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Thank you for the invitation, I am greatly honored to be here at ICFP. And it’s my first time to 
this excellent conference and this excellent city.


In this talk I would like to present ongoing work on implementing a proof assistant with user-
definable type theories, called Andromeda (version 2). I will present an approach that uses PL 
techniques that you will hopefully find useful in other contexts as well.
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Philipp Haselwarter

This is joint work with Philipp Haselwarter, my PhD student who is also attending. You should 
find him and talk to him to find out what’s behind the curtain.


Some of the theoretical parts involving general type theories were done in cooperation with 
Peter Lumsdaine from Stockholm University.




Proof assistant wish list

• small trusted kernel

• user-definable dependent type theories

• including user-definable judgemental equality

• no commitment to an ambient type theory

• support common proof-development 

techniques

!3

To set the stage, let me put up a wish list for a proof assistant that one may want or need to 
perform experiments in type theory. Our motivation arose from trying to implement a proof 
assistant for a type theory that was a moving target and lacked good computational 
properties, namely Vladimir Voevodsky’s “homotopy type system”.


Here is the wish list:

- We want to keep the trusted code base as small as possible.

- We want user-definable dependent type theories, where the user may manipulate 

judgmental equalities in arbitrary ways.

- The ambient meta-theory should be very simple, for instance we may want a type theory 

without product types, or perhaps we do not want to use universes.

- All the while, the proof assistant should support the common techniques that support proof 

development, such as implicit arguments and coercions, automated equality checking, etc.


We believe Andromeda 2 has a good chance to meet these requirements.



Has this been done before?

• Coq, Agda, Lean, …

• Isabelle

• Dedukti

• Twelf, Abella, Beluga
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Of course, we are not the first ones to think about systems that allow one to describe and use 
a type theory.



Has this been done before?

• Coq, Agda, Lean, … – fixed type theory

• Isabelle – commits to ambient HOL

• Dedukti – commits to ambient Πλ-theory

• Twelf, Abella, Beluga – reason about theories
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Often enough a proof assistant is available that supports a type theory that will serve the 
purpose. Some of the most popular proof assistants are baed on such expressive type 
theories. However, if a change is desired or needed, you may be at the mercy of the 
implementors.


Some proof assistants are specifically designed to support user-specified logics and type 
theories, and these are broadly of two kinds, according to their primary purpose: tools like 
Isabelle and Dedukti allow the user to actually use the custom theory, while tools like Twelf, 
Abella and Beluga support meta-level reasoning about the the custom theory.


Andromeda is more like the first kind, i.e., the user describes a type theory for the purpose of 
actually using it. There is no direct support for proving meta-theorems about it. Or to make 
this point more specific: in Andromeda the user can specify a normalization procedure in a 
programming meta-language, but they cannot prove inside Andromeda that the procedure 
works.



Talk outline

1. General type theories

2. “Derivations as computations”

3. Implementation

!6

Here is the plan of the rest of the talk.

- We are going to look at what sort of type theories are supported by Andromeda.

- Then we will explain the motto “derivations as computations”, and how it relates to proof 

assistants.

- And lastly we will look at how the ideas have been implemented in Andromeda 2.



1. General type theories

There are many kinds of type theory. In fact the concept of type theory is open ended and 
difficult to subsume in a single mathematical formalism – which not a bug but a feature.


Our goal was to support a wide variety of type theories, but with a well understood meta-
theory and semantics. In a separate ongoing project we are developing such meta-theory with 
Peter Lumsdaine. As the meta-theory of type theories can be quite technical, I am going to 
skip most details and give a broad outline. 
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Γ ⊢ A type 

Γ ⊢ t : A  

Γ ⊢ A ≡ B  

Γ ⊢ t ≡ u : A

A is a type 

t is a term of type A 

types A and B are equal

terms t and u of type A are equal

We support any type theory that uses the four basic judgment forms, in the style of Martin-
Löf’s type theory, namely: that something is a type, that something is a term, that two type are 
judgmentally equal, and that two terms are judgmentally equal. The judgements are 
hypothetical, i.e., they are under a typing context.


Using such judgements, the user may introduce arbitrary term and type constructions and 
posits inference rules.


There are certain technical restrictions on what inference rules are acceptable, in order to 
guarantee that the type theory has good meta-theoretic properties, but decidable equality 
checking is not one of them, as one of the examples we want to include is extensional type 
theory.


One way to explain our approach here is that type theory is more like generalized algebra, 
rather than a programming language. However, when the user specifies a type theory with 
computational content, the system will allow them to take advantage of it.



!9

rule Π (A type) ({x:A} B type) type 

rule λ (A type) ({x:A} B type) 

       ({x:A} e : B{x}) : Π A B 

rule app (A type) ({x:A} B type) 

         (s : Π A B) (a : A) : B{a} 

rule Π_β (A type) ({x:A} B type) 

         ({x:A} s : B{x}) (a : A) 
  : app A B (λ A B s) a ≡ s{a} : B{a}

Rules for dependent products

To give you an idea of how this is done in Andromeda, here are the rules for dependent 
products.


Each rule has a name, which is also the name of the constructor to form the respective term 
or type.
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rule Π (A type) ({x:A} B type) type 

rule λ (A type) ({x:A} B type) 

       ({x:A} e : B{x}) : Π A B 

rule app (A type) ({x:A} B type) 

         (s : Π A B) (a : A) : B{a} 

rule Π_β (A type) ({x:A} B type) 

         ({x:A} s : B{x}) (a : A) 
  : app A B (λ A B s) a ≡ s{a} : B{a}

Rules for dependent products

Andromeda andromeda-2.0-192-g83e52e04 

# λ A ({_} A) ({x} x) 
- : judgement = ⊢ λ A ({_} A) ({x} x)

This is how the user would then write down the identity function.


The syntax is not very friendly, but let us not get derailed by Wadler’s Law.
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rule Id (A type) (a : A) (b : A) type 

rule equality_reflection 

 (A type) (a:A) (b:A) (p:Id A a b) : 
 a ≡ b : A

Equality reflection

Here is the rule of equality reflection. It says that propositionally equal terms are judgmentally 
equal.


This rule makes extensional type theory undecidable: in order to prove an equality, one has to 
possibly inhabit an arbitrarily complicated identity type.



Examples

• Martin-Löf intensional type theory

• Extensional type theory (equality reflection)

• “Book” homotopy type theory

• Universes a la Tarski (including Type : Type)

• Simply-typed and untyped λ-calculus
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To give you an idea of the scope of type theories under consideration, let us look at some 
examples and non-examples.

- Both the intensional and the extensional versions of Martin-Löf type theory are examples. 

- Another example is homotopy type theory, as presented in the HoTT book.

- One can have universes, including “type in type”, but they have to be a la Tarski, i.e., we 

need to distinguish types and their codes. This is so because in the Martin-Löf-style type 
theories there is a sharp distinction between terms and types. A type cannot be a term, and 
a term cannot be a type.


- Of course, one need not use fully-blown depndent types, and instead restrict to a simply 
type theory. One example we experimented with was the untyped λ-calculus.



Non-examples

• Cubical & cohesive type theory

• Linear type theory

• Pure type systems

• System F

• Universes a la Russell
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As for non-examples, there are two kinds.


First, there are type theories which treat some types in a special way, or have special 
conditions on how typing contexts are treated. Thus cubical type theory and various linear 
type theories are out.


The other kind of non-examples are theories that are incompatible with the Martin-Löf-style 
conception of types. For instance, System F quantifies over all types, and Russell-style 
universes confound a type with the term that represents it. However, one can often get a good 
approximation to such systems by formalizing them in some slightly indirect manner. Anyhow, 
we hope to improve on this in the future.



2. “Derivations as computations”

Having seen that the scope of general type theories is reasonably wide, we should think about 
how one might implement them. Rather than doing this in an ad-hoc manner, we want to first 
identify some guiding principles.
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Γ ⊢ t : A

derivation tree

conclusion

Derivations are well-founded trees

A basic task is to justify a given judgement, say that a term t has type A. The form of such 
justification is a derivation, which is a well-founded (finite) tree whose nodes are instances of 
the given inference rules, and the root  is the desired judgement.


To check that a term t has a type A means that we have to produce such a derivation one way 
or another. Where does it come from?
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Γ ⊢ A type 

Γ ⊢ t : A  

Γ ⊢ A ≡ B  

Γ ⊢ t ≡ u : A

proof  
relevant

proof  
irrelevant

To answer the question, let us first observe that there two kinds of judgements:


- the judgements stating that something is a type and that a term has a type, are proof 
relevant in the sense that they record information (namely the type and the term).


- judgmental equalities are proof-irrelevant, because they state what equations hold, but do 
not record any justification for them.
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proof irrelevant  
sub-derivations  
of equalities

proof relevant  
stump

Γ ⊢ t : A

Consequently, a derivation has a proof relevant part (blue), in which only the rules for type and 
terms are used, and a proof irrelevant parts which derive equalities (red).
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proof irrelevant  
sub-derivations  
of equalities

proof relevant  
stump

Γ ⊢ t : A

can this 
happen?

Can the relevant and irrelevant parts be interleaved? Can a proof-irrelevant part contain a 
further sub-derivation that is proof-relevant? In principle yes, and this it is allowed by our 
system.


However, when proof relevant parts appear inside the proof-irrelevant parts, they do not get 
recorded in the final term. This is the a source of many complications, as it typically renders 
equality checking undecidable.


The so-called equality reflection rule from extensional type theory is precisely of this sort.



!19

proof irrelevant  
sub-derivations  
of equalities

proof relevant  
stump

encoded by t

Γ ⊢ t : A

algorithmic 
equality check

A computationally well-behaved type theory disallows proof-relevant sub-derivations inside 
the proof-irrelevant ones. This way the derivations can be reconstructed algorithmically:

- the proof-relevant stump is read off the term t,

- the proof-irrelevant derivations are reconstructed by an equality checking algorithm, usually 

based on normalization of terms. And because these bits are proof irrelevant, it doesn’t 
matter which derivation is found by the algorithm.


A proof assistant does not actually store such a full derivation tree in memory, as it can be 
huge. What does it actually do?
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isDerivable : judgement ! bool 

A proof assistant is …

A very naive way of understanding a proof assistant is to think of it as a function which gets a 
judgement and checks whether the judgement is derivable. The derivation is implicit in the 
execution trace. It is stored in time, not in space!


However, if proof assistants really worked this way, they would not be helpful at all. The user 
would have to provide judgements, with all the details, and the machine would just accept or 
reject them.
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elaborate : source ! judgement option

A proof assistant is …

In reality, the user provides incomplete information. They write down source code that looks 
like a term or a type, but lacks certain information (for instance, they may omit implicit 
arguments). It is the job of the proof assistant to elaborate the source to an actual judgement, 
or fail.


This view is less naive, but still not good enough. We should be free to organize the passage 
from the source to the judgement in a flexible way.
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elaborate : source ! T judgement

A proof assistant is …

So why not allow other effects as well (embodied here by a monad T) and put them to some 
good use!
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A proof assistant is …

… a programming language!

evaluate : source ! T judgement

Driving this idea to its logical conclusion suggests that a proof assistant should be construed 
as a programming meta-language.  The famous LCF proof assistant from the 1970’s was 
based on this idea. We are just upgrading it to dependent types and modern PL techniques.


Let us not forget however, we still have to guarantee that only derivable judgements can be 
computed. This is achieved by making the datatype of judgements abstract that only a trusted 
kernel may manipulate.


Let me mention in passing that Bob Atkey has done some very interesting related work in 
which he wrapped a type-checker for a programming language into a monad, with very 
interesting results.
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A proof assistant is …

… a programming language!

evaluate : source ! T judgement

a computation 
witnessing the 

derivation

Thus we arrive at our motto: derivations as computations.


To be quite precise, the computation (program) itself does not yet guarantee that the 
judgement is derivable, as it can possibly fail when executed. It is really its execution and 
successful evaluation to a value that witnesses the derivability of a judgement.


This situation mirrors the act of verifying  that a derivation tree is valid, and even less 
informally, the act of reading and understanding a proof. But enough philosophy, let us see 
how we can use PL techniques to take advantage of our motto.



• Equality checking & normalization

• Universe management

• Implicit coercions

• Type classes

• Meta-variables (“Evars”) & unification

• Tactics

Proof assistant techniques

A modern proof assistant employs a number of techniques that help with formalization.

These are implemented by the designers of the proof assistant, and can be quite complex.


They rely on the particularities of the type theory that is implemented. But in Andromeda we 
have user-definable type theories, so what should we do? What can we do?


There is little that we can do, other than to make it the users’ burden to provide such 
techniques. Of course, we do not expect every user to implement their own equality checker 
and type class mechanism – instead the experts would design a library that would deal with a 
particular type theory.

From a PL perspective we need a mechanism that makes such libraries possible.


In Andromeda we use algebraic operations and handlers. Let us see how this works in the 
case of equality checking.
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Effects in Andromeda

Andromeda
ML

User code

J

A ≡ B?

equal(A,B)

⊢ A ≡ B

nucleus

In Andromeda we use algebraic operations and handlers, in the style of the Eff programming 
language. Here is a typical use.


- The user code wants to compute some judgement

- For the judgement to be valid, some equality A ≡ B needs to hold. Because Andromeda has 

no built-in equality checker (it cannot, there may not even be one), it consults the user code 
by triggering an operation equal(A,B)


- The operation is intercepted by a handler which computes the desired judgement A ≡ B. Of 
course, it does so by further evaluation of code, which may trigger even more operations.


- The judgement is passed back to the interpreter, and evaluation may proceed.


In a sense this is just a fancy callback, and in fact we have not had the need for the full power 
of handlers. It is quite likely that a simpler mechanism would suffice, although it needs to be 
dynamic and local, as sometimes one has to use local assumptions to derive an equality.
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Effects in Andromeda

Andromeda
ML

User code

J
have t : A  
check t : B?

coerce(t,B)

⊢ t’ : B

nucleus

In fact, an equality check is triggered when there is a mismatch between the actual and 
expected type of a term. Suppose that, during evaluation of some code J, we need to check 
that t has type B, but we discover it actually has type A.


We could run the operation equal(A,B) to ask for an equality A ≡ B, like on the previous slide, 
and then use conversion to cast t to type B. However, if A and B are not equal, the user-space 
will fail.


Instead ML can trigger an operation coerce, which is handed the term t and the expected type 
B. It expects to be given back some term t’ of type B. In case A ≡ B, t’ may be just converted 
t, but in general it could be anything.


This opens the door for implicit coercions and other techniques that modify a term in order to 
give it the correct type. For instance, this is how we can automatically convert the code of a 
type (element of a Tarski universe), to the type it encodes, and vice versa.


We have found the effects & handlers mechanism to be very flexible. But there is nothing 
special here about using handlers. It should be quite possible to organize this sort of 
interaction between the proof assistant and the user code in some other fashion, say through 
callbacks or continuations.



3. Implementation

Lastly, let me say a few word about the implementation, and show you an example.



Andromeda

• LCF-style proof assistant

• abstract data type judgement
• trusted nucleus (3232 lines of OCaml code)
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Andromeda is implemented in OCaml, of which around 3200 lines of code comprise a trusted 
nucleus. The nucleus does only basic type-theoretic operations, such as applications of 
inference rules, and inversion of those.


The ML evaluator and user code are of course not trusted.



Soundness & completeness
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J derivable  ⇔  ∃p:judgement . p ↝ J

Soundness 
Only derivable judgements can be computed.

Completeness 
Every derivable judgement can be computed.

There is a standard correctness and completeness guarantee.


Philipp Haselwarter’s forthcoming PhD thesis is concerned with the question whether 
Andromeda is sound and complete.



Andromeda 1 & 2

• Andromeda 1

• fixed type theory: equality reflection & Type:Type

• user library: equality checking & implicit arguments 

• Andromeda 2

• user-definable type theory

• user library: forthcoming (had to attend ICFP)
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The original Andromeda, version 1, implemented extensional type theory with equality 
reflection and Type : Type. We also provided a small user library which implemented (in user 
space) an equality checking algorithm that worked well, but was slow.


When we wanted to get rid of Type : Type we noticed that, with a bit of work, we could 
actually get rid of everything, and let the user define type theory entirely. We are almost done, 
the main thing to still port is an equality checking algorithm that will cover type theories that 
enjoy normalization. This time we will implemented it in OCaml (naturally, outside the trusted 
nucleus).
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http://www.andromeda-prover.org/

https://github.com/Andromedans/andromeda

Thank you for your attention. If you like to participate in the efforts, or be our Guniea pig, you 
can find us online.


