
Brazilian type checking

Andrej Bauer
University of Ljubljana

Christopher Stone
Harvey Mudd College

Formalization of mathematics in proof assistants
Institut Henri Poincare

May 2014

1 / 22

1. Thanks to organizers for the invitation. This is
promising to be a very exciting meeting.

2. The work I will present is being done jointly with
Chris Stone, who is sitting somewhere in the
audience. Hi Chris!

1. Brazil
2. TT

2 / 22

1. My talk is about the design of a proof checker, called
“Brazil” for reasons that will become apparent. We
have a working prototype which changes every day.

2. We are also working on an extension of Brazil, called
“tt”. This is a more ambitious piece of work. You
can think of it as a special-purpose programming
language for implementation of unification
algorithms, tactics, search procedures, etc.
Alternatively, you can think of it as a trusted kernel
on top of which we can build ever more complex
tools for formalization.

3. As tt is more experimental than Brazil, I will focus
on Brazil and discuss tt only briefly at the end. But
please talk to Chris and me, and we’ll show you
both prototypes in action. Even better, you can
participate on GitHub.

1. Brazil

2. TT

3 / 22

1. Brazil is based on a type theory proposed by VV, so
in this sense it is closely related to HoTT. However, I
think some ideas are relevant also to other kinds of
foundation. VV’s type theory is quite general and is
likely able to accommodate special cases, such as
classical mathematics.

2. Various aspects of Brazil in TT, in particular the
programming language ideas, are independent of
the foundation altogether. So you may be able to
take some ideas from us and use them for your
work. We’d be delighted.

Strict equality:

A type a : A b : A
IdA(a, b) type

a : A
refl a : IdA(a, a)

Paths:

A type a : A b : A
PathsA(a, b) type

a : A
idpath a : PathsA(a, a)

4 / 22

1. To motivate the setup, recall that there are two ways
to introduce equality in type theory. They go by
many different names. Let me call them strict
equality and paths, because I want to use your
topological intuitions.

2. If you are familiar with type theory you will
recognize these by their elimination rules on the
next slide. If not, think of the strict equality as the
usual equality, presented as a set. If a and b are equal
then IdA(a, b) contains the element refl a, and nothing
else. If not, then IdA(a, b) is empty.

3. Paths is the type of paths between a and b in a space
A. Under this view, all types are “some sort of
spaces”. Here idpath a is the constant path at point a.

4. I am not going to give you pages upon pages of
inference rules, you can look them up on our
GitHub project.

Equality elimination:

x : A ` P(x) type
a : A b : A e : IdA(a, b) u : P(a)

u : P(b)

Path elimination:

x : A ` P(x) type
a : A b : A p : PathsA(a, b) u : P(a)

transportx.PA (a, b, p,u) : P(b)

5 / 22

1. Here are the somwhat simplified versions of
elimination rules. The fully dependent ones are
more complex, and need not be considered here.

2. The strict version is just replacement of equals for
equals. Since a and b are equal, we may use a in
place of b.

3. The path version can be explained as follows: a and
b may not be equal, but there is a path p between
them. We can transport u along p from the fiber P(a)
to the fiber P(b). We think of P as a topological
fibration, i.e., a family of spaces indexed by A, with a
path-lifting property. This is at the core of the HoTT.

4. The homotopical way of doing things has many
benefits, among others the Univalence axiom. But it
can also lead to complications.

Equality elimination:

x : A ` P(x) type
a : A b : A e : IdA(a, b) u : P(a)

u : P(b)

Path elimination:

x : A ` P(x) type
a : A b : A p : PathsA(a, b) u : P(a)

transportx.PA (a, b, p,u) : P(b)

6 / 22

1. One such complication is the construction of a
model of HoTT inside HoTT. (Note that there is no
problem with Gödelian phenomena because the
inner model has fewer universe.)

2. We would like to perform the construction of
semisimplicial types to create a model. However,
even though the construction seems intuitively clear,
using paths and transport makes everything
horribly complicated because the type theory makes
us write down all the transports, even though they
are all trivial.

3. VV therefore proposed to have both equality types at
the same time. Then we can use the strict equality
where appropriate, to keep the construction
manageable.

Fibered types:

A type A fib
A fib

A type

Equality:

A type a : A b : A
IdA(a, b) type

A fib a : A b : A
PathsA(a, b) fib

7 / 22

1. We cannot just throw in both equalities – it would
turn out that they coincide, and that would then
contradict Univalence.

2. Instead, we should distinguish some of the types as
fibered. These behave nicely with respect to paths:
they have the path lifting property necessary to
interpret transport.

3. Paths can only be formed and used on fibered types.
Since strict equality is not fibered, we cannot show
that path equality implies strict equality.

4. There are other complications. Let me show how
crazy things get.

e : IdU(nat→ bool,nat→ nat)

` (λn : nat .n + 3) 42 : bool

8 / 22

1. We may assume that the Baire space and the Cantor
space are equal. Therefore λn : nat .n + 3 is map
from nat to bool, so the application is a bool.

2. But we cannot β-reduce because on a careful reading
of the β-rule we discover that it does not apply in
this case. This destroys any hope for having normal
forms.

3. This and similar examples force us to equip each
application with explicit typing information.
Luckily, all such annotations can be derived because
they are unique, if they exist. Nevertheless, we need
them.

4. By the way, the assumption that the Baire space and
Cantor space are equal is not inconsistent. As
homework, you should find two models which
validate the assumption.

e : IdU(D,D→ D)

` (λx : D . x x)(λx : D . x x) : D

9 / 22

1. Worse, we may assume that a type is equal to its
own function space.

2. The “paradoxical” λ-term which does not normalize
becomes well-typed.

3. Therefore, it is going to be easy to get the proof
checker into an infinite loop, as long as any sort of
normalization is built in.

4. Is this a problem? Maybe theoretically, but certainly
not in practice. The typical user is going to hit Ctrl-C
well before the Sun becomes a red giant.

x : A ` P(x) type
a : A b : A e : IdA(a, b) u : P(a)

u : P(b)

10 / 22

1. We would like to send formalized mathematics to
people in a faraway country, such as Brazil. They
will check our development independently. [VV
tried Bolivia but that didn’t work.]

2. But how will they deal with strict equality
elimination? If we send them the proof object u and
P(b), how can they ever guess what a and e are?

3. In fact, type checking in the presence of strict
equality is undecidable. Without some divine help,
Brazilians are doomed.

4. By the way, with path equality there is no problem
because transport records a and the path from a to b.

5. Thus, we must also send to Brazil additional hints
about equality, which however are not part of the
proof object proper. These are extra.

1. Type theory with strict equality and paths.
2. A trusted proof checker.
3. Practical support for equality hints.
4. Sacrifice termination and completeness.
5. Preserve soundness guarantee.

11 / 22

1. Let us summarize what we want.
2. By “practical” we mean that hints should be used

infrequently and need not be very large.
3. The soundness guarantee is: if the checker accepts a

proof object (with hints), then there is a derivation
that the proof object has the given type.

4. By now it is obvious that our proof checker is called
“Brazil”.

Contexts:

Γ ::= • empty context
| Γ, x : T context extended with x : T

Equality hints:

H ::= ◦ empty hints
| H, (e1≡T e2) extend hints with an equation
| H, (e1 T e2) extend hints with a rewrite

12 / 22

1. The typing contexts are as usual.
2. We also carry around a list of equality hints. These

are of two kinds: ordinary equations and rewrite
rules (directed equations) to be used during weak
head normalization.

Types:

T,U ::= Uα universe
| Elα e type named by e
| Unit the unit type
|

∏
(x:T) U product

| PathsT(e1, e2) path type
| IdT(e1, e2) equality type

13 / 22

1. We use Tarski-style universes. With Russell-style
universes and cummulativity it is not clear at all
how to perform equality checks (at what universe –
it matters!). I shall not say more about this, except
that contrary to folk opinion, Tarski universes are
not annoying to implement. And they are
completely hidden from the user.

2. The magenta bits are type annotations. They must
be present, but luckily it is easier to derive them
than to require that they be provided. So, the
magenta bits are not there in the concrete syntax.
They get added during type checking and synthesis,
we will see an example.

Terms:

e ::= x variable
| equation e1 : e2≡T e3 in e4 use equality hint e1 in e4

| rewrite e1 : e2≡T e3 in e4 use rewrite hint e1 in e4

| e :: T ascribe type T to term e
| λx:T1.T2 . e λ-abstraction

| e1 @x:T1.T2 e2 application
| ? the element of unit type
| idpathT e identity path
| JT([x y p .U], [z . e1], e2, e3, e4) path eliminator
| reflT e reflexivity

...
...

14 / 22

1. Here is the abstract syntax of terms, without
universe names

2. Again, type annotations in magenta are derived
automatically. I emphasize that this is simpler than
having them provided and having to check that they
are correct.

3. The “equation” and “rewrite” constructs are how
hints are added to the system. This is a local
construct, so you can tell Brazilians to use a specific
hint only in a specific term.

4. When terms are compared for syntactic equality, the
hints constructs are ignored. The hints are not part of
the proof object proper.

Synthesize the type of e:

Γ ` e⇒ T

Check that e has the given type T:

Γ ` e⇐ T

Passage from synthesis to checking:

Γ ` e⇒ T U ≡ T
Γ ` e⇐ U

15 / 22

1. I cannot here explain all the technical details of what
we did, but here is a broad outline of how we
formulated VV’s type theory in an algorithmic way.

2. For the experts: we use standard synthesis/checking
distinction, type-directed equality checking, and we
consult an equality hints database to overcome
limitations of the equality checking algorithm.

3. Let me briefly comment on what that means. We
split the typing judgment into two – synthesis and
checking. Whether we should use synthesis or
checking depends on the shape of the term e.

4. This way the type checking algorithm can be
organized in such a way that type equality is
invoked in precisely one rule. We thus have good
control over where equality checking happens.

Application (traditional):

TERM-APP

Γ ` e1 :
∏

(x:T) U Γ ` e2 : T

Γ ` e1 @x:T.U e2 : U[e2/x]

Application (synthesis & checking):

SYN-APP

Γ ; H ` e1 ⇒ T1
Γ ; H ` T1

∗ ∏
(x:T) U 6 Γ ; H ` e2 ⇐ T

Γ ; H ` e1 @x:T.U e2 ⇒ U[e2/x]

16 / 22

1. For example, consider the traditional application
rule and how it is done by synthesis and checking.

2. Application is a synthesizing form. Notice that we
need to weak head normalize in order to verify that
e1 has the correct type. Also, the magenta
annotations are read off the synthesized parts. This
is the case with all magenta annotations.

Install a new hint:

CHK-EQUATION-HINT

Γ ; H ` e1 ⇒ U′ Γ ; H ` U′ ∗ IdU(e2, e3) 6
Γ ; (H, (e2≡U e3)) ` e4 ⇐ T

Γ ; H ` (equation e1 : e2≡U e3 in e4)⇐ T

Using a hint:
CHK-EQ-HINT

(e1≡T e2) ∈ H
Γ ; H ` e1 ≈ e2 ⇐ T

17 / 22

1. Next, equality checking is done by an adaptation of
an algorithm developed by Bob Harper and Chris
Stone. The algorithm has function extensionality
and various η-rules built in.

2. Our version consults the hints. For example, to
check that e1 and e2 are equal at type T, we first
check whether they are syntactically equal, then we
consult the hints, then we proceed with the
type-directed equality algorithm (which calls itself
recursively at a smaller type).

3. At a base type the algorithm uses weak-head
normalization to compare terms. There we use
rewrite hints.

Symmetry of equality:

Definition sym :=
fun (A : Type) (a b : A) (p : a == b) =>

equation p in (refl a :: (b == a)).

Strict equality eliminator:

Definition G :=
fun (A : Universe 0)

(P : forall (x y : A), x == y -> Universe 0)
(r : forall z : A, P z z (refl z))
(x y : A) (p : x == y)
=>

equation p in (r x :: P x y p).

18 / 22

1. The basic facts about equality can be derived using
hints.

Definition Type := Universe f0.

Parameter bool : Type.
Parameter true false : bool.

Parameter bool_ind :
forall (P : bool -> Type) (b : bool),

P true -> P false -> P b.

Parameter bool_ind_true :
forall (P : bool -> Type)

(x : P true) (y : P false),
bool_ind P true x y == x.

Rewrite bool_ind_true.

19 / 22

1. Here we have an example using rewrites.
Essentially, we can define booleans with the usual
conversion rules. Of course this idea is not limited
just to Booleans.

2. One thing to note: we are installing a universal hint.

1. Brazil

2. TT

20 / 22

1. Brazil is an experiment. One may worry about
various parts of it: Do the type annotations get
large? Is it complete and in what sense? How do we
incorporate universe management?

2. These are all valid concerns, and will have to be
addressed. We are happy to discuss them with you.

1. Brazil

2. TT

21 / 22

1. In conclusion let me say a few words about TT.
2. We heard yesterday that there is a distinction

between functional or declarative style of
programming, and procedural programming.

3. In the theory of programming languages procedural
programming is just one case of a more general
concept known as computational effect. All sort of
things are computational effects: state, I/O,
non-determinism, exceptions, etc. The typical
operations of a proof assistant may be viewed as
computational effects: unification, context
manipulation, backtracking, etc.

4. In fact, Brazilian equality hints are a very simple
form of computatinal effect, too.

1. Brazil

2. TT

22 / 22

1. We are developing a language based on a general
theory of so-called algebraic effects and handlers
that is tailored to the needs of a proof assistant. The
handlers are a powerful programming concepts, a
generalization of exception handlers and delimited
continuations. They allow us to write purely
functional programs in a procedural style (and
more).

2. For example, it will be possible in TT to implement
meta-variables and unification as a derived concept.
At the same time, tt will have a soundness
guarantee: it will refuse to generate invalid Brazilian
terms.

3. But it is too early to tell how successful the
experiment will be. Ask us again on Friday, Chris
will be done by then.

