+1
σ | [pi]

i
σ[pj ]

j
σ. If q | σ−jpj then [σjq]

j
σ | [pj ]

j
σ, so [σjq]

j+1
σ | [pi]

i
σ[pj ]

j
σ. In either case

σ-span
“

[p1]
1
σ · · · [pj ]

j
σ

”

≥ j + 1, contrary to (σ-GFF3).

(D2) Assume that q σjq | pi for some irreducible q ∈ F[x]\F and 1 ≤ j ≤ i ≤ k. Then [q]
i
σ[σjq]

i
σ | [pi]

i
σ.

But σq | [σjq]
i
σ, so [σq]

i+1
σ | [pi]

i
σ. Hence σ-span

“

[p1]
1
σ · · · [pi]

i
σ

”

≥ i + 1, contrary to (σ-GFF3).

(⇐) Let p1, . . . , pk satisfy conditions (D1) and (D2) of Lemma 8.1. To prove that they satisfy

(σ-GFF3) as well, assume that pi ∈ F[x] \ F and σ-span
“

[p1]
1
σ · · · [pi]

i
σ

”

= s > i, for some i such that

1 ≤ i ≤ k. Then there is an irreducible q ∈ F[x]\F such that [q]
s
σ | [p1]

1
σ · · · [pi]

i
σ. Hence [q]

i
σ | [p1]

1
σ · · · [pi]

i
σ

and [σ−1q]
i
σ | [p1]

1
σ · · · [pi]

i
σ. By Lemma 8.1, q | pi and σ−1q | pi. We distinguish two cases.

a) σq ∼ q

If there is j < i such that q | pj then σpi 6⊥ [pj ]
j
σ, contrary to (D1). Otherwise qs | [pi]

i
σ. As s > i, it

follows that q2 | pi, contrary to (D2).

b) σmq ⊥ q, for all m ∈ Z \ {0}
In this case q ⊥ σ−1q and so q σ−1q | pi, contrary to (D2).

Example 8.4 Let q ∈ F be a primitive third root of unity, and let σ be the F-automorphism of F[x]
defined by σx = qx. The polynomials p1 = 1 + x, p2 = 1, p3 = 1 + qx satisfy conditions (D1) and (D2)
of Lemma 8.1. However, 〈p1, p2, p3〉 is not a σ-GFF of p = [p1]

1
σ[p2]

2
σ[p3]

3
σ because p = [1 + x]

4
σ and

σ-span(p) = 4. This example shows that Corollary 8.2 can fail when σ is not aperiodic.

The next corollary shows uniqueness of σ-GFFs (up to associated factors).

Corollary 8.3 Assume that σ is an aperiodic F-automorphism of F[x]. If 〈p1, . . . , pk〉 and 〈q1, . . . , ql〉
are σ-GFFs for the same p ∈ F[x], then k = l and pi ∼ qi for 1 ≤ i ≤ k.

Proof: By (σ-GFF3), k = σ-span(p) = l.
We prove the rest of the corollary by induction on k.
If k = 0 the assertion holds vacuously. Let k > 0. By Corollary 8.2, the pi’s as well as the qi’s

satisfy conditions (D1) and (D2) of Lemma 8.1. Therefore pk | qk and qk | pk, hence pk ∼ qk and

[p1]
1
σ · · · [pk−1]

k−1
σ ∼ [q1]

1
σ · · · [qk−1]

k−1
σ . Let r = [p1]

1
σ · · · [pk−1]

k−1
σ and m = σ-span(r). Then 〈p1, . . . , pm〉

and 〈q1, . . . , qm〉 are σ-GFFs for r, and pi = qi = 1 for m < i < k. By the inductive hypothesis, pi ∼ qi

for 1 ≤ i ≤ m.
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Finally, the formulæ

gcd(p, σp) ∼ [p1]
0
σ · · · [pk]

k−1
σ gcd(p1, σp1) · · · gcd(σ−k+1pk, σpk),

p

gcd(p, σ−1p)
∼ p1p2 · · · pk

gcd(p1, σ−1p1) · · · gcd(pk, σ−kpk)
,

p

gcd(p, σp)
∼ p1σ

−1p2 · · ·σ−k+1pk

gcd(p1, σp1) · · · gcd(σ−k+1pk, σpk)
.

can be proved in much the same way as the corresponding formulæ in [16].
We remark that analogously to the hypergeometric, basic and bibasic cases, σ-GFF could be used to

derive and explain Gosper’s algorithm in the mixed hypergeometric case.

9 Concluding remarks

We have shown how to compute the hypergeometric canonical form of rational functions, how to perform
Gosper’s algorithm, and how to find polynomial as well as hypergeometric solutions of recurrences, all in
the mixed hypergeometric case. We have also indicated how to extend the concept of GFF to this case.

It remains to provide mixed hypergeometric generalizations of algorithms for finding rational solu-
tions of recurrences [1, 11] and of algorithms for factorization of the corresponding operators [5]. The
more efficient algorithm of van Hoeij for finding hypergeometric solutions [12] should also admit of a
generalization to the mixed hypergeometric case.
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A Algorithm MixedPoly

INPUT: p0, . . . , pρ, g, h1, . . . , hs ∈ F[x,y], p0, pρ 6= 0
OUTPUT: general solution (f,λ) ∈ F[x,y] × F

s of Lf = g +
Ps

j=1 λjhj where L =
Pρ

i=0 pi · Ei

CALLING SEQUENCE: MixedPoly(eqn, unknown, params)
EXTERNAL ALGORITHMS USED:

Poly(e, t,λ) returns general solution (t,λ) of the parametric nonhomogeneous ordinary recur-
rence e (see [2])
LinSolve(e, x,λ) returns general solution λ of the linear algebraic equations resulting from
equating the coefficients of like powers of x on both sides of the polynomial equation e

α := max0≤i≤ρ degy pi

pi,α(x) := [yα ] pi

d := max0≤i≤ρ degx pi,α(x)
pi,α,d := [xd] pi,α(x)
P (x) :=

Pρ

i=0 pi,α,dxi

R := {σ ∈ N
m
0 ; P (qσ) = 0}

rhs := g +
Ps

j=1 λjhj

f := 0
while R 6= ∅ or rhs 6= 0 do

if R 6= ∅ then µ := max≺R else µ := ⊥

if rhs 6= 0 then β := degy rhs else β := ⊥

if α+ µ Â β then

ϕ := µ

(t′,λ′) := Poly(
Pρ

i=0 pi,α(x)qiϕt(x + i) = 0, t,λ)
f := f + t′yϕ

17



rhs := rhs|λ←λ ′ − L (t′yϕ)
R := R \ {ϕ}

end

else if α ⊆ β then

ϕ := β − α

(t′,λ′) := Poly(
Pρ

i=0 pi,α(x)qiϕt(x + i) = [yβ ] rhs, t,λ)
f := f + t′yϕ

rhs := rhs|λ←λ ′ − L (t′yϕ)
if ϕ = µ then R := R \ {ϕ}

end

else

λ′ := LinSolve([yβ ] rhs = 0, x,λ)
rhs := rhs|λ←λ ′

end

end

return f .

NB: If either Poly or LinSolve fails then MixedPoly fails as well.

B Algorithm CanonicalForm

INPUT: r ∈ F(x,y) \ {0}
OUTPUT: canonical form of r
EXTERNAL ALGORITHMS USED:

Resultant(a, b, x) returns the resultant of polynomials a, b w.r.t. x
GCD(a, b) returns the mixed monic gcd of polynomials a, b

let r = (u/v) · (a0/b0) where a0b0 ⊥ M, a0u ⊥ b0v, u, v ∈ M, and b0 is mixed monic

P (ξ,η) := Resultant(a(x,y), b(x + ξ,ηy), x)
for i = 1, . . . , m do

P (ξ,η) := P (ξ,η)·Resultant(a(x,y), b(x + ξ,ηy), yi)
end

let h1 < h2 < · · · < hN be the roots h ∈ N0 of p(h) = P (h,qh)
c0 := 1
for i = 1, . . . , N do

si := GCD(ai−1,E
hibi−1)

ai := ai−1/si

bi := bi−1/E
−hisi

ci := ci−1

Qhi

j=1 E−jsi

end

a := u · aN

b := v · bN

c := cN

return (a, b, c).

C Algorithm MixedGosper

INPUT: mixed hypergeometric sequence tn

OUTPUT: mixed hypergeometric sequence sn such that sn+1 − sn = tn, if it exists

r := Φ(tn+1/tn) (see Theorem 2.2)
(a, b, c) := CanonicalForm(r)
u := 1
for i = 1 to m do
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if πi(ab) = 0
then

ei := 0
else

(ai, bi, ci) := CanonicalForm(πi(b/a))
if ∃v, w ∈ M : (v ⊥ w and ai/bi = v(q)/w(q))
then

ei := degyi
w

else ei := 0
end

u := u · yei
i

end

(p, 〈 〉) := MixedPoly(a · Ep − u(q) · E−1b · p = u(q)u · c, p, 〈 〉)
R := (p · E−1b)/(u · c)
return Φ−1(R) · tn.

NB: If MixedPoly fails then MixedGosper fails as well.

D Algorithm MixedHyper

INPUT: p0, . . . , pρ ∈ F[x,y], p0, pρ 6= 0
OUTPUT: mixed hypergeometric solution f of

Pρ

i=0 pi · Eif = 0, if it exists

for all mixed monic factors a of p0 and b of E1−ρpρ do

for i = 1 to ρ do Pi := pi

Qi−1
j=0 Eja

Qρ−1
j=i

Ejb
α := min0≤i≤ρ mindegyPi

for i = 0 to ρ do pi,α := [yα ] Pi

d := max0≤i≤ρ degx pi,α

for i = 0 to ρ do pi,α,d := [xd] pi,α

for all τ such that
Pρ

i=1 pi,α,dτ i = 0 do

for j = 1 to m do

order terms lexicographically with yj first

αj := min0≤i≤ρ mindegyPi

for i = 0 to ρ do pi,αj
:= [yαj ] Pi

dj := max0≤i≤ρ degx pi,αj

for i = 0 to ρ do pi,αj ,dj
:= [xd] pi,αj

let σ1, . . . , σs be the roots of
Pρ

i=0 pi,αj ,dj
σi = 0

let bj be the minimum of the j-th components of σ1, . . . , σs

u := yb1
1 · · · ybm

m

(d̄, 〈 〉) := MixedPoly(
Pρ

i=0 τ iu(q)iPi · Eid̄ = 0, d̄, 〈 〉)
if d̄ 6= 0 then

r := τu(q) a
b

Ed̄

d̄

return a non-zero solution f of Ef = rf and stop

end

end

end

stop.

NB: If the original term order is lexicographic with y1 as the first variable, then in the innermost loop
j runs from 2 to m and we set b1 = 0.
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