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Motivation and Background
In mathematics the application of a function f to an argument x always yields the same result y =
f(x), which depends just on x and nothing else. In programming the situation is different. A
program may do other things apart from computing the result from the given input: it may get caught
in a non-terminating loop, abort execution, interact with the external world through communication
channels, use internal memory to store and retrieve data between invocations, compute results using
random numbers, etc. All such phenomena are collectively known as computational effects.

A comprehensive mathematical theory of computational effects was developed by Moggi [9]
under the slogan “effects are monads”. It has been very successful, not only in theory but also in
practice, as it heavily influenced the design of real-world programming languages, most notably
Haskell. More recently, Plotkin, Power and Pretnar [10, 11, 13, 14, 12] developed a theory of com-
putational effects based on algebra. They model computational effects as algebraic operations and
homomorphisms of algebras. The homomorphisms manifest themselves in programs as handlers, a
new concept that generalizes exception handlers, as known in mainstream programming languages.

In this project we will investigate how the theory of algebraic effects and handlers relates to
two topics in foundations of mathematics, namely computable mathematics and type theory. The
issues under investigation are not purely theoretical — they also have direct relation to programming
practice and proof assistants, as we will explain.

Algebraic effects in computable mathematics
Computable mathematics studies computation with mathematical structures, especially those arising
in analysis and topology. It is the theoretical foundation for certified scientific computation where
numerical results are always guaranteed to be correct within a prescribed accuracy. (In contrast, the
traditional floating-point computations sacrifice such guarantees for speed.) The mathematical tech-
nology which best addresses the needs of computable mathematics is realizability theory, a branch
of logic and category theory which studies how mathematical structures and proofs of theorems may
be realized, or implemented, by data structures and programs, respectively.

Relating algebraic effects to other computational models

Algebraic effects and handlers have not been studied systematically from the point of view of com-
putable mathematics and realizability. We will take core Eff [5] as the prototypical programming
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language with algebraic effects and handlers, and calibrate its expressive power in two ways:

1. We will analyze which constructive reasoning principles are realizable in Eff. Because Eff
implements many kinds of computational effects it should realize various continuity and com-
pactness theorems typical of Brouwerian intuitionism, but it does not posses sufficient in-
tensional features to implement Russian constructivist principles, such as the formal Church’s
thesis. Techniques similar to those of [4] should be applicable here. The idea is to use handlers
to build a tree representation of a realizer, and deduce its features by inspecting the tree.

2. We will compare (a suitable fragment of) Eff to other computational models by using the
theory of typed partial combinatory algebras and applicative morphisms [8]. Applicative mor-
phisms between Eff and other models of computation (Turing machines, λ-calculus, Gödel’s T ,
PCF, type two machines, etc) will give us general “transfer” theorems between models of com-
putable mathematics, such as those in [2].

Improving efficiency of exact real arithmetic

An implementation of a mathematical statement may be obtained systematically from its construc-
tive proof via the realizability interpretation [3, 6]. The realizer which so arises is pure (does not
contain any computational effects), but unfortunately tends to be quite inefficient. Nevertheless, it
serves as a reference implementation against which optimized versions may be compared.

We shall study optimization with benign effects, i.e., uses of computational effects that improve
efficiency of pure programs without altering their behavior. Examples of benign effects are short-
circuiting recursive calls with exceptions, caching and memoization, local uses of mutable store,
adaptive computing, and self-optimizing data structures. Specifically, we will focus on improving
computation with real numbers. We have here in mind exact real arithmetic in which results may
be computed to any desired precision. In such computations one always faces the question of error
propagation: we may propagate required precision estimates backwards from the desired final pre-
cision to initial arguments, or propagate error bounds from initial arguments forwards to the final
result. The latter strategy runs the risk of overestimation of required precision, and the former that of
not meeting the desired final precision. Different strategies are suitable for different problems, but
unfortunately it has not been easy to mix them, so every library for exact real arithmetic typically
implements one fixed strategy. We shall tackle the problem as follows:

1. We implement different strategies for error propagation as different handlers. We express
real-number computations using algebraic operations, which by themselves do not specify
any particular evaluation strategy. We can then control whether backward or forward error
propagation is used by wrapping the computation with this or that handler. Mixed strategies
are possible also because handlers may be installed locally to control just a small subcompu-
tation.

2. To further improve efficiency, and to aid automatic selection of suitable evaluations strategy,
we can implement a third kind of handlers. These do not actually compute real numbers, but
instead estimate how errors will propagate through the computation. The method is akin auto-
matic differentiation, although we envision a more general approach that uses local Lipschitz
constants [7].

Reasoning about algebraic effects and handlers

When a realizer is extracted from a constructive proof, it is correct by construction. But once we
start optimizing it by hand in the name of efficiency, we need to prove that the modified program still
works correctly, i.e., that its behavior is equivalent to the original program. Thus we need methods
for proving properties of effectful programs. Of course, such methods are applicable much more
widely than in computable mathematics and exact real arithmetic, for instance in certification of
software for critical systems.
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In [5] we developed an effect system and validated basic equational axioms that together provide
a rudimentary basis for reasoning about algebraic effects and handlers. We shall continue work along
these lines:

1. We will further develop the reasoning principles for algebraic effects and handlers and use
them to prove correctness of various benign effects: short-circuiting computations with ex-
ceptions, caching and memoization, pure behavior of self-modifying data structures, and oth-
ers. Our initial investigations show that algebraic equations are not sufficient to cover all
such examples. Instead, we need an induction principle that allows us to prove properties of
computations by cases, according to what operations they trigger.

2. We will extend the effect system with effect inference that automatically computes which alge-
braic effects a given piece of code may invoke. Such information helps understand, optimize,
and debug code, as well as guarantee that the program will not perform certain actions (for
instance, that it will not try to communicate to an outside party, or that it will only access
certain parts of memory).

Algebraic effects in formalized mathematics
Our second topic is about using algebraic effects and handler to support proof assistants that are
more flexible and powerful than existing ones. Proof assistants verify that inputs are correct up to
judgmental equality. Proofs are easier and smaller if equalities without computational content are
verified by an oracle, because proof terms for these equations can be omitted. In order to keep judg-
mental equality decidable, though, typical proof assistants use a limited definition implemented by
a fixed equivalence algorithm. While other equalities can be expressed using propositional identity
types and explicit equality proofs and coercions, in some situations these create prohibitive levels of
overhead in the proof.

Voevodsky [15] has proposed a type theory HTS with two identity types, one propositional and
one judgmental. This lets us hypothesize new judgmental equalities for use during type checking,
but generally renders the equational theory undecidable without help from the user. Rather than
reimpose the full overhead of term-level coercions for judgmental equality, we propose algebraic ef-
fect handlers as a general mechanism to provide local extensions to the proof assistant’s algorithms.

Algebraic effects for type theory

We will augment the two-level type theory HTS proposed by Voevodsky with algebraic effects and
handlers. This will allow us to augment terms of type theory with information on how to prove
judgmental equalities, search for inhabitants of types, which unification hints to use, etc. A similar
approach of augmenting terms in type theory with computations was taken by [16], except that
monads were used to express the computational level.

Our initial experiments show that the workings of a proof assistant may be expressed in terms of
basic operations “inhabit a type”, “verify a judgmental equality”, “insert a type coercion”, and possi-
bly “decompose a type into constituent parts”. It is likely that they can be expressed in terms of even
simpler concepts. We need to provide an operational semantics for expressions that mix type theory
with algebraic operations and handlers. We can take the operational semantics of Eff as a starting
point, but we need to modify it so that computations are evaluated inside function abstractions. This
is necessary because the derivations found by the computations need to be uniform.

We will use the resulting language to express techniques used by proof assistants with algebraic
effects and handlers. Handlers are especially convenient for implementation of various search strate-
gies. For instance, there can be several handlers for finding type coercions that implement different
unification strategies [1], such as type classes and canonical structures.

Applications to homotopy type theory

Voevodsky proposes the type theory HTS as a possible solution to difficulties with formalization
of certain homotopy-theoretic constructions, most notably the notion of semi-simplicial types. We
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shall test our system by expressing in it constructions from homotopy type theory which require
both intensional and extensional identity types. Certainly, the construction of semi-simplicial types
is one, but there are other constructions and notions which require introduction of new judgmental
equalities. One such are higher inductive types. If our system turns out to be flexible enough, it
will allow us to express higher inductive types with judgmental computation rules that seamlessly
combine with the system’s normalization procedures.
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