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Thank you very much for the invitation to give the “outsider” talk. I am honored.

My area of work spans mathematics and computer science, but in this talk I would 
like to speak about the foundations of mathematics, namely homotopy type theory, 
or “HoTT”.

My goal here is to explain why HoTT is interesting for the ordinary mathematician in 
the street. But where to start?
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One task of mathematical foundations is making precise notions that one sees in 
practice, but which lack a proper mathematical treatment. The idea of explicit 
bijection in combinatorics fits the bill, I think. It is well understood and used in 
practice, but the notion does not seem to have a proper definition (compare for 
instance with “continuous function”). Just to be sure, I asked about it on 
MathOverflow.
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The question sparked interest (it’s the second most popular question asked by me) 
and many insightful comments were given, but no definitive answer. So I thought 
“this would make a catchy title”.


I shall not give you the definitive answer either, but will give an answer, and along 
the way we will see how foundations can shape our understanding of mathematics.
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An explicit bĳection f : A → B is …

• … computable in polynomial time.


• … a natural isomorphism.


• … computed without reference to B.


• … given without prior knowledge that A ≅ B.

So what is an explicit bijection? The suggestions I got in the MathOverflow answers 
were mainly of two flavors.

4



An explicit bĳection f : A → B is …

• … computable in polynomial time.


• … a natural isomorphism.


• … computed without reference to B.


• … given without prior knowledge that A ≅ B.

additional property or structure

We may attempt to define “explicitness” as a property, or structure, of a bijection, 
for instance by requiring computational efficiency or structural properties. These 
read as proper mathematical definitions. But what if I prove by contradiction that a 
polynomial-time bijection exists, is it still explicit? I think not.
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An explicit bĳection f : A → B is …

• … computable in polynomial time.


• … a natural isomorphism.


• … computed without reference to B.


• … given without prior knowledge that A ≅ B.

the way it is constructed

The second flavor of answers got closer to the heart of the matter. They put 
requirements on how the bijection was constructed or defined, for instance without 
reference to a certain object, or without prior knowledge etc. These answers feel 
more correct, but also less mathematical. What does it mean to construct a 
bijection without reference to its codomain, or without prior knowledge that the 
domain and codomain are isomorphic?


Can foundations of mathematics make these ideas precise?
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⊥ ⊤ ∧ ∨ ⇒ ∀ ∃

FOL & ZFC

∈

We could look at what is normally considered the “official” foundation: first-order 
logic and the Zermelo-Fraenkel set theory ZFC.


This formalism has served us extremely well in the study the meta-theoretic 
properties of set theory, and it has been tremendously influential in unifying the 20th 
century mathematics, but in its raw form is a bit too removed from how 
mathematicians work in practice.


It is possible to encode ordinary mathematics in ZFC, but the encoding obfuscates 
and destroys relevant structure. In particular, there is no notion of construction in 
pure ZFC. There is only existence of sets, and everything has to be expressed in 
terms of the membership relation ∈. For example, you cannot even mention the 
empty set directly, you have to say “there exists a set such that no x is an element 
of it” every single time.
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FOL & ZFC

⊥ ⊤ ∧ ∨ ⇒ ∀ ∃

∈ ⊆ ∅ ∩ ∪ ℘

Of course, there are meta-theorems that allow us to introduce new symbols and 
functions in set theory. They guarantee that the new symbols can be eliminated and 
do not change the expressivity of the theory. Still, these meta-theorems are not 
flexible enough (in particular, it’s not so straightforward to introduce a notation for 
subset formation because it mixes terms and formulas).


Since we are interested in how bijections, and mathematical objects in general, are 
constructed, we should have a proper theory of constructions.
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̓Επὶ τῆς δοθείσης 
εὐθείας πεπερασμένης 
τρίγωνον ἰσόπλευρον 
συστήσασθαι

Here is a favorite fact of mine: the first proposition of the first book of Euclid’s 
elements is not a statement of fact. It is a construction. It literally says: “to 
construct an equilateral triangle on a given finite straight-line”.


It does not claim that there exists such a triangle.
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To construct an 
equilateral triangle on 
a given finite straight-
line.

The solution is not a proof. It is a method by which we create the desired equilateral 
triangle.


Of course, what I am saying is quite obvious and natural because constructions 
have always been the bread and butter of mathematics. But the ghost of first-order 
logic shows up in how we write mathematics. We often make statements of truth 
where a construction is more appropriate.


Let me give you an example.
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G / ker φ ≅ im φ

First isomorphism theorem

Here is a well-known theorem from group theory, where G is a group and φ a 
homomorphism from G to some other group.


I am going to be a bit nit-picky, so please bare with me. If you read this as a logical 
statement, then its form is an existential, i.e., we can unwrap it as follows.
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∃ θ : G / ker ϕ → im ϕ . θ iso

First isomorphism theorem

We are asked to prove the existence of a certain isomorphism.


As stated, the theorem does not specify which isomorphism we are supposed 
exhibit. In fact, we could prove the theorem by contradiction, and that would be a 
valid proof that would not exhibit any particular isomorphism at all.
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∃ θ : G / ker ϕ → im ϕ . θ iso

First isomorphism theorem

Proof: Consider the map θ : x (ker ϕ) ↦ ϕ x.

But of course, nobody ever does that. Every account of the first isomorphism 
theorem uses a particular map, namely the one induced by φ. And everybody know 
this, and everybody reads both the theorem and the proof in this way.


However, speaking formally, when we prove an existential statement, the witness of 
existence is hidden in the proof. There is no way that it can be extracted – that is 
simply how the existential quantifier works. And the situation has nothing to do with 
classical vs. intuitionistic logic – they both have precisely the same inference rule 
for the existential quantifier.
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To construct an isomorphism 
G / ker φ ≅ im φ

What would Euclid do?

Solution: Consider the map θ : x (ker ϕ) ↦ ϕ x.

We have a case of discrepancy between formalism and practice. It is an example of 
how people write one thing but mean another. This is not something that one 
notices easily, but if you try to formalize group theory and have it all verified by a 
computer, the computer will make you clean it all up. It’s a lot of extra work.


But what would Euclid do? Well, quite simply, he would have asked for a 
construction: to construct such-and-such isomorphism. The solution would be the 
isomorphism everyone always gives – but this time it would be an honest 
construction.


Let us then turn the tables and start with a theory of constructions. No logic, no 
sets, just bare constructions.
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Type theory

t : A
the type of constructionconstructed object

Type theory is a general theory of constructions, where we should understand the 
word “construction” in the most general sense, abstractly. We might be 
constructing points in a space, or combinatorial objects, or elements of a set, or 
values of a datatype.


It is not about what exists, like set theory, but about how to construct things. To say 
in type theory that we have an element t of type A means that t was built according 
to the rules of type A. Of course, to each type A we may associate its extension, 
which is the collection of its elements, but such “collections” are strictly speaking 
outside the realm of type theory.


We need a good collection of (types of) constructions that will let us do 
mathematics.
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Type theoretic constructions
Type Element

1 ⟨⟩

0
N 0, succ n
U A, B

A × B ⟨a, b⟩

A + B ι₁(a), ι₂(b)
A → B x ↦ e(x)

Π (x : A) . B(x) x ↦ e(x)
Σ (x : A) . B(x) ⟨a, b⟩

Here is a table of the basic type-theoretic constructions. Each of these comes with 
some inference rules explaining how to build and use the elements of each type. I 
emphasize again that there is no underlying logic or set theory. We really start from 
scratch and give a formal system of rules, through which I am not going to drag 
you.


First we postulate some basic types, such as the singleton type 1, the empty type 
0, and the type of natural numbers N. There is also the type of types U, called a 
universe, whose elements are types. The universe embodies the idea that types 
themselves are constructions. The usual question of whether a universe is an 
element of itself comes up. There are various flavors of type theory, some of which 
allow U : U, but today we will follow the more traditional path and avoid a universe 
that contains itself. There can be many universes, and they may form a hierarchy.


There are also operations for forming new types: the cartesian product, the disjoint 
sum, and the type of functions. Hopefully these are familiar, for instance the 
elements of a cartesian product are pairs.


Let us look at the last two lines a little closer.
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x y z A

B(x) B(y) B(z)

Dependent type B over A 

u

In mathematics sets, or spaces, are in general parametrized. If I say “consider an 
element of the permutation group Sn” the group is parametrized by n. If I say “the 
closed interval [a,b]”, again, the interval is parametrized by its endpoints a and b.


We can picture a type B parametrized by the elements of type A as a family of 
types: for each element x of A we get a type B(x).
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x y z A

Σ(x : A).B(x) 

⟨y,u⟩

The dependent sum collects a type family into a single type whose elements are 
pairs ⟨y, u⟩, with y from A and u from B(y). A topologist will recognize this as the 
total space of a bundle, while a set-theorist will just call it coproduct or disjoint sum 
of the family.
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x y z A

Π(x : A).B(x) 

B(x) B(y) B(z)

s(x)
s(y)

s(z)

The dependent product of a family is the type of all sections, or choice functions. In 
the picture we see one such element s, which maps each element x in A to an 
element of B(x).
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Where is logic?

t : A
the type of constructionconstructed object

Do do mathematics, we also need some logic. We cannot just keep building 
mathematical objects without ever making any observations about them.


The matter is actually quite simple. A proof is just another kind of construction: start 
with basic axioms and using the rules of inference, construct a proof which shows 
that a given proposition holds.
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Where is logic?

t : A
propositionproof

So in fact, logic is subsumed by type theory, if we think of proofs as elements of the 
statements that they prove. This observation was made a while ago already and 
goes under the name Curry-Howard correspondence or propositions-as-types.
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The Curry-Howard correspondence
Logic Types Element/proof

⊤ 1 ⟨⟩

⊥ 0
A ∧ B A × B ⟨a, b⟩

A ∨ B A + B ι₁(a), ι₂(b)
A ⇒ B A → B x ↦ e(x)

∀ x ∈ A . B(x) Π (x : A) . B(x) x ↦ e(x)
∃ x ∈ A . B(x) Σ (x : A) . B(x) ⟨a, b⟩

Even better, the basic logical connectives correspond to the basic type-theoretic 
constructions.


For example, the cartesian product corresponds to conjunction because in both 
proofs of A ∧ B and elements of A × B are pairs (of proofs, or elements, as the case 
may be). A proof of an implication A ⇒ B can be viewed as a map which takes 

proofs of A to proofs of B, and so on. This correspondence is also known as 
propositions-as-types.


The displayed table is how the correspondence was understood in the last 
millennium. It is not quite right, because the disjunction and the existential 
quantifiers do not correspond precisely to the binary and the general disjoint sum.
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The Curry-Howard correspondence
Logic Types Element/proof

⊤ 1 ⟨⟩

⊥ 0
A ∧ B A × B ⟨a, b⟩

A ∨ B A + B ι₁(a), ι₂(b)
A ⇒ B A → B x ↦ e(x)

∀ x ∈ A . B(x) Π (x : A) . B(x) x ↦ e(x)
∃ x ∈ A . B(x) Σ (x : A) . B(x) ⟨a, b⟩

Let us look at the existential quantifier and the dependent sum.
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p : ∃ x ∈ A . B(x)

p : Σ (x : A) . B(x)
may project an element of A from p

cannot extract an element of A from p

When we prove the existence of x : A such that B(x), the x is hidden or abstracted 
by the proof, it is not visible outside the proof. But an element of the dependent 
sum is a pair ⟨a, b⟩ from which we may project the first component to obtain an 
element of A.


This is the crux of the matter. It is the difference between showing that something 
exists abstractly, without explicitly giving it, versus constructing an object. We 
should have the ability to speak about both of these.
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Propositional truncation
Type Element
∥A∥ |a|

“the (only) equivalence class”“A quotiented by A × A”

The solution is to add another type theoretic construction, called propositional 
truncation.


Speaking set-theoretically, it is the operation which takes a set A and quotients it by 
the largest equivalence relation on A. This may seem silly? If A is empty they we will 
get the empty set, and if a is non-empty, we will get a singleton set. Precisely, but 
so far such a construction has not been available in type theory.


It is the idea of “abstracting” or “hiding” an element in its pure form, as it takes an 
element a in A and yields (the only) equivalence class |a|, from which a cannot be 
uniquely recovered.


(If you’re still paying attention, you might be asking how to say that all the element 
of ∥A∥ are “equal”, we will come to that in a moment.)
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The Curry-Howard correspondence
Logic Types Element/proof

⊤ 1 ⟨⟩

⊥ 0
A ∧ B A × B ⟨a, b⟩

A ∨ B A + B ι₁(a), ι₂(b)
A ⇒ B A → B x ↦ e(x)

∀ x ∈ A . B(x) Π (x : A) . B(x) x ↦ e(x)
∃ x ∈ A . B(x) Σ (x : A) . B(x) ⟨a, b⟩

We can now fix the Curry-Howard correspondence by truncating the sums.
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The Curry-Howard correspondence
Logic Types Element/proof

⊤ 1 ⟨⟩

⊥ 0
A ∧ B A × B ⟨a, b⟩

A ∨ B ∥A + B∥ |ι₁(a)|, |ι₂(b)|
A ⇒ B A → B x ↦ e(x)

∀ x ∈ A . B(x) Π (x : A) . B(x) x ↦ e(x)
∃ x ∈ A . B(x) ∥Σ (x : A) . B(x)∥ ∥⟨a, b⟩∥

With this we have truly subsumed logic inside type theory.
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Equality type
Type Element

t =A u “path from t to u”

Unfortunately, we are not quite done yet. To complete the picture we also have to 
discuss equality, which is the most interesting part of homotopy type theory, and 
it’s what gave ordinary type theory the qualifier “homotopy”. In order to avoid a 
cognitive overload, here is a one-slide summary.


If everything is supposed to be a construction, what do we do about equality? Is it 
not a relation? How does one “construct” an “equality” a = b? Topologists have an 
answer: think of two points in a space as being “equal” if there is a path between 
them. Technically speaking, it is better to think of homotopy classes of paths.
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Equality type
Type Element

t =A u “path from t to u”

A =U B “A is equivalent to B”

Univalence axiom:  
(A =U B) ≃ (A ≃ B)  

“equality is equivalent to equivalence”

To get equalty-as-paths idea really going, we need to know more about equality of 
types, i.e., what do paths in the universe look like? Here an axiom by Vladimir 
Voevodsky, the univalence axiom, saves the day. It states that “equality of types is 
equivalent to equivalence of types”.


For the purposes of this lecture you can read “equivalence” as saying 
“isomorphism”, with the definition of isomorphism being “a map whose inverse 
images of points are singletons”.


The univalence axiom has many important consequences. It would take a whole 
lecture to explain its importance, so we shall instead move on and just mention 
some of its consequences.
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Π (n : N) . Σ (p : N) . (n < p) × prime(p)

For every number to construct a prime larger than it.

Map that takes a number n to ⟨p, ⟨q, r⟩⟩ such that p 
is a number, q proves n < p, and r proves prime(p).

Finally, let us look at some examples.


Let us start with something familiar, the infinitude of primes. Without truncation, 
here is how one would write down the infinitude of primes, as a construction. (We 
assume that we already figured out how to define < and primality.)
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Π (n : N) . Σ (p : N) . (n < p) × prime(p)
Map that takes a number n to ⟨p, ⟨q, r⟩⟩ such that p 
is a number, q proves n < p, and r proves prime(p).

Π (n : N) . ∥Σ (p : N) . (n < p) × prime(p)∥
Map that takes a number n to an (abstracted) proof 
showing that there is a prime larger than n.

For every number there exists a prime larger than it.

For every number to construct a prime larger than it.

With truncation, we obtain the statement that there are infinitely many primes.


How about explicit bijection?
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Explicit bĳection

Σ (f : A → B) Σ (g : B → A) . (f∘g = idB) × (g∘f = idA)

A quadruple ⟨f, ⟨g, ⟨p, q⟩⟩⟩ such that p is a path 
from f∘g to idB and q a path from g∘f to idA.

To construct a bijection from A to B.

With dependent sums we get the explicit version.


An element of the given type is a quadruple whose first two components are maps, 
and the other two show that the maps are inverses of each other (up to homotopy!)
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Non-explicit bĳection
∥Σ (f : A → B) Σ (g : B → A) . (f∘g = idB) × (g∘f = idA)∥

A proof |⟨f, ⟨g, ⟨p, q⟩⟩⟩| such that p is a path from f∘g 
to idB and q a path from g∘f to idA.

There exists a bijection from A to B.

To get the non-explicit version, just truncate.


This is probably not the final word on explicit bijections. What I find important in the 
whole matter is the awareness of the fact that some piece of mathematics does not 
have a precise formal definition, and the search for such a definition.


We may not have resolved the question in the title, but we have a new way of 
thinking and organizing mathematics. To conclude, let me show you how to do 
combinatorial spices in homotopy type theory. You can read more about it in Brent 
Yorgey’s PhD thesis.
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[n] := Σ (k : N) . k < n 
The numbers 0,1, …, n-1.

First we can define the standard finite types, as a dependent type [n], which for 
each n gives the type of numbers below n. (To be quite formal, the elements are 
numbers with proofs that they are smaller than n.)


The type of all finite types, what should it be?
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[n] := Σ (k : N) . k < n 
The numbers 0,1, …, n-1.

Σ (A : U) Σ (n : N) . A≅[n]
Type A with a number n and isomorphism A ≅ [n].

Here is a first attempt. A finite type is a type A together with an isomorphism to 
some standard finite type. However, we made the isomorphism explicit, so we 
actually have a chosen specific isomorphism, which amount to having a linear order 
on A. This is the type of linearly ordered finite types.
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[n] := Σ (k : N) . k < n 
The numbers 0,1, …, n-1.

Σ (A : U) Σ (n : N) . A≅[n]
Type A with a number n and isomorphism A ≅ [n].

Fin := Σ (A : U) ∥Σ (n : N) . A≅[n]∥
Type A such that there exists A≅[n].

By truncating, we obtain the actual finite types.
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[n] := Σ (k : N) . k < n 
The numbers 0,1, …, n-1.

Σ (A : U) Σ (n : N) . A≅[n]
Type A with a number n and isomorphism A ≅ [n].

Fin := Σ (A : U) ∥Σ (n : N) . A≅[n]∥
Type A such that there exists A≅[n].

Fin → U
Combinatorial spices.

The combinatorial spices are maps from finite types to the universe.


Type theory and the univalence axiom take care of what is usually achieved by 
requiring that a spices be a functor. Things are getting simpler!


The ability to precisely distinguish between explicit constructions and abstract 
existence is paying off. And we can keep going.
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Ordered n-tuple of elements in A

[n] → A

For example, the n-tuples of elements in A are easy, they are just maps from [n] to 
A.
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Ordered n-tuple of elements in A

Unordered n-tuples of elements in A

Finn:= Σ (A : U) ∥A ≅ Fin(n)∥
Type with n elements.

[n] → A

Σ (B : Finn) . B → A

To get the unordered n-tuples of elements of A, we first define the type of all n-
element types.


The unordered n-tuples of elements in A are given as a sum: an indexing type B of 
size n, and a map from B to A. (Note that we cannot use a specific B, as any 
particular ordering of that B would automatically order the tuple, as in the first line.)
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Ordered n-tuple of elements in A

Σ (B : Finn) . B → A
Unordered n-tuples of elements in A

Finn:= Σ (A : U) ∥A ≅ Fin(n)∥
Type with n elements.

[n] → A

Fin2
The infinite-dimensional real-projective space RP∞

Here is an amazing fact, shown by Ulrich Buchholz and Egbert Rijke. The type of 
two-element sets is the infinite-dimensional real-projective space. If there are 
topologists in the audience, they might remark that this is just the classifying space 
of the symmetric group S2. Indeed it is, and you can guess what Finn is going to be.


Thank you!
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