
ON SELF-INTERPRETERS FOR SYSTEM T

AND OTHER TYPED λ-CALCULI

ANDREJ BAUER

ABSTRACT. Matt Brown and Jens Palsberg constructed a self-interpreter for System Fω .
They require a self-interpreter to have an injective quoting function and that the source
codes be β-normal. I show that under the same constraints there is a self-interpreter for
Gödel’s System T , and in fact for any strongly normalizing typed λ-calculus expressive
enough to encode natural numbers and pairs. The proof is a swindle which makes one
think that the constraints by Brown and Palsberg are not good enough, but I show that
they are essentially the best we could hope for in terms of type complexity. What we need
is a better definition of a self-interpreter that takes into account structural properties of
self-interpreters.

1. INTRODUCTION

An interpreter is a program which reads source code and executes it. A self-interpreter
is an interpreter implemented in the language that it interprets. The first one was Turing’s
universal machine, but it was Steve Russell’s implementation of eval in Lisp that made
self-interpreters a popular programming exercise.

In defiance of the received wisdom that a total programming language cannot have a
self-interpreter, Matt Brown and Jens Palsberg [3] implemented a self-interpreter for Sys-
tem Fω , which is a strongly normalizing typed λ-calculus and thus certainly a total lan-
guage. In order to avoid the trivial self-interpreter they imposed certain constraints on
what a self-interpreter is. I show that under the same conditions already Gödel’s System T
has a self-interpreter (Theorem 3.2). The construction is trivial, which makes one won-
der whether something is at fault with the notion of self-interpreter used by Brown and
Palsberg. However, I show that there cannot be a significant improvement (Corollary 3.7)
because the type of a code must be at least as complex as the type of the program it encodes.

2. UNTYPED AND TYPED SELF-INTERPRETERS

2.1. Untyped self-interpreters. We work first in the untyped λ-calculus [2]. A self-
interpreter is a program (closed term) u which takes as an argument the (source) code
peq of a program e and outputs a term which is equivalent to e,

u peq ≡β e.

In order to avoid the trivial case u = λx . x and peq = e we should specify what counts
as source code. A programmer would certainly expect codes to be strings of characters
or abstract syntax trees, and a logician would point out that such data can be coded by
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numbers. Assuming that all variables are of the form x0, x1, x2, . . . , we define the Gödel
encoding g of terms as numbers by

g(xi) = 20 · 3i,

g(e1 e2) = 21 · 3g(e1) · 5g(e2),

g(λxi . e) = 22 · 3i · 5g(e)

and let the quoting function be peq = g(e), where n is the Church numeral representing
number n. Implementing the corresponding interpreter is an edifying programming exer-
cise which we leave to the enthusiasts. We note that u may be implemented using only
primitive recursion because u peq calculates its result by structural recursion on e, and
primitive recursion suffices to discern the syntax of e from its Gödel code g(e).

2.2. Typed self-interpreters. Let us now move to the typed setting. As in the untyped
case, we call closed terms programs and write Prg(τ) for the set of programs of type τ .

We consider extensions of the simply typed λ-calculus [2, §A.1], which we refer to
simply as calculi. One is Gödel’s System T , see [2, §A.2] and [1], which is the simply
typed λ-calculus extended with binary products σ × τ , a ground type of natural numbers
nat and primitive recursion at each type. It is expressive enough to manipulate syntax
through Gödel encoding. System T is strongly normalizing [1, §4.3], and so every well-
typed term e has a unique β-normal form n(e).

Another extension is PCF [8], which is the simply typed λ-calculus extended with the
natural numbers nat and general recursion: for every type τ it has a fixed-point operator
fixτ : (τ → τ) → τ governed by the β-rule fixτ f →β f (fixτ f). The fixed-point
operators make the calculus non-normalizing because fixτ (λx : τ . x) is a program of type τ
with an infinite sequence of β-reductions.

Definition 2.1. A typed self-interpreter is given by a type ν of (source) codes, and for each
type τ a quoting function p-qτ : Prg(τ) → Prg(ν) and an interpreter uτ ∈ Prg(ν → τ)
such that uτ peqτ ≡β e for all e ∈ Prg(τ).

Note that the quoting functions need not be λ-definable, i.e., there may be no program qτ
such that peqτ ≡β qτ e. The following theorem is the justification for the popular opinion
that total languages do not have self-interpreters.

Theorem 2.2. If a calculus has a self-interpreter then it has fixed-point operators at all
types.

Proof. The proof proceeds by diagonalization much like in Lawvere’s fixed point theo-
rem [4]. Let us first show that for every type τ every f ∈ Prg(τ → τ) has a fixed point.
Define g : ν → τ by g = λx : ν . f (uν→τ x x), and let n = pgqν→τ be its code. Then
uν→τ n n is a fixed point of f because uν→τ n n ≡β g n ≡β f (uν→τ n n). Now we
obtain the fixed-point operator fixτ : (τ → τ)→ τ as the fixed point of the program

λy : (τ → τ)→ τ . λf : τ → τ . f (y f). �

Corollary 2.3. System T does not have a self-interpreter.

Proof. In System T successor succ : nat→ nat has no fixed points. �

The corollary holds for other kinds of calculi, as long as they posses endomaps without
fixed points, which is typical of strongly normalizing calculi such as System Fω .

We can ask whether Theorem 2.2 can be inverted: does a simply typed λ-calculus
with natural numbers and fixed-point operators have a self-interpreter? As Alex Simpson
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pointed out to me, the question was answered affirmatively by John Longley and Gordon
Plotkin who described a rather intricate self-interpreter for PCF [6, Prop. 6].

2.3. Self-reducers. Our interpreters convert source code to actual code. An alternative is
to have them operate exclusively with source code. In the following we shall use the type
nat as the type of source codes, and the standard Gödel encoding for quoting, i.e., in this
section we define the quoting function p-qτ : Prg(τ)→ Prg(nat) by

peqτ = g(e).

Here n stands for the closed term

succ (succ · · · (succ︸ ︷︷ ︸
n

0) · · · )

of type nat.

Definition 2.4. A self-reducer is given by a family of reducers rτ ∈ Prg(nat→ nat), one
for each type τ , such that rτ peqτ ≡β pn(e)qτ for all e ∈ Prg(τ).

Whereas a self interpreter turns the code peqτ to the corresponding program e, a self-
reducer turns the code peqτ to the code pn(e)qτ of the normal form of e.

Theorem 2.5. If there is a self-reducer then every f ∈ Prg(nat→ nat) has a fixed point.

Proof. Let us first observe that it only takes primitive recursion (which is available in
System T ) to define

(1) a function enc ∈ Prg(nat→ nat) such that enc n ≡β pnqnat for every n ∈ N,
(2) a function dec ∈ Prg(nat→ nat) such that dec pnqnat ≡β n for every n ∈ N,
(3) a function app ∈ Prg(nat → nat → nat) such that app pe1qnat→nat pe2qnat ≡β
pe1 e2qnat, for all e1 ∈ Prg(nat→ nat) and e2 ∈ Prg(nat).

Now consider any f ∈ Prg(nat→ nat) and define g ∈ Prg(nat→ nat) by

g = λx : nat . f (dec (rnat (app x (enc x))))

Let k = pgqnat→nat and observe that g k normalizes to a numeral, i.e., there is ` ∈ N such
that n(g k) = `. Now compute:

` ≡β g k
≡β f (dec (rnat (app k (enc k))))

≡β f (dec (rnat (app (pgqnat→nat) pkqnat)))

≡β f (dec (rnat pg kqnat))

≡β f (dec (p`qnat))

≡β f ` �

Corollary 2.6. System T does not have a self-reducer.

Proof. Once again, succ : nat→ nat has no fixed points. �

It would be interesting to generalize the non-existence of self-reducers to general quot-
ing functions.
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3. BROWN-PALSBERG SELF-INTERPRETERS

To obtain a self-interpreter for System T we need a notion of source code with varying
type. The following definition is fashioned after Brown and Palsberg [3].

Definition 3.1. A weak Brown-Palsberg self-interpreter is given by, for each type τ , a
type of codes �τ , a quoting function p-qτ : Prg(τ) → Prg(�τ), and an interpreter uτ :
Prg(�τ → τ) such that uτ peqτ ≡β e for all e ∈ Prg(τ). Such an interpreter is strong
when for every type τ , the quoting function p-qτ is

(1) normal: peqτ is β-normal for all e ∈ Prg(τ), and
(2) acceptable: there is gτ : �τ → nat such that gτ peqτ = g(e) for all e ∈ Prg(τ).

The normality condition expresses the idea that codes should be values, as opposed to
programs that still need to be evaluated, while acceptability says that the syntax of an
expression is discernible from its code. Brown and Palsberg also require that the quoting
function be injective, which follows from our definition because g is injective. They do not
explicitly postulate acceptability, although they provide programs that extract the syntax of
an expression from its code.

A Brown-Palsberg self-interpreter cannot have a trivial quoting function paqτ = a
because codes must be β-normal, while injectivity of the quoting function prevents coding
by β-normal forms paqτ = n(a).

Theorem 3.2. System T has a Brown-Palsberg self-interpreter.

Proof. Define

�τ = nat× τ, peqτ = 〈g(e), n(e)〉,
uτ = λx : nat× τ . snd x, gτ = λx : nat× τ . fst x.

Clearly we have uτ peqτ ≡β n(e) ≡β e, 〈g(e), n(e)〉 is β-normal because numerals are
β-normal and so are pairs of β-normal terms, and the quoting function is acceptable by
fiat. �

It is clear that the same proof applies to any calculus that has binary products, natural
numbers, and any notion of normal form. System Fω is an example, so we could replace the
elegant self-interpreter by Brown and Palsberg with our technologically primitive solution.

The proof of Theorem 3.2 abuses the fact that Brown-Palsberg interpreters allow codes
to be as complex as the programs they encode. Theorem 2.2 prevents us from using a fixed
type of codes, but perhaps �τ can at least be less complex than τ? We shall show that this
is not possible, but first we need a precise measure of complexity.

Definition 3.3. The level of a type τ is defined inductively as follows:

lev(nat) = 0

lev(σ × τ) = max(lev(σ), lev(τ))

lev(σ → τ) = max(1 + lev(σ), lev(τ)).

The level of τ is the deepest nesting of→ to the left. The pure types ν0, ν1, . . . defined by

ν0 = nat and νk+1 = νk → nat

have arbitrarily high levels because lev(νk) = k.
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Definition 3.4. A type σ is a retract of τ , written σ / τ , if there are programs s : σ → τ
and r : τ → σ, respectively called a section and a retraction, such that

λx :σ . r (s x) ≡βη λx :σ . x.

If additionally λy : τ . s (r y) ≡βη λy : τ . y then we say that σ and τ are isomorphisms
and that σ and τ are isomorphic, written σ ∼= τ .

Some basic observations about retracts are:
(1) every type is a retract of itself, τ / τ ,
(2) being a retract is transitive: if ρ / σ and σ / τ then ρ / τ ,
(3) if σ / σ′ and τ / τ ′ then σ × τ / σ′ × τ ′ and σ′ → τ / σ → τ ′,
(4) σ / σ × τ and τ / σ × τ .

The last observation relies on the fact that every type in System T is inhabited. The fol-
lowing lemma has been known for a long time, e.g. [9, §1.8].

Lemma 3.5. If lev(σ) ≤ lev(τ) then σ is a retract of τ .

Proof. We first verify that νk / νk+1 for all k ∈ N. Define programs sk : νk → νk+1 and
rk : νk+1 → νk by

s0 = λn : nat . λm : nat . n,

r0 = λf : nat→ nat . f zero,

and

sk+1 = λf : νk+1 . λg : νk+1 . f (rk g),

rk+1 = λf : νk+2 . λg : νk . f (sk g).

We check by induction on k that sk and rk form a section-retraction pair. The base case is
confirmed by

λx : nat . r0 (s0 x) ≡β λx : nat . (λm : nat . x) zero ≡β λx : nat . x.

and the induction step by

λf : νk+1 . rk+1 (sk+1 f) ≡η λf : νk+1 . λg : νk . rk+1 (sk+1 f) g

≡β λf : νk+1 . λg : νk . (sk+1 f) (sk g)

≡β λf : νk+1 . λg : νk . f (rk (sk g))

≡βη λf : νk+1 . λg : νk . f g

≡η λf : νk+1 . f.

We used the induction step to pass from the third to the fourth line.
Next, let p : nat → nat × nat and q : nat → nat × nat be isomorphisms witnessing

nat ∼= nat × nat. Then pk : νk → νk × νk and qk : νk × νk → νk defined by p0 = p,
q0 = q and

pk+1 = λf : νk+1 . 〈(λg : νk . fst (q (f g))), (λg : νk . snd (q (f g)))〉
qk+1 = λf : νk+1 × νk+1 . λg : νk . p 〈fst f g, snd f g〉

are isomorphism between νk and νk × νk.
To prove the lemma it suffices to show that the types τ and νlev(τ) are retracts of each

other for any type τ . We proceed by induction on the structure of τ .
The base case nat is trivial.
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For a product type σ × τ we have a chain of retractions

σ × τ / νlev(σ) × νlev(τ) / νlev(σ×τ) × νlev(σ×τ) ∼= νlev(σ×τ).

In the opposite direction, if lev(σ) ≤ lev(τ) then

νlev(σ×τ) = νlev(τ) / τ / σ × τ.
The case lev(τ) ≤ lev(σ) is symmetric.

Finally consider a function type σ → τ . If lev(τ) = 0 then τ = nat, hence

σ → τ / νlev(σ) → nat = νlev(σ)+1 = νlev(σ→τ)

and
νlev(σ→τ) = νlev(σ)+1 = νlev(σ) → nat / σ → nat = σ → τ.

If lev(τ) = n+ 1 then

σ → τ / νlev(σ) → νn+1
∼= νlev(σ) × νn → nat /

νmax(lev(σ),n) → nat = ν1+max(lev(σ),n) = νlev(σ→τ).

and

νlev(σ→τ) = ν1+max(lev(σ),n) = νmax(lev(σ),n) → nat /

νlev(σ) × νn → nat ∼= νlev(σ) → νn+1 / σ → τ. �

With the lemma in hand we can prove an obstruction theorem for self-interpreters.

Theorem 3.6. For any type τ , if a weak Brown-Palsberg self-interpreter satisfies lev(�τ) <
lev(τ) then every f ∈ Prg(τ → τ) has a fixed point with respect to βη-equivalence.

Proof. If lev(�τ) < lev(τ) then lev(�τ → τ) ≤ lev(τ), hence Lemma 3.5 gives us a
section and a retraction

s : (�τ → τ)→ τ and r : τ → (�τ → τ).

Define g : �τ → τ by g = λx :�τ . f (r (uτ x) x) and let n = ps gqτ . Then

r (uτ n) n ≡β r (s g) n ≡βη g n ≡β f (r (uτ n) n). �

The following corollary squashes any hope of a significant improvement of the notion
of Brown-Palsberg interpreters, as far as complexity of the types of codes is concerned.

Corollary 3.7. A weak Brown-Palsberg self-interpreter for System T satisfies lev(�τ) ≥
lev(τ) for every type τ .

Proof. It suffices to show that every type τ has a program f : τ → τ without a βη-fixed
point. By Lemma 3.5 there is a section s : nat → τ and a corresponding retraction
r : τ → nat. Define

f = λx : τ . s (succ(r x)).

To see that f does not have a fixed point, suppose f e ≡βη e for some e ∈ Prg(τ). Then

r e ≡βη r (f e) ≡β r (s (succ (r e))) ≡βη succ (r e).

Let n be the unique number such that n(r e) ≡β n. Then

n+ 1 = succ n ≡β succ (r e) ≡βη (r e) ≡β n,
which is a contradiction because it implies n + 1 = n. To see this, we could presumably
find a reference to a suitable theorem about βη-normal forms for System T , but here is a
semantic proof. The set-theoretic model of System T validates both β- and η-equality, thus
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k ≡βη m implies that in the set-theoretic model the interpretations of k and m are equal,
but they are of course k and m, respectively. �

4. THE MORAL

The self-interpreter for Fω given by Brown and Palsberg has important structural prop-
erties that Definition 3.1 fails to capture. For instance, their encoding of types commutes
with substitution [3, Thm. 5.2] and is a congruence with respect to type equality [3,
Thm. 5.3]. In the original work [7] on meta-circularity Frank Pfenning and Peter Lee
called such phenomena reflexivity. Unfortunately they spoke of it at an informal level and
did not provide a definition.

In order to shed further light on self-interpreters for total languages we need a definition
of self-interpreters which takes into account structural properties of self-interpreters that
distinguishes the interpreter by Brown and Palsberg from the one given in Theorem 3.2.
However, it will not do to simply require that τ 7→ �τ be a congruence which commutes
with substitution, as that is not a general enough idea. I would instead expect to see a
definition of a structure-preserving homomorphism between calculi, like in algebra. A
good starting point might be John Longley’s notion of computability structures and simu-
lations [5].
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