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A poor soul on the internet asked for the proof of the pullback lemma, which
in every book on category theory is left as an exercise. I took pity on and wrote
down the proof in gory detail.

Suppose in the following diagram the two squares are pullbacks:
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We would like to show that the outer rectangle is a pullback. For this purpose,
consider the diagram
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in which r ◦ i = v ◦ u ◦ j. Because v ◦ (u ◦ j) = r ◦ i, by the universal property
of the right-hand square there exists a unique m : Q → B such that g ◦m = i
and q ◦m = u ◦ j:
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Now by the universal property of the left-hand pullback there exists a unique
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n : Q→ A such that f ◦ n = m and p ◦ n = j:
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We claim that n is the morphism we are looking for. Indeed, we already have
p ◦ n = j, and also

g ◦ f ◦ n = g ◦m = i.

It remains to show uniqueness of n. Suppose n′ : Q→ A satisfies p ◦n′ = j and
g ◦ f ◦ n′ = i. Let m′ = f ◦ n′, and observe that g ◦m′ = g ◦ f ◦ n′ = i and
q ◦m′ = q ◦ f ◦ n′ = u ◦ p ◦ n′ = u ◦ j, therefore by the uniqueness property of
the right-hand square we get m = m′ = n′ ◦ f . Now by the uniqueness property
for the left-hand square we get n = n′, as desired.
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