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Abstract. In this paper I compare two well studied approaches to topological semantics—
the domain-theoretic approach, exemplified by the category of countably based equilogical
spaces, Equ, and Type Two Effectivity, exemplified by the category of Baire space repre-
sentations, Rep(B). These two categories are both locally cartesian closed extensions of
countably based T0-spaces. A natural question to ask is how they are related.

First, we show that Rep(B) is equivalent to a full coreflective subcategory of Equ, con-
sisting of the so-called 0-equilogical spaces. This establishes a pair of adjoint functors be-
tween Rep(B) and Equ. The inclusion Rep(B) → Equ and its coreflection have many desirable
properties, but they do not preserve exponentials in general. This means that the carte-
sian closed structures of Rep(B) and Equ are essentially different. However, in a second
comparison we show that Rep(B) and Equ do share a common cartesian closed subcategory
that contains all countably based T0-spaces. Therefore, the domain-theoretic approach and
TTE yield equivalent topological semantics of computation for all higher-order types over
countably based T0-spaces. We consider several examples involving the natural numbers and
the real numbers to demonstrate how these comparisons make it possible to transfer results
from one setting to another.

1 Introduction

In this paper I compare two approaches to topological semantics—the domain-theoretic
approach, exemplified by the category of countably based equilogical spaces [6, 22],
Equ, and Type Two Effectivity (TTE) [26, 25, 24, 13], exemplified by the category of
Baire space representations, Rep(B). These frameworks have been extensively stud-
ied, albeit by two somewhat separate research communities. The present paper relates
the two approaches and helps transfer results between them.

Domain-theoretic models of computation arise from the idea that the result of a
(possibly infinite) computation is approximated by the finite stages of the computa-
tion. As the computation progresses, the finite stages approximate the final result
ever so better. This leads to a formulation of partially ordered spaces, called domains,
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in which every element is the supremum of the distinguished “finite” elements that
are below it, see [1] and [23] for further material on domain theory.

The TTE framework arises from the study of (possibly infinite) computations
performed by Turing machines that read infinite input tapes and write results on
infinite output tapes. If we view input and output tapes as a sequences of natural
numbers, then Turing machines correspond to computable partial operators on the
Baire space B = N

N. We obtain a purely topological model of computation by con-
sidering all continuous partial operators on B, not just the computable ones, see [26]
for further material on TTE.

We use the category of equilogical spaces as an exemplification of the domain-
theoretic approach to topological semantics. Already in the original manuscript [22]
Scott showed that equilogical spaces are equivalent to partial equivalence relations
(PERs) on algebraic lattices, and in [6, 5] it was showed that equilogical spaces
are a generalization of domain theory with totality [9, 8, 7, 19, 20]. The crucial
observation needed for those results is that equilogical spaces are equivalent to the
category of dense PERs on algebraic domains (a PER on a domain is said to be
dense if its extension is a dense subset of the domain). In this sense, it is fair to say
that equilogical spaces generalize several domain-theoretic frameworks and contain a
number of important categories of domains that have been studied, but of course not
all of them. In this paper we focus solely on the countably based equilogical spaces,
and call them simply “equilogical spaces”.

As the ambient category of TTE we take the category of Baire space represen-
tations, Rep(B), which is defined in Section 3. Contemporary formulations of TTE
often use the Cantor space in place of the Baire space, but since we are not con-
cerned with computational complexity here, it does not matter which one we use
because they yield in equivalent categories. We call Baire space representations just
“representations”.

Equilogical spaces and representations both form locally cartesian closed exten-
sions of the category of countably based T0-spaces, ωTop0. Thus they are both ap-
pealing models of computation on topological spaces. This is why it is important
from the programming semantics point of view to understand precisely how they are
related.

The general framework within which we carry out the comparison is realizability
theory, since Equ and PER(B) are just realizability models; the former is equivalent to
the PER model on the Scott-Plotkin graph model PN, whereas the latter is equivalent
to the PER model on the Second Kleene Algebra B. We can then use Longley’s theory
of applicative morphisms between partial combinatory algebras (PCAs) to compare
the two PER models [16]. While this may be the most general and elegant technique
that could be used to compare other semantic frameworks as well, it has a distinctly
anti-topological flavor. But we can translate all the results from realizability back
into the language of topology, which is precisely what we do. This immediately gives
us the first result: a simple topological description of Rep(B), without any mention
of the partial combinatory structure of the Second Kleene Algebra.

From the topological description of Rep(B) so obtained, it is apparent that Rep(B)
is equivalent to a full subcategory of Equ. This subcategory is denoted by 0Equ

and consists of all the 0-equilogical spaces, which are those equilogical spaces whose
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underlying topological spaces are 0-dimensional. The inclusion I : 0Equ → Equ has a
coreflection D : Equ → 0Equ. These two functors have many desirable properties, but
they do not preserve the function spaces in general.

We compare Equ and Rep(B) in another way, by demonstrating that they share
a common cartesian closed subcategory that contains all countably based T0-spaces.
This subcategory was discovered by Menni and Simpson [18, 17] as the category of
ω-projecting T0-quotients, and by Schröder [21] as the category of sequential T0-spaces
with admissible representations. We prove that these two categories coincide. There-
fore, the domain-theoretic approach and TTE yield equivalent topological semantics
of computation for all higher-order types over countably based T0-spaces.

Finally, we discuss various consequences and the potential for transfer of results
between the two settings, in particular with respect to the natural numbers, the real
numbers, and their higher-order function spaces.

The paper is organized as follows. In Section 2 we review the basic definitions
and facts about equilogical spaces and ω-projecting quotients. In Section 3 we review
Baire space representations and admissible representations. Sections 4 and 5 contain
the two comparisons of Equ and Rep(B). In Section 6 we obtain various transfer
results between the two settings.

The material presented here is part of my Ph.D. dissertation [4], written under
the supervision of Dana Scott. The omitted proofs can be found in the dissertation. I
gratefully acknowledge helpful discussions about this topic with Steven Awodey, Lars
Birkedal, Peter Lietz, Alex Simpson, Matthias Schröder, and Dana Scott.

2 Equilogical Spaces and ω-projecting Quotients

An equilogical space was defined by Scott [22, 6] to be a T0-space with an equivalence
relation. Here we are only interested in countably based equilogical spaces, which are
countably based T0-spaces with equivalence relations. We denote the category of
countably based T0-spaces and continuous maps by ωTop0. We omit the qualifier
“countably based” from now on, unless we are explicitly dealing with spaces that are
not countably based.

More precisely, an equilogical space is a pair X = (|X|,≡X) where |X| ∈ ωTop0

and ≡X is an equivalence relation on the underlying set of |X|. The associated
quotient of an equilogical space X is the topological quotient ‖X‖ = |X|/≡X . The
canonical quotient map |X| → ‖X‖ is denoted by qX . Note that ‖X‖ need not be
T0 or countably based. A morphism f : X → Y between equilogical spaces X and Y
is a continuous map f : ‖X‖ → ‖Y ‖ that is tracked by some (not necessarily unique)
continuous map g : |X| → |Y |, which means that the following diagram commutes:

|X|
g //

qX

²²

|Y |

qY

²²
‖X‖

f
// ‖Y ‖
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Any map g that appears in the top row of such a diagram is equivariant, or extensional,
meaning that, for all x, y ∈ |X|, x ≡X y implies gx ≡Y gy.2) The category of
equilogical spaces and morphisms between them is denoted by Equ.

An exponential of X and Y is an object E = Y X with a morphism e : E×X → Y ,
called the evaluation map, such that, for all Z and f : Z × X → Y , there exists a

unique map f̃ : Z → E, called the transpose of f , such that the following diagram
commutes:

E ×X

e

""E
E

E
E

E
E

E
E

E
E

E
E

E

Z ×X

f̃ × 1X

OO

f
// Y

A weak exponential is defined in the same way but without the uniqueness requirement

for f̃ . A category is said to be cartesian closed when it has the terminal object,
finite products, and all exponentials. It is locally cartesian closed when every slice is
cartesian closed.

The category Equ is equivalent to the PER model PER(PN) [4, Theorem 4.1.3],
which is a regular locally cartesian closed category. This equivalence gives us a
description of exponentials in Equ, though a very impractical one. A somewhat better
description can be obtained as follows. Suppose X and Y are equilogical spaces, and
(W, e) is a weak exponential of |X| and |Y | in ωTop0. Define a relation ≡E on W by

f ≡E g ⇐⇒ ∀x, y ∈ |X| . (x ≡X y =⇒ e(f, x) ≡Y e(g, y)) .

Let E = (|E|,≡E) be the equilogical space whose underlying space is

|E| =
{
f ∈W

∣∣ f ≡E f
}
⊆W .

It is easy to check that E with the morphism induced by the evaluation map e : |E|×
|X| → |Y | is the exponential of X and Y [4, Proposition 4.1.7]. The category ωTop0

has weak exponentials, thus the preceding construction shows that Equ has exponen-
tials. It would be desirable to have a good theory of weak exponentials of topological
spaces, as that would give us better descriptions of exponentials in Equ. In certain
cases (weak) exponentials have good descriptions. For example, if |X| is locally com-
pact and Hausdorff, then the space of continuous maps W = C(|X|, |Y |) with the
compact-open topology together with the usual evaluation map is an exponential
of |X| and |Y | in ωTop0.

Every countably based T0-space X can be viewed as an equilogical space (X,=X)
where =X is equality on X. This defines a full and faithful inclusion I : ωTop0 → Equ.
The inclusion preserves finite limits, coproducts, and all exponentials that already ex-
ist in ωTop0. Preservation of exponentials follows directly from the above description
of exponentials in Equ.

There is the associated quotient functor Q : Equ → Top that maps an equilogical
space X to the associated quotient QX = ‖X‖ and a morphism f : X → Y to the

2)We could define morphisms between equilogical spaces to be equivalence classes of equivariant

maps, which is the original definition from [22].
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continuous map Qf = f : ‖X‖ → ‖Y ‖. Here Top is the category of all topological
spaces and continuous maps, because the associated quotient need not be countably
based or T0. Clearly, Q is a faithful functor, and it is not hard too see that it is not
full. Menni and Simpson [18, 17] showed that there is a largest subcategory C of Equ

such that Q restricted to C is full. They worked with equilogical spaces built from
all countably based topological spaces, as opposed to just T0-spaces, but their results
hold when we restrict them to T0-spaces. We are restricting to T0-spaces because
Schröder proved that every space with an admissible representation is a T0-space.
Below we summarize the relevant findings from [18, 17].

D e f i n i t i o n 2.1. A subset S ⊆ X of a topological space X is sequentially open
when every sequence with limit in S is eventually in S. A topological space X is a
sequential space when every sequentially open set V ⊆ X is open in X. The category
of sequential spaces and continuous maps between them is denoted by Seq.

T h e o r e m 2.2. Sequential spaces form a cartesian closed category that contains
ωTop0. The inclusion ωTop0 → Seq preserves finite limits and all exponentials that
already exist in ωTop0.

P r o o f. This is well known and follows from the fact that Seq is a reflective
subcategory of the cartesian-closed category Lim of limit spaces [14], and the reflection
preserves products. ¤

De f i n i t i o n 2.3. Let X ∈ ωTop0 and q : X → Y be a continuous map. Then q
is said to be ω-projecting when for every Z ∈ ωTop0 and every continuous map
f : Z → Y there exists a lifting g : Z → X such that f = q ◦ g.

An equilogical spaceX is ω-projecting when the canonical quotient map qX : |X| →
‖X‖ is ω-projecting. The full subcategory of Equ on the ω-projecting equilogical
spaces is denoted by EPQ0. Let PQ0 be the category of those T0-spaces Y for which
there exists an ω-projecting map q : X → Y .

The name PQ0 stands for “ω-projecting quotient”, and EPQ0 stands for “equilog-
ical ω-projecting quotient”.

T h e o r e m 2.4 (Menni & Simpson [18]). The category PQ0 is a cartesian closed
subcategory of Seq, EPQ0 is a cartesian closed subcategory of Equ, and the cate-
gories PQ0 and EPQ0 are equivalent via the restriction of the associated quotient
functor Q : EPQ0 → PQ0.

P r o o f. See [18]. In fact, Menni and Simpson prove that PQ0 is the largest
common subcategory C of Equ and Top such that Q restricted to C is full. ¤

3 Type Two Effectivity

In this section we review the basic setup of Type Two Effectivity. The Baire space B =
N

N is the set of all infinite sequences of natural numbers, equipped with the product
topology. Let N

∗ be the set of all finite sequences of natural numbers. The length of
a finite sequence a is denoted by |a|. If a, b ∈ N

∗ we write a v b when a is a prefix
of b. Similarly, we write a v α when a is a prefix of an infinite sequence α ∈ B. A
countable topological base for B consists of the basic open sets, for a ∈ N

∗,

a::B =
{
a::β

∣∣ β ∈ B
}

=
{
α ∈ B

∣∣ a v α
}
.
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The expression a::β denotes the concatenation of the finite sequence a ∈ N
∗ with the

infinite sequence β ∈ B. We write n::β instead of [n]::β for n ∈ N and β ∈ B. The base{
a::B

∣∣ a ∈ N
∗
}

is a clopen countable base for the topology of B, which means that
B is a countably based 0-dimensional T0-space. Recall that a space is 0-dimensional
when its clopen subsets form a base for its topology. A 0-dimensional T0-space is
always Hausdorff.

In order to obtain a simple topological description of Baire space representations,
we need to characterize subspaces of B and those partial continuous maps B ⇀ B

that can be encoded as elements of B. This is accomplished by the Embedding and
Extension Theorems for B, which we prove next.

T h e o r e m 3.1 (Embedding Theorem for B). A topological space is a 0-dimensional
countably based T0-space if, and only if, it embeds into B.

P r o o f. Clearly, every subspace of B is a countably based 0-dimensional T0-
space. Suppose X is a countably based 0-dimensional T0-space with a countable
base

{
Uk

∣∣ k ∈ N
}

of clopen sets. Define the map e : X → B by

ex = λn∈N . (if x ∈ Un then 1 else 0) .

It is easy to check that e is a topological embedding. ¤

For topological spaces X and Y , a partial map f : X ⇀ Y is said to be continuous
when the restriction to its domain f : dom(f) → Y is a continuous (total) map,
where dom(f) is equipped with the subspace topology inherited from X. There is no
requirement that dom(f) be an open subset of X. We consider partial continuous
maps B ⇀ B and characterize those that can be encoded as elements of B.

Given a finite sequence of numbers a = [a0, . . . , ak−1], let seq a be a standard
encoding of a as a natural number. For α ∈ B let αn = seq [α0, . . . , α(n − 1)], and
for α, β ∈ B define α ? β by

α ? β = n ⇐⇒ ∃m∈N .
(
α(βm) = n+ 1 ∧ ∀ k < m .α(βk) = 0

)
.

If there is no m ∈ N that satisfies the above condition, then α ? β is undefined.
Thus, ? is a partial operation B × B ⇀ N. It is continuous because the value of
α ?β depends only on finite prefixes of α and β. The continuous function application
¤ |¤ : B × B → N ⇀ N is defined by

(α | β)n = α ? (n::β) .

Every α ∈ B represents a partial function ηα : B ⇀ B defined by

ηαβ = α | β .

We say that a partial map f : B ⇀ B is realized when there exists α ∈ B such that
f = ηα. Such an α is called a realizer for f . Because | is a continuous operation,
a realized map is always continuous, although not every partial continuous map is
realized. Recall that a Gδ-set is a set that is equal to a countable intersection of open
sets.

P r o p o s i t i o n 3.2. If U ⊆ B is a Gδ-set then the following function u : B ⇀ B is
realized:

uα =

{
λn : N . 1 α ∈ U ,

undefined otherwise .
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P r o o f. The set U is a countable intersection of countable unions of basic open
sets, U =

⋂
i∈N

⋃
j∈N

ai,j ::B. Define a sequence υ ∈ B for all i, j ∈ N by υ(seq (i::ai,j)) =
2, and set υn = 0 for all other arguments n. It is not hard to check that υ real-
izes u. ¤

C o r o l l a r y 3.3. Suppose α ∈ B and U ⊆ B is a Gδ-set. Then there exists β ∈ B

such that ηαγ = ηβγ for all γ ∈ dom(ηα) ∩ U and dom(ηβ) = U ∩ dom(ηα).

P r o o f. Apply Proposition 3.2 to U and let υ be the realizer of u, as in the proof
of the proposition. It suffices to show that the function f : B ⇀ B defined by (fβ)n =
((ηυβ)n) · ((ηαβ)n) is realized. This is so because coordinate-wise multiplication of
sequences is realized, and so are pairing and composition, see for example[26]. ¤

T h e o r e m 3.4 (Extension Theorem for B). (a) Every partial continuous map
B ⇀ B can be extended to a realized one. (b) The realized partial maps B ⇀ B are
precisely those continuous partial maps whose domains are Gδ-sets.

P r o o f. (a) Suppose f : B ⇀ B is a partial continuous map. Consider the set
A ⊆ N

∗ × N
2 defined by

A =
{
〈a, i, j〉 ∈ N

∗ × N
2

∣∣

a::B ∩ dom(f) 6= ∅ and ∀α∈ (a::B ∩ dom(f)) . ((fα)i = j)
}
.

If 〈a, i, j〉 ∈ A, 〈a′, i, j′〉 ∈ A and a v a′ then j = j′ because there exists α ∈ a′::B ∩
dom(f) ⊆ a::B ∩ dom(f) such that j = (fα)i = j ′. Define a sequence φ ∈ B as
follows: for every 〈a, i, j〉 ∈ A let φ(seq (i::a)) = j+ 1, and for all other arguments let
φn = 0. It is not hard to check that ηφ extends f .

(b) For any α ∈ N, ηα is a continuous map because the value of (ηαβ)n depends
only on n and finite prefixes of α and β. The domain of ηα is the Gδ-set dom(ηα) =⋂
n∈N

⋃
m∈N

{
β ∈ B

∣∣ α ? (n::β) = m
}
. Each of the sets

{
β ∈ B

∣∣ α ? (n::β) = m
}

is
open because ? and :: are continuous operations. Now let f : B ⇀ B be a partial
continuous function whose domain is a Gδ-set. By part (a) of this theorem there
exists φ ∈ B such that fα = ηφα for all α ∈ dom(f). By Corollary 3.3 there exists
ψ ∈ B such that dom(ηψ) = dom(f) and ηψα = ηφα for every α ∈ dom(f). ¤

A Baire space representation, or simply a representation, is a partial surjection
δS : B ⇀ S, where S is a set. A representation δS : B ⇀ S of a set S induces a
quotient topology on S, defined by

U ⊆ S open ⇐⇒ δ−1
S (U) open in dom(δS) .

We denote by ‖S‖ the topological space S with the quotient topology induced by δS .
A realized map f : (S, δS) → (T, δT ) is a function f : S → T such that there exists a
partial continuous map g : B ⇀ B which tracks f , meaning that dom(f) ⊆ dom(g) and
that, for every α ∈ dom(f), f(δSα) = δT (gα). A realized map f is always continuous
as map f : ‖S‖ → ‖T‖. The category of Baire space representations and realized
maps is denoted by Rep(B).

The category Rep(B) is equivalent to the PER model PER(B) where B is viewed
as the Second Kleene Algebra (B, | ). The objects of PER(B) are partial equivalence
relations on B. If A is a PER on B we denote it by A when we think of it as an
object and by =A when we think of it as a binary relation. For A,B ∈ PER(B), we
say that α ∈ B realizes a morphism [α] : A → B when, for all β, γ ∈ B, if β =A γ,
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then α | β and α | γ are defined, and α | β =B α | γ. Here α and α′ realize the same
morphism, [α] = [α′], when, for all β, γ ∈ B, β =A γ implies α | β =B α′ | γ. The
equivalence of Rep(B) and PER(B) assigns to each representation δS : B ⇀ S the PER
=S defined by α =S β ⇐⇒ δS(α) = δS(β). If f : (S, δS) → (T, δT ) is a realized map
in Rep(B), tracked by g : B ⇀ B, then by Extension Theorem 3.4 there exists α ∈ B

such that ηα is a continuous extension of g. Under the equivalence Rep(B) ' PER(B),
the morphism f corresponds to the morphism [ηα]. The most relevant consequence
of this equivalence is that Rep(B) is a regular locally cartesian closed category, since
every PER model on a PCA is such a category [4]. For example, the exponential BA

of PERs A,B ∈ PER(B) is defined by

α =BA α′ ⇐⇒ ∀β, γ ∈B . (β =A γ =⇒ (α | β) ↓ =B (α′ | γ) ↓) .

Unfortunately, this description of exponentials in not very helpful in particular cases,
and it completely obscures the topological properties of exponentials. In many im-
portant cases better descriptions are available, cf. Theorem 4.5.

In TTE we are typically interested in representations of topological spaces, rather
than arbitrary sets. For this reason it is important to represent a topological space X
with a representation (X, δX) which has a reasonable relation to the topology of X.
An obvious requirement is that the original topology of X should coincide with the
quotient topology of ‖X‖. However, as is well known by the school of TTE, this
requirement is too weak because it allows ill-behaved representations. A desirable
condition on representations of topological spaces is that all continuous maps between
them be realized. Thus, we are led to further restricting the allowable representations
of topological spaces as follows.

D e f i n i t i o n 3.5. An admissible representation of a topological space X is a par-
tial continuous quotient map δ : B ⇀ X such that every partial continuous map
f : B ⇀ X can be factored through δ. This means that there exists g : B ⇀ B such
that fα = δ(gα) for all α ∈ dom(f).

The main effect of this definition is that if δX : B ⇀ X and δY : B ⇀ Y are
admissible representations, then every continuous map f : X → Y is realized, and
conversely, every realizer that respects δX and δY induces a continuous map X → Y .

The requirement that and admissible representation δ : B ⇀ X be a quotient
map implies that X is a sequential space, since it is a quotient of the sequential
space dom(δ). It is easy to show that any two admissible representations are isomor-
phic in Rep(B). An obvious question to ask is which sequential spaces have admissible
representations.

D e f i n i t i o n 3.6. Let AdmSeq be the full subcategory of Seq on those sequential
spaces that have admissible representations.

Schröder [21] has characterized AdmSeq as follows.
D e f i n i t i o n 3.7 (Schröder [21]). A pseudobase for a space X is a family B of

subsets of X such that whenever 〈xn〉n∈N →O(X) x∞ and x∞ ∈ U ∈ O(X) then there
exists B ∈ B such that x∞ ∈ B ⊆ U and 〈xn〉n∈N is eventually in B.

T h e o r e m 3.8 (Schröder [21]). A sequential space has an admissible representa-
tion if, and only if, it is a T0-space and it has a countable pseudobase.
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From Schröder’s proof of Theorem 3.8 we get a specific admissible representation δ
for a T0-space X with a countable pseudobase

{
Bk

∣∣ k ∈ N
}
, defined by

δ(α) = x ⇐⇒

∀ k∈N . (x ∈ Bαk) ∧ ∀U ∈O(X) . (x ∈ U =⇒ ∃ k∈N . Bαk ⊆ U) .

The above formula says that α is a δ-representation of x when α enumerates (indices
of) a sequence of pseudobasic open neighborhoods of x that get arbitrarily small. In
case X is a T0-space with a countable base

{
Uk

∣∣ k ∈ N
}
, we may use an equivalent

but simpler admissible representation δ′, defined by

δ′(α) = x ⇐⇒
{
Uαk

∣∣ k ∈ N
}

=
{
Un

∣∣ n ∈ N ∧ x ∈ Un
}
.

The above formula says that α is a δ′-representation of x when it enumerates the
basic open neighborhoods of x.

IfX ∈ AdmSeq then its admissible representation is determined up to isomorphism
in Rep(B). Therefore, AdmSeq is equivalent to the full subcategory of Rep(B) on the
admissible representations, so that AdmSeq can be thought of as a subcategory of
Rep(B). The following result by Schröder [21] tells us that the inclusion of AdmSeq

into Rep(B) preserves the cartesian closed structure.
T h e o r e m 3.9 (Schröder [21]). Let (X, δX) and (Y, δY ) be admissible represen-

tations for sequential T0-spaces X and Y . Then the product (X, δX)× (Y, δY ) formed
in Rep(B) is an admissible representation of the product X × Y formed in Seq, and
similarly the exponential (Y, δY )(X,δX) formed in Rep(B) is an admissible representa-
tion for the exponential Y X formed in Seq.

4 Rep(B) as a subcategory of Equ

In this section we describe Rep(B) as a full subcategory of equilogical spaces. We
then study the properties of the inclusion Rep(B) → Equ.

D e f i n i t i o n 4.1. A 0-equilogical space is an equilogical space whose underlying
topological space is 0-dimensional. The category 0Equ is the full subcategory of Equ

on 0-equilogical spaces.
Thus 0Equ is formed just like Equ, where we use 0Dim instead of ωTop0.
T h e o r e m 4.2. The categories 0Equ, Rep(B), and PER(B) are equivalent.

P r o o f. We show that 0Equ and PER(B) are equivalent, since we already know
that PER(B) and Rep(B) are equivalent. By Embedding Theorem 3.1 for B, a count-
ably based T0-space is 0-dimensional if, and only if, it embeds in B. Thus every
0-equilogical space is isomorphic to one whose underlying topological space is a sub-
space of B. This makes it clear that equivalence relations on 0-dimensional countably
based T0-spaces correspond to partial equivalence relations on B. Morphisms work
out, too, since by the Extension Theorem for B 3.4 every partial continuous map on B

can be extended to a realized one. ¤

The inclusion functor I : 0Equ → Equ has a right adjoint D : Equ → 0Equ, which
is defined as follows. For every countably based T0-space X there exists an admissible
representation δX : B ⇀ X. The subspace X0 = dom(δ) ⊆ B is a countably based
0-dimensional Hausdorff space. Now if X = (|X|,≡X) is an equilogical space, let
DX = (X0,≡DX) where a ≡DX b if, and only if, δXa ≡X δXb. If f : X → Y is a
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morphism in Equ, tracked by g : |X| → |Y |, then Df is the morphism tracked by a
continuous map h : X0 → Y0 that tracks g : X → Y , which exists because δX and δY
were chosen to be admissible representations. The main properties of the adjoints
I a D are summarized in the following theorem.

T h e o r e m 4.3. (1) Functors I and D are a section and a retraction, i.e., D◦I
is naturally equivalent to 10Equ.

(2) I is full and faithful and preserves countable colimits and limits (which are
precisely all the limits and colimits that exist in Equ).

(3) D is faithful and preserves countable limits and colimits (which are precisely all
the limits and colimits that exist in 0Equ).

(4) D is not full, but its restriction to EPQ0 is full.

P r o o f. (1) This follows by a general category-theoretic argument from the fact
that I is full and faithful, cf. the dual of [10, Proposition 3.4.1].

(2) It is obvious that I is full and faithful since it is just the inclusion functor of
a full subcategory. It preserves colimits because it is a left adjoint, and it preserves
limits because the inclusion 0Dim → ωTop0 does.

(3) It is obvious that D is faithful, and it preserves limits because it is a right
adjoint. That D preserves finite colimits can be verified explicitly, and it also fol-
lows from [16, Proposition 2.5.11]. That D preserves countable coproducts holds
because a countable coproduct of admissible representations is again an admissible
representation.

(4) If D were full then by [10, Proposition 3.4.3] it would follow that the counit
of the adjunction η : I ◦ D → 1Equ is a natural isomorphism, which obviously is
not the case. For example, ηR is not a natural isomorphism, where R are the real
numbers equipped with the Euclidean topology, because every morphism R → I(DR)
is constant, as it must be tracked by a continuous map from R into the 0-dimensional
Hausdorff space |I(DR)|. However, when D is restricted to EPQ0 then we can show
that it is full as follows. Suppose X,Y ∈ EPQ0, and let rX : X0 → |X| and rY : Y0 →
|Y | be admissible representations. Suppose f : DX → DY is a morphism tracked by
a continuous map g : X0 → Y0. The situation is shown in the following diagram:

X0
rX //

g

²²

|X|
qX //

h

²²

‖X‖

f

²²
Y0 rY

// |Y | qY
// ‖Y ‖

Because qY is ω-projecting, f is tracked by an arrow h : |X| → |Y | so that the lower
square commutes. Therefore f is a morphism in Equ, hence Df = f . ¤

Re m a r k 4.4. Since I and D both preserve all limits and colimits that exist, one
wonders whether they have any further adjoints.3) This does not seem to be the case.
One might try embedding the categories Equ and Rep(B) into larger categories and

3)Note that Equ and 0Equ are only countably complete and cocomplete so that we cannot directly

apply the Adjoint Functor Theorem.
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extending I and D, in hope that the “missing” adjoint can be obtained that way. This
idea was worked out in [2] for a general applicative retraction I a D between PER
models. The PER models were embedded into suitable toposes of sheaves over PCAs.
The adjunction I a D then extends to an adjunction at the level of toposes, with a
further right adjoint. This makes it possible to apply the logical transfer principle
from [3] to show that a certain class of first-order sentences is valid in the internal
logic of Equ if, and only if, it is valid in the internal logic of Rep(B).

The next question to ask is whether I and D preserve any exponentials.
T h e o r e m 4.5. (1) Functor D restricted to EPQ0 preserves exponentials.

(2) If X,Y ∈ 0Equ and there exists in ωTop0 a 0-dimensional weak exponential
of |X| and |Y |, then I preserves the exponential Y X .

(3) Functor I preserves the natural numbers object N, the exponentials N
N and 2N,

and the object Rc of Cauchy reals.

(4) Functor I does not preserve exponentials in general. In particular, it does not

preserve N
N

N

.

P r o o f. (1) This follows from results obtained in Section 5, and so we postpone
the proof until then. It can be found on page 13.

(2) If W ∈ 0Dim is a weak exponential of X and Y in ωTop0, then it is also a
weak exponential of X and Y in 0Dim. Therefore, the construction of Y X from W
in Equ, as described in Section 2, coincides with the one in 0Equ.

(3) The Baire space N
N and the Cantor space 2N both satisfy the condition

from (2). The real numbers object Rc is a regular quotient of N × 2N [4, Propo-
sition 5.5.3], and the left adjoint I preserves it because it preserves N, 2N, products,
and coequalizers.

(4) Let X = N
N

N

in 0Equ, and let Y = N
N

N

in Equ. The space |X| is a Hausdorff
space. The space |Y | is the subspace of the total elements of the Scott domain
DY = [N⊥

ω → N⊥]. The equivalence relation on |Y | is the consistency relation
of DY restricted to |Y |. Suppose f : |Y | → |X| represented an isomorphism, and
let g : |X| → |Y | represent its inverse. Because f is monotone in the specialization
order and |X| has a trivial specialization order, a ≡Y b implies fx = fy. Therefore,
g ◦ f : |Y | → |Y | is an equivariant retraction. By [4, Proposition 4.1.8], Y is a
topological object. By [4, Corollary 4.1.9], this would mean that the topological
quotient ‖Y ‖ is countably based, but it is not, as is well known. Another way to
see that Y cannot be topological is to observe that Y is an exponential of the Baire

space, but the Baire space is not exponentiable in ωTop0, and in particular N
N

N

is
not a topological object in Equ. ¤

As already mentioned in the introduction, we could obtain the results of this
section by applying Longley’s theory of applicative adjunctions between applicative
morphisms of partial combinatory algebras [16]. Lietz [15] used this approach to
compare the realizability toposes RT(PN) and RT(B).

5 A Common Subcategory of Equ and Rep(B)

In Sections 2 and 3 we saw that sequential spaces contain cartesian closed sub-
categories PQ0 and AdmSeq which are also cartesian closed subcategories of Equ
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and Rep(B), respectively. In this section we prove that PQ0 and AdmSeq are the
same category.

L e m m a 5.1. Suppose B =
{
Bi

∣∣ i ∈ N
}

is a countable pseudobase for a space Y .
Let X be a first-countable space and f : X → Y a continuous map. For every x ∈ X
and every neighborhood V of fx there exists a neighborhood U of x and i ∈ N such
that fx ∈ f(U) ⊆ Bi ⊆ V .

P r o o f. Note that the elements of the pseudobase do not have to be open sets,
so this is not just a trivial consequence of continuity of f . We prove the lemma by
contradiction. Suppose there were x ∈ X and a neighborhood V of fx such that for
every neighborhood U of x and for every i ∈ N, if Bi ⊆ V then f∗(U) 6⊆ Bi. Let
U0 ⊇ U1 ⊇ · · · be a descending countable neighborhood system for x. Let p : N → N

be a surjective map that attains each value infinitely often, that is for all k, j ∈ N

there exists i ≥ k such that pi = j. For every i ∈ N, if Bpi ⊆ V then f∗(Ui) 6⊆ Bpi.
Therefore, for every i ∈ N there exists xi ∈ Ui such that if Bpi ⊆ V then fxi 6∈ Bpi.
The sequence 〈xn〉n∈N converges to x, hence 〈fxn〉n∈N converges to fx. Because B is
a pseudobase there exists j ∈ N such that Bj ⊆ V and 〈fxn〉n∈N is eventually in Bj ,
say from the k-th term onwards. There exists i ≥ k such that pi = j. Now we get
fxi ∈ Bpi ⊆ V , which is a contradiction. ¤

T h e o r e m 5.2. PQ0 and AdmSeq are the same category.

P r o o f. It was independently observed by Schröder that PQ0 is a full subcategory
of AdmSeq, which is the easier of the two inclusions. The proof goes as follows.
Suppose q : X → Y is an ω-projecting quotient map. We need to show that Y is a
sequential space with an admissible representation. It is sequential because it is a
quotient of a sequential space. There exists an admissible representation δX : B ⇀ X.
Let δY = q ◦ δX . Suppose f : B ⇀ Y is a continuous partial map. Because q is
ω-projecting f lifts though X, and because δX is an admissible representation, it
further lifts through B.

It remains to prove the converse, namely that if a sequential T0-space X has an ad-
missible representation then there exists an ω-projecting quotient q : Y → X. Since X
has an admissible representation it has a countable pseudobase B =

{
Bi

∣∣ i ∈ N
}
,

by Theorem 3.8. The powerset PN ordered by inclusion is an algebraic lattice.
We equip it with the Scott topology, which is generated by the subbasic open sets
↑n =

{
a ∈ PN

∣∣ n ∈ a
}
, n ∈ N. Let q : PN ⇀ X be the partial map for which qa = x

if, and only if,

(∀n∈ a . x ∈ Bn) ∧ ∀U ∈O(X) . (x ∈ U =⇒ ∃n∈ a .Bn ⊆ U) .

The map q is well defined because qa = x and qa = y implies that x and y share the
same neighborhoods, so they are the same point of the T0-space X. Furthermore, q
is surjective because B is a pseudobase. To see that p is continuous, suppose pa = x
and x ∈ U ∈ O(X). There exists n ∈ N such that x ∈ Bn ⊆ U . If n ∈ b ∈ dom(p)
then pb ∈ Bn ⊆ U . Therefore, a ∈ ↑n and p∗(↑n) ⊆ Bn ⊆ U , which means that p is
continuous. Let Y = dom(p).

Let us show that q : Y → X is ω-projecting. Suppose f : Z → X is a continuous
map and Z ∈ ωTop0. Define a map g : Z → PN by

gz =
{
n ∈ N

∣∣ ∃U ∈O(Z) . (z ∈ U ∧ f∗(U) ⊆ Bn)
}
.
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The map g is continuous almost by definition. Indeed, if gz ∈ ↑n then there exists
a neighborhood U of z such that f∗(U) ⊆ Bn, but then g∗(U) ∈ ↑n. To finish the
proof we need to show that fz = p(gz) for all z ∈ Z. If n ∈ gz then fz ∈ Bn because
there exists U ∈ O(Z) such that z ∈ U and f∗(U) ⊆ Bn. If fz ∈ V ∈ O(X) then by
Lemma 5.1 there exists U ∈ O(Z) and n ∈ N such that z ∈ U and f∗(U) ⊆ Bn ⊆ U .
Hence, n ∈ gz. This proves that fz = p(gz). ¤

Re m a r k 5.3. Matthias Schröder has showed recently that if a sequential T0-
space X arises as a topological quotient of a subspace of B, then X has an admissible
representation. This result gives a very nice characterization of PQ0: it is precisely the
category of all T0-spaces that are topological quotients of countably based T0-spaces.

The relationships between the categories are summarized by the following diagram:

(1)

Seq Equ ' PER(PN)

Da

²²

ωTop0
// PQ0 = AdmSeq

44jjjjjjjjjjjjjjjjjjj

**TTTTTTTTTTTTTTTTTTT

OO

0Equ ' Rep(B) ' PER(B)

I

OO

The unlabeled arrows are full and faithful inclusions, preserve countable limits, and
countable coproducts. The inclusion ωTop0 → PQ0 preserves all exponentials that
happen to exist in ωTop0, and the other three unlabeled inclusions preserve cartesian
closed structure. The right-hand triangle involving the two inclusions and the core-
flection D commutes up to natural isomorphism (and the one involving the inclusion I
does not).

We still owe the proof of Theorem 4.5(1), namely, that D restricted to EPQ0 pre-
serves exponentials. But this is now obvious, since the right-hand triangle involving D
commutes.

6 Transfer Results between Equ and Rep(B)

The correspondence (1) explains why domain-theoretic computational models agree
so well with computational models studied by TTE—as long as we only build spaces
by taking products, coproducts, exponentials, and regular subspaces, starting from
countably based T0-spaces, we remain in PQ0, the common cartesian closed core of
equilogical spaces and TTE.

As a first example of a transfer result, we translate a characterization of Kleene-
Kreisel countable functionals [11] from Equ to Rep(B). In [6] we proved that the

iterated exponentials N, N
N, N

N
N

, . . . of the natural numbers object N in Equ are
precisely the Kleene-Kreisel countable functionals. Because N is the natural numbers
object in Rep(B) as well, and it belongs to PQ0, the same hierarchy appears in Rep(B).

P r o p o s i t i o n 6.1. In Rep(B), the hierarchy of exponentials N, N
N, N

N
N

, . . . ,
built from the natural numbers object N, corresponds to the Kleene-Kreisel countable
functionals.
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As a second example, we consider transfer between the internal logics of Equ

and Rep(B). Because Equ and Rep(B) are equivalent to realizability models PER(PN)
and PER(B), respectively, they admit a realizability interpretation of first-order in-
tuitionistic logic. This has been worked out in detail in [4]. It is often advantageous
to work in the internal logic, because it lets us argue abstractly and conceptually
about objects and morphisms. We never have to mention explicitly the realizers of
morphisms or the underlying topological spaces, which makes arguments more per-
spicuous. Every map that can be defined in the internal logic is automatically realized
(and computable, if we work with the computable versions of the realizability models).

Suppose we want to use internal logic to construct a particular map f : X → Y
where X,Y ∈ PQ0. For example, we might want to define the definite integration
operator I : R

[0,1] → R,

If =

∫ 1

0

f(x) dx .

It may happen that X and Y are much more amenable to the internal logic of Rep(B)
than to the internal logic of Equ, or vice versa. In such a case we can pick whichever
internal logic is better and work in it, because if a map f : X → Y is definable in one
internal logic, then it exists as a morphism in both Equ and Rep(B).

Let us see how this applies in the case of definite integration. The real numbers R

are much better behaved in Rep(B) than in Equ, because R can be characterized in
the internal logic of Rep(B) as the Cauchy complete Archimedean field, which gives
us all the properties of R we could wish for. On the other hand, in the internal
logic of Equ, R does not seem to be characterizable at all, and it does not even
satisfy the Archimedean axiom ∀x∈R .∃n∈N . x < n because in Equ there is no
continuous choice map c : R → N that would satisfy x < cx for all x ∈ R. This makes
it impractical to argue about R in the internal logic of Equ. The situation with the
space R

[0,1] of continuous real function on the unit interval is similar—it is much better
behaved in the internal logic of Rep(B) than in the internal logic of Equ. In particular,
in Rep(B) the statement “every map f : [0, 1] → R is uniformly continuous” is valid,
whereas it is not valid in the internal logic of Equ. This makes it clear that the internal
logic of Rep(B) is the better choice. Indeed, in the internal logic of Rep(B) definite
integral may be defined in the usual way as a limit of Riemann sums. The convergence
of Riemann sums can then be proved constructively because Rep(B) “believes” that
all maps from [0, 1] to R are uniformly continuous. Once we have constructed the
definite integral operator I : R

[0,1] → R in Rep(B), we can transfer it to Equ via PQ0.
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