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I thank you very much for the invitation. I am a bit worried about talking about type 
theory at TYPES since I do not consider myself to be a “true” type theorist.

Matija Pretnar Chris Stone

The work I am presenting is done jointly with Chris Stone from Harvey Mudd 
College and Matija Pretnar from University of Ljubljana. I like to put up pictures of 
my coauthors on the slides.

Recently Phillip Haselwarter joined our small team as a PhD student. So I thought 
I’d find a picture of him on Google.



Philipp Haselwarter?

But I got strange results.  I know the gentleman on the left and it’s not Phillip. 
Luckily, Phillip is here with us, and you can ask him later to explain these pictures.

Talk outline

• Equality reflection – bad & good 

• Current development 

• Future possibilities

I am first going to review the equality reflection rule, explain that it is pretty tricky, 
and argue that we want it anyhow. Then I’ll speak about a prototype 
implementation – which at the moment is called Andromeda – and the challenges 
that need to be overcome to get something working. I will conclude with general 
observations that go beyond the reflection rule.
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We consider traditional type theory with the usual judgments. (I am skipping the 
judgement that a context is well-formed.) We can reduce these to two judgments 
by using universes.
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If instantiate the type A with Type to recover the judgments for types.


The universes are important, but I am not going to pay any attention to them here, 
as the issues raised are largely orthogonal to what I would like to discuss. The 
current implementation of Andromeda actually thinks that Type is in Type, just so 
that it is easy to play with examples.



Dependent product
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The theory is minimalistic: it has only dependent products and equality types. 

The dependent products shown here are standard. 
Note that we have the η-rule as well (but no function extensionality).

Equality
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The other type former is equality. Let me call it “equality” rather than “identity” – 
to keep it distinct from the usual identity type. 

The equality type has the expected type former, the reflexivity introduction rule, 
and “uniqueness-of-equality” equation. It has an unusual elimination rule, which 

says that the equality type reflects judgmental equality. 
You must have heard the mantra that “the reflection rule is bad because it breaks 

decidability of type checking”. But let us look more deeply into what is going on.
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First, the usual J-eliminator is derivable and it has a very strong conversion rule – 
because in place of “J(…)” we can simply put “c[a/x]”. So in a sense there is no 
need for J at all.


This is not so interesting. The power of the reflection rule comes from the ability to 
hypothesize new equalities. Let’s see where that leads.
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Consider the following context, written vertically.

We have two types A and B with elements a and b.

The type of q makes sense because, by reflection, it says that A and B are equal.

We cannot remove p from the context, even though it is not mentioned anywhere,

so strengthening is not valid.

Similarly, a naive formulation of exchange (in terms of p and q not appearing in the 
types) would be invalid.

Is this really a problem? Not as far as standard algorithms are concerned, but is 
definitely a good source of errors and false intuitions. Perhaps we need fancier 
contexts to capture dependencies, such as directed acyclic graphs. So far we have 
gotten away with contexts as lists.
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It gets worse. Suppose we hypothesize equality of the Baire space and the Cantor space.  Then 
we can show that the identity function on natural numbers has type “nat → bool”. Therefore, 
the identity applied to 0 is a boolean.

By β-reduction it follows that 0 has type bool as well. This is a mess!

By the way, it is consistent to assume that the Baire and Cantor spaces are equal: consider a 
skeleton of the category of Sets, e.g. von Neumann cardinals. In it, the Baire space and the 
Cantor space are actually equal because they both have the cardinality of continuum.

The problem is in β-reduction as stated. We need to be more careful and explicitly tag 
applications with typing information. We will do this in a moment but let us first see what 
equality reflection is good for.
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The reflection rule gives us immense expressive power. We can postulate new 
constructs and their computation rules. For instance, by postulating the rules 
shown we get the natural numbers.

In fact, we can define all standard (and less standard) constructs this way.


But to make such axiomatizations useful we need a convenient way of using 
equality reflection.



Extensional type theories 

• Nuprl: based on a PER model over an untyped 
calculus with strong normalization 

• HOL: simply typed and classical 

• We would like a dependently typed system which is 
not bound to a single model

There are of course other implementations of extensional type theory.

Nuprl is a venerable system that inspired many features of modern proof 
assistants. Its equality is extensional. It is managed by relying on good 
computational properties of an underlying untyped calculus.

HOL avoids problems by using simple types and classical logic.

We would like a dependent tyeory which does not rely on a particular 
interpretation.
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Type checking implicitly generates a derivation tree (shown in gray).

Parts of the derivation tree that are about equality are not recorded in the proof 
terms (shown red). For a well-behaved type theory the equality derivations can be 
reconstructed algorithmically.

Our type theory is not well behaved. So we need advice on how to check 
equalities. What form should the advice take?




Type theory as a 
programming language

• Input: a program that derives a judgment 

• Evaluation: construction of the derivation 

• Equality checking: computational effect 

• Output: the derived judgment

We take the view that the input is not raw type theory but rather a program.

The evaluation of such a program implicitly constructs a derivation.

Equality checking is a computational effects: it does not contribute directly to the 
output, but it must be executed.

The output is the judgment derived by the execution of the program. Note well: 
the output is insufficient for reconstruction of derivation.

x variable
Type universe

∏x:c₁.c₂ product
λx:c₁.c₂ abstraction

c₁ c₂ application
Eq(c₁,c₂) equality type

refl(c) reflexivity
c₁::c₂ ascription

hint c₁ in c₂ general hint
beta c₁ in c₂ β﹘hint
eta c₁ in c₂ η﹘hint

Input computations

handlers 
directing 
equality 
checks 
through 

reflection

The input computations purposely resemble the terms of type theory, but they are 
not the actual terms. They should be thought of as computations that must be 
evaluated.

The equality hints are a control mechanism, i.e., handlers that direct equality 
checking. I will explain them later.



x variable

Type universe

∏x:A.B product

λx:A.(e:B) abstraction

e₁ @(x:A.B) e₂ application

EqA(e₁,e₂) equality type

reflA(e) reflexivity

Output terms & types
The output terms and types have explicit typing information.

x variable

Type universe

∏x:A.B product

λx:A.(e:B) abstraction

e₁ @(x:A.B) e₂ application

EqA(e₁,e₂) equality type

reflA(e) reflexivity

Output terms & types
It is colored magenta.



β﹘rule

Γ ⊢ ((λx:A₁.e₁:B₁) @(x:A₂.B₂) e₂) ≡ e₁[e₂/x]  

Γ ⊢ A₁ ≡ A₂ Γ,x:A1 ⊢ B₁ ≡ B₂ 

(λx:nat.x:nat) @(nat&bool) 0 ≢ 0 

With explicit typing annotations we can write down a sound β-rule.

Our previous example does not reduce because the typing annotations fail to 
match.

Γ;ℰ ⊢ c ↝ (e,A)

“In context Γ using hints ℰ 
computation c evaluates to (e,A)”

Operational semantics

Soundness:  
If Γ;ℰ ⊢ c ↝ (e,A) then Γ ⊢ e:A.  

We need to give an operational semantics to the programs.

Note that we are evaluating open terms in a typing context Γ.

In addition to the typing context there are also equality hints ℰ. They are used by equality 
checking.

The soundness guarantee is that programs evaluate to derivable judgments. Evaluation 
could be blocked, or diverge, but it cannot result in an underivable judgment.

Peter Lumsdaine remarked that the input c and the output e seem to have the same 
structure, i.e., e is essentially c with additional typing information. It would be interesting to 
formulate a precise claim and prove it.




Γ;ℰ ⊢ x ↝ (x,A)

(x:A) ∈ Γ

Γ;ℰ ⊢ Type ↝ (Type,Type)

Γ;ℰ ⊢ ∏x:c₁.c₂ ↝ ∏x:A.B

Γ;ℰ ⊢ c₁ ↝ (A,T₁)
Γ;ℰ ⊢ T₁ ≡Type Type
Γ,x:A;ℰ ⊢ c₁ ↝ (B,T₂)
Γ,x:A;ℰ ⊢ T₂ ≡Type Type

Let us have a look at some of the rules for operational semantics.

The first two are hopefully self-explanatory.

The rule for products shows how equality checks are triggered. For instance, to 
check that c1 evaluates to a type we check that its type is Type.

Γ;ℰ ⊢ c₁ c₂ ↝ (e₁ @(x:A.B) e₂, D[e₂/x])

Γ;ℰ ⊢ c₁ ↝ (e₁,A₁)
Γ;ℰ ⊢ A₁ ↦whnf ∏x:C.D
Γ;ℰ ⊢ c₂ ↝ (e₂,A₂)
Γ;ℰ ⊢ C ≡Type A₂

“normalization”

The application rule is instructive. First, notice how it inserts the typing annotations 
into the output. 

The rule has to establish the fact that A1 is a product type. I believe this should be 
a separate judgment in type theory, namely the act of recognizing the shape of a 
term or a type.

We just use weak head normalization to discern the structure of the type. 
However, it is not really correct to call this “normalization”, as the user may install 
hints that make it diverge.



Γ;ℰ ⊢ c₁::c₂ ↝ (e₁,e₂)

Γ;ℰ ⊢ c₁ ↝ (e₁,A₁)
Γ;ℰ ⊢ c₂ ↝ (e₂,A₂)
Γ;ℰ ⊢ A₂ ≡Type Type
Γ;ℰ ⊢ A₁ ≡Type e₂

Type ascriptions allows the program to control the output type. It is the 
computational form of type conversion (equal types may be interchanged).

Equality hints
ℰ  =  ℰ≡, ℰβ, ℰη

general 
hints

β﹘hints η﹘hints

A hint is a universally quantified equation:

∏x1:A1 … xn:An.EqB(e1,e2)

We still have to explain how equality hints work.

At the moment we have three kinds of equality hints: general, beta, and eta hints. 
They are used during different phases of equality checking.

A hint is just a universally quantified equation.



β﹘hints

pair_fst:
  ∏A,B:Type. ∏x:A. ∏y:B.
    EqA(fst A B (pair A B x y),x)

For instance, here is a β-hint that one would use in the axiomatization of simple 
products.

A β-hint is only useful if it has a certain form: the left-hand side of equality must 
mention all the quantified variables. This is so because during normalization, when 
such hints are used, that is the only information available.

η﹘hints
pair_eta:
  ∏A,B:Type. ∏u,v:A×B.
    EqA(fst A B u, fst A B v) &
    EqB(snd A B u, snd A B v) &
    EqA×B(u,v)

Here is a typical η-hint, again for simple products. Now the shape of the hints is 
different: the goal may depend on equality proofs which do not appear in the goal, 
and so they are considered to be new subgoals to be solved recursively. In general 
we allow universally quantified equality subgoals.



Γ;ℰ≡,ℰβ,ℰη ⊢ beta c₁ in c₂ ↝ (e₂,A₂)

Γ;ℰ≡,ℰβ,ℰη ⊢ c₁ ↝ (e₁,A₁)
Γ;ℰ≡,ℰβ,ℰη ⊢ A₁ ↦ ∏x1:A1 … xn:An.EqB(e1,e2)
Γ;ℰ≡,ℰβ ∪ {∏x1:A1 … xn:An.EqB(e1,e2)},ℰη ⊢ c₂ ↝ (e₂,A₂)

The evaluation of beta hints just installs the hint and proceeds with evaluation.

Checking e1 ≡A e2
1. Decompose e1 ≡A e2 into subgoals that have 

smaller types, e.g. 

e1 ≡A×B e2  
reduces to 

fst e1 ≡A fst e2  and  snd e1 ≡B snd e2  

2. When the type cannot be decomposed further, 
check that e1 and e2 are equal by normalization.

η﹘rules

β﹘rules

We still need an algorithmic way of “checking” equality. We use type-directed checking a la 
Harper & Stone. There are two phases.

The first phase decomposes an equation into subgoals with smaller types.

When the type cannot be decomposed anymore, a normalization phase checks whether 
the terms are equal.

The two phases use the β- and η-rules, respectively. They also consult the respective 
hints. It is easy to break termination of the procedure by installing silly hints.

General hints are consulted before the first phase. With these we can resolve goals that do 
not have the shape of β- and η-rules, such as commutativity and associativity of addition.



a : A
a_def : Eq(a,e)

beta a_def in …

β-hints as definitions
When playing even with just the rudimentary prototype we have now, one quickly 
gets ideas.

For example, the β-hints can be used as definitions.

We can postulate the existence of an element a of type A, and the fact that it is 
equal to an expression e. Then, if we want a to be automatically unfolded into e, 
we just use the beta hint a_def.

But we do not have to, so we can also leave a unchanged.

a : A
a_def1 : Eq(a,e1)
a_def2 : Eq(a,e2)

beta a_def1 in …
beta a_def2 in …

β-hints as definitions
Nothing forces us to have just one definition of a! It may be convenient to have 
two, or any number of them, and then we control their use with β-hints.


I think this is just the tip of the iceberg.



What else?

• Voevodsky’s Homotopy Type System 

• Enrich the input language with other computational 
effects and handlers 

• Implement standard proof assistant techniques 
(implicit arguments, proof search, type clases, …) 
in the language

There are still many things to do. We are currently cleaning up the implementation and 
should soon have a system which follows the ideas presented here.

But then we plan to go on. One goal is to implement Voevodsky’s HTS, a type system with 
a notion of fibered type and two types of equality. This should have HoTT applications.

Another is to extend the input language with a richer set of computational effects that 
allow us to implement the techniques found in proof assistants: implicit arguments, proof 
search, unification, type classes, etc. Thee should all be definable in our language – but it 
will take a smart PhD student to do it.

Thank you for your attention.
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