
On the Bourbaki-Witt Principle in Toposes

Andrej Bauer
University of Ljubljana, Slovenia

Andrej.Bauer@andrej.com

Peter LeFanu Lumsdaine
Dalhousie University, Halifax, Canada
p.l.lumsdaine@mathstat.dal.ca

January 4, 2012

Abstract

The Bourbaki-Witt principle states that any progressive map on a
chain-complete poset has a fixed point above every point. It is provable
classically, but not intuitionistically.

We study this and related principles in an intuitionistic setting.
Among other things, we show that Bourbaki-Witt fails exactly when
the trichotomous ordinals form a set, but does not imply that fixed
points can always be found by transfinite iteration. Meanwhile, on the
side of models, we see that the principle fails in realisability toposes,
and does not hold in the free topos, but does hold in all cocomplete
toposes.

1 Introduction

The Bourbaki-Witt theorem [3, 15] states that a progressive map f : P → P
on a chain-complete poset P has a fixed point above every point. (A map is
progressive if x ≤ f(x) for all x ∈ P .) A classical proof of the Bourbaki-Witt
theorem constructs the increasing sequence

x ≤ f(x) ≤ f2(x) ≤ · · · ≤ fω(x) ≤ fω+1(x) ≤ · · ·

where chain-completeness is used at limit stages. If the sequence is indexed
by a large enough ordinal, it must stabilise, giving a fixed point of f above x.

It has been observed recently by the first author [2] that in the effective
topos there is a counterexample to the Bourbaki-Witt theorem, as well as
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to the related Knaster-Tarski theorem. An earlier result of Rosolini [11]
exhibits a model of intuitionistic set theory in which the (trichotomous)
ordinals form a set, and since the successor operation has no fixed points,
this also provides a counterexample to intuitionistic validity of the Bourbaki-
Witt theorem.

The counterexamples bury any hope for an intuitionistic proof of the
Bourbaki-Witt theorem. However, several questions still remain. Is the
theorem valid in other toposes? How is it linked with the existence of large
enough ordinals? How does it compare to Knaster-Tarski and other related
fixed-point principles? We address these questions in the present paper.

1.1 Overview

After laying out the setting in Section 2, we begin in Subsection 3.1 by
summarising the relationships between various fixed-point principles of the
same form as the Bourbaki-Witt principle. In Subsection 3.2, we discuss
several classically equivalent formulations of the Bourbaki-Witt principle,
which turn out to be intuitionistically equivalent as well. Likewise, several
ways of stating that the Bourbaki-Witt theorem fails are intuitionistically
equivalent. In Subsection 3.3, we investigate the connection between the
Bourbaki-Witt principle and iteration along ordinals, and prove that failure
of the principle is equivalent to the trichotomous ordinals forming a set.

In Section 4, we change tack and investigate validity of the Bourbaki-
Witt principle in various toposes. First we show that realisability toposes
contain counterexamples to the principle. From this we conclude that the
principle cannot hold in the free topos, as there is a definable chain-complete
poset with a definable progressive map which is interpreted as a counterex-
ample in the effective topos. Next we show that the Bourbaki-Witt principle
transfers along geometric morphisms, and hence its validity in the category
of classical sets implies validity in cocomplete toposes, so in particular in
Grothendieck toposes. Finally, we show by topos-theoretic means that while
the Bourbaki-Witt principle does imply that the ordinals cannot form a set,
it does not imply that fixed-points can always be found by iteration along
ordinals, as they can classically.

2 Preliminaries

The content of this paper takes place in two different logical settings. In
the first setting we put on our constructive hats and prove theorems in
intutionistic mathematics. Our proofs are written informally but rigorously
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in the style of Errett Bishop (but without countable choice). They can be
interpreted in any elementary topos with natural numbers object [6, 8], or in
an intuitionistic set theory such as IZF [1]. Since unbounded quantification
is not available in topos logic, statements referring to all structures of a
certain kind are to be interpreted as schemata, as is usual in that setting.
When we meet a statement with an inner unbounded quantifer, we discuss
it explicitly. Intuitionistic set theories do not suffer from this complication.

In the second setting we put on our categorical logicians’ hats and prove
meta-theorems about provability statements and topos models. In these
arguments we use classical reasoning when necessary, including for Subsec-
tion 4.1 the Axiom of Choice.

Let us recall some basic notions and terminology. If P is a poset, a chain
in P is a subset C ⊆ P such that for all x, y ∈ C, x ≤ y or y ≤ x. The
set of chains in P is denoted by Ch(P ). A subset D ⊆ P is directed when
every finite subset of D, including the empty set, has an upper bound in D;
equivalently, if D is inhabited and every two elements in D have a common
upper bound in D.

A poset P is chain-complete if every chain in P has a supremum, and is
directed-complete if every directed subset of P has a supremum. Any chain-
complete poset is inhabited by the supremum of the empty chain, whereas
a directed-complete poset may be empty. However, any directed-complete
poset with a bottom element is chain-complete: if C is a chain, then C∪{⊥}
is directed, and its supremum gives a supremum for C. Since suprema are
unique when they exist, a poset is chain-complete precisely when it has a
supremum operator sup : Ch(P )→ P .

An endofunction f : P → P is called progressive (sometimes inflationary
or increasing) if x ≤ f(x) for every x ∈ P . A point x ∈ P is fixed by f if
f(x) = x, pre-fixed if f(x) ≤ x, and post-fixed if x ≤ f(x).

The Bourbaki-Witt principle is the statement

“A progressive map on a chain-complete poset has a fixed point
above every point.”

3 Bourbaki-Witt in the constructive setting

3.1 Related fixed-point principles

The Bourbaki-Witt principle is one of a family of fixed-point principles,
obtained by combining either progressive or monotone maps with either
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complete, directed-complete, or chain-complete posets. Three of the six
combinations can be proved intuitionistically, as follows.

Theorem 3.1 (Tarski [12]) Any monotone map on a complete lattice has
a fixed point above every post-fixed point.

Proof. Let f : P → P be such a map and x ∈ P a post-fixed point, i.e.,
x ≤ f(x). Consider the set S = {y ∈ P | x ≤ y and f(y) ≤ y} of pre-fixed
points above x. The infimum z = inf S is a pre-fixed point because by
monotonicity f(z) ≤ f(y) ≤ y for all y ∈ S. But also x ≤ z, so z and f(z)
are in S, hence z is a post-fixed point as well. Thus z is a fixed point of f
above x, and indeed by construction the least such. �

The usual formulation of Tarski’s theorem states just that every monotone
map has a fixed point; here we reformulate it to make it more similar to the
Bourbaki-Witt theorem, but the two versions are equivalent.

Theorem 3.2 (Pataraia [9]) Any monotone map on a directed-complete
poset has a fixed point above every post-fixed point.

Proof. We summarise the proof as given by Dacar [5]. Given a monotone
f : P → P on a directed-complete poset P , let Q = {x ∈ P | x ≤ f(x)} be
the subposet of post-fixed points. The set

M = {g : Q→ Q | g is monotone and progressive}

contains the restriction of f to Q, is directed-complete under the pointwise
ordering, and is itself directed: it contains the identity, and for any g, h ∈M ,
the composite g ◦ h gives an upper bound of g and h. Thus M has a top
element t, which must satisfy g ◦ t = t for all g ∈ M , hence t(x) is a fixed
point of f above x for any x ∈ Q. �

The third theorem which can be proved intuitionistically combines pro-
gressive maps and complete lattices, but it is completely trivial as the top
element is always a fixed point of a progressive map. One might be tempted
to save the theorem by proving that a progressive map on a complete lattice
has a least fixed point, until one is shown a counterexample.

The remaining three combinations claim existence of fixed points of a
progressive map on a chain-complete poset, a progressive map on a directed-
complete poset, and a monotone map on a chain-complete poset. The first
of these is the Bourbaki-Witt principle, which we study in this paper. Judg-
ing from Theorem 3.2, one might suspect that the second would have an
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intuitionistic proof, but in fact Dacar [4] has observed that it is equivalent
to the Bourbaki-Witt principle.

Theorem 3.3 (Dacar) The following are intuitionistically equivalent:

1. Any progressive map on a chain-complete poset has a fixed point above
every post-fixed point.

2. Any progressive map on a directed-complete poset has a fixed point
above every post-fixed point.

Proof. The direction from chain-complete posets to directed-complete ones
is straightforward: if P is directed-complete and x is post-fixed for a pro-
gressive f : P → P , then {y ∈ P | x ≤ y} is chain-complete and closed
under f .

To prove the converse, suppose the statement holds for directed-complete
posets, and let f : P → P be a progressive map on a chain-complete poset
P . The set C of chains in P , ordered by inclusion, is directed-complete. The
map F : C → C, defined by F (A) = A ∪ f(supA), is progressive, so has a
fixed point B above {x}. Now f(supB) ∈ B and hence f(supB) ≤ supB,
showing that supB is a fixed point of f above x. �

The last combination is the Knaster-Tarski principle for chain-complete
posets:

“A monotone map on a chain-complete poset has a fixed point
above every post-fixed point.”

Most of what we show for the Bourbaki-Witt principle in this paper holds
almost without alteration for the Knaster-Tarski principle, with one notable
exception. As we saw in Theorem 3.2, the directed-complete version of the
Knaster-Tarski principle is intuitionistically provable, while the directed-
complete version of the Bourbaki-Witt theorem fails in general, as we will
see in Section 4.

Finally, looking at the relationship between the Knaster-Tarski and Bour-
baki-Witt principles, we have:

Proposition 3.4 The Bourbaki-Witt principle implies the Knaster-Tarski
principle.

Proof. Let f : P → P be a monotone map on a chain-complete poset P , and
suppose x ≤ f(x). Say that a chain C ⊆ P is nice if f is progressive on C.
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Then the poset of nice chains under inclusion is chain-complete (indeed,
directed-complete) and has a progressive map s, which sends C to

s(C) = C ∪ sup{f(y) | y ∈ C}.

The Bourbaki-Witt principle gives a fixed-point C of s above {x}. Then
supC is a fixed point of f above x. �

We do not know whether this implication can be reversed!
We summarize the intuitionistic provability of the six variants, and impli-

cations between them, in the following diagram (where ! stands for “prov-
able”):

Progressive

Monotone

Complete
Chain-

complete
Directed-
complete

! %%

! %!

⇐⇒
⇓

3.2 Equivalent forms of Bourbaki-Witt

Bourbaki-Witt may be stated in several slightly different forms, all classically
equivalent. In fact, they turn out to be intuitionistically equivalent as well.

Theorem 3.5 The following are intuitionistically equivalent:

1. Any progressive map on a chain-complete poset has a fixed point above
every point.

2. Any progressive map on a chain-complete poset has a fixed point.

3. Every chain-complete poset has a fixed-point operator for progressive
maps.

Proof. Let us first establish the equivalence of the first two statements.
Every chain-complete poset has a least element, the supremum of the empty
chain, above which one may seek fixed points. Conversely, a fixed-point of
a progressive map f : P → P above x ∈ P the same thing as a fixed-point
of f restricted to the chain-complete subposet ↑x = {y ∈ P | x ≤ y}.

The third statement clearly implies the second one. Conversely, sup-
pose the second statement holds. Take any chain-complete poset P and let
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Prog(P ) be the set of progressive maps on P . We can endow the exponential
PProg(P ) with a chain-complete partial order, defined by

〈xf 〉 ≤ 〈yf 〉 ⇐⇒ ∀ f ∈Prog(P ) . xf ≤ yf ,

where we write 〈xf 〉 for the element of PProg(P ) that maps f to xf . The
endomap h : PProg(P ) → PProg(P ),

h(〈xf 〉) = 〈f(xf )〉, (1)

is progressive, and so has a fixed point, which is exactly the desired fixed-
point operator. �

Any of the the statements from Theorem 3.5 may be interpreted in the
internal language of a topos E . When we do so we refer to them as the in-
ternal Bourbaki-Witt principle. One may also consider external versions in
which the universal quantifiers range externally over progressive morphisms,
rather than internally over the object of progressive maps. A morphism
f : P → P is progressive if it is so in the internal logic; equivalently, if
(idP , f) : P → P × P factors through ≤, viewed as a subobject of P × P .

Theorem 3.6 The internal and external Bourbaki-Witt theorems are equiv-
alent in a topos E:

1. Internal: for every chain-complete poset P in E, the statement

∀ f ∈PP . (∀x∈P . x ≤ f(x))⇒ ∃x∈P . f(x) = x.

is valid in the internal logic of E.

2. External: for every chain-complete poset P in E and every progressive
morphism f : P → P the internal statement ∃x∈P . f(x) = x is valid.

Proof. The internal form obviously implies the external one. Conversely,
suppose the external form holds, and consider any chain-complete poset
P in E . As in the proof of Theorem 3.5, we may construct in E the chain-
complete poset PProg(P ), and the canonical progressive morphism h thereon.
By (2), the statement ∃ z ∈PProg(P ) . h(z) = z holds in E . We now conclude,
just as in the proof of Theorem 3.5, that there exists in the internal sense a
fixed-point operator for P , which implies the internal form. �

Similarly, various forms of the failure of Bourbaki-Witt turn out to be
equivalent. The failure of a universal statement is generally weaker, intu-
itionistically, than the existence of a specific counterexample; and for the
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negation of the full, unbounded Bourbaki-Witt principle, this seems to be
the case. (Indeed, in topos logic, with no unbounded quantifiers, this nega-
tion cannot even be stated.) However, as soon as the failure is in any way
bounded, one can construct a counterexample.

Theorem 3.7 The following are intuitionistically equivalent:

1. There is a chain-complete poset and a progressive map on it which has
no fixed points.

2. There is a chain-complete poset on which not every progressive map
has a fixed point.

3. There is a set W of chain-complete posets such that not every progres-
sive map on every poset in W has a fixed point.

Proof. Clearly, the first statement implies the second one, which implies the
third. To close the circle, suppose W is a set of chain-complete posets as in
the third statement. Then the chain-complete poset

∏
P∈W PProg(P ) carries

a progressive endomap with no fixed point, sending F to (P, f) 7→ f(FPf).
�

We remark that the key ingredient in most proofs from this subsec-
tion was that any product of chain-complete partial orders is again chain-
complete. Lemma 4.4 below may be seen as a strong generalisation of this
fact.

3.3 A set of all trichotomous ordinals?

In the (futile) search for an intuitionistic proof of the Bourbaki-Witt theorem
it seems natural to consider the transfinite iteration of a progressive map
f : P → P ,

x ≤ f(x) ≤ f2(x) ≤ · · · ≤ fω(x) ≤ fω+1(x) ≤ · · ·

One feels that a fixed point will be reached, if only we can produce a suffi-
ciently long order to iterate along. In classical set theory this is possible, even
without the axiom of choice. For example, Lang [7] proves the Bourbaki-
Witt theorem by considering the least subset C ⊆ P which contains x, is
closed under f and under suprema of chains. He proves, classically but
without choice, that C is a chain, from which it quickly follows that the
supremum

∨
C is a fixed point of f . In fact, C is (isomorphic to) an ordinal
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and is precisely large enough for the iteration of f to stabilise after C-many
steps.

Can fixed points always be found by transfinite iteration, as long as
they exist? Is failure of Bourbaki-Witt always due to a lack of existence of
long enough ordinals? In Subsection 4.4 below, we answer the first question
negatively: there is a topos in which the Bourbaki-Witt principle holds, but
fixed points cannot generally be reached by iteration along ordinals. In this
section, we show that the answer to the second question is positive: the
Bourbaki-Witt principle fails precisely when there is a set of all ordinals.

In the intuitionistic world the matter is complicated by the fact that the
intuitionistic theory of ordinals is not nearly so well behaved as the classical;
see [13] for an analysis of what can be done. Thus, before proceeding, we
need to pick a definition of ordinals.

Recall that a relation < on L is inductive if it satisfies the induction
principle

(∀x∈L . (∀ y < x . φ(y))⇒ φ(x)) =⇒ ∀x∈L . φ(x),

for all predicates φ on L. In addition to the induction principle for predi-
cates, an inductive relation admits inductive definitions of maps. However,
in our case, attempting to iterate a progressive map, there is a complication.
Given a progressive map f : P → P on a chain-complete poset P , we would
like to define f̃ : L→ P inductively by

f̃(y) =
∨

x<y
f(f̃(x)).

For this to be a valid definition we need to know that these suprema exist,
so we must ensure inductively that each {f(f̃(x)) | x < y} is a chain in P .
A fairly strong notion of ordinals is needed:

Definition 3.8 A trichotomous ordinal (L,<), is a transitive inductive re-
lation satisfying the law of trichotomy: for all x, y ∈ L, either x < y, x = y,
or y < x.

One can now show:

Lemma 3.9 If L is a trichotomous ordinal, and f is a progressive map on
a chain-complete poset P , then we may define the iteration f̃ : L→ P of f
along L as described above, by the equation f̃(y) =

∨
x<y f(f̃(x)).

Proof. By induction on y, f̃ is monotone whenever it is defined; so {f̃(x) |
x < y} is always a chain in P , and thus f̃ is totally defined on L. �
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A few more observations about trichotomous ordinals, similarly straight-
forward by induction, will also be useful:

1. A inductive relation is asymmetric—that is, (x < y) ⇒ ¬(y < x) for
all x, y—and irreflexive.

2. Trichotomous ordinals are rigid: the only automorphism L→ L is the
identity.

3. The class of trichotomous ordinals forms a pre-order under the “em-
beds as an initial segment” relation, and is moreover chain-complete.

4. If L is a trichotomous ordinal, then so is the strict order L+ 1 formed
by adjoining a new top element above L. This ordinal is called the
successor of L; the successor map on the class of trichotomous ordinals
is progressive and has no fixed point. Note that unlike classically, the
successor map may not be monotone [13].

We are now equipped to compare ordinal existence and Bourbaki-Witt
as promised.

Theorem 3.10 The following are (intuitionistically) equivalent:

1. There is a progressive map on a chain-complete poset which has no
fixed point.

2. There is a set into which every trichotomous ordinal injects.

3. There is a set O′ of trichotomous ordinals such that every trichotomous
ordinal is isomorphic to some ordinal in O′.

4. There is a set O of trichotomous ordinals such that every trichotomous
ordinal is isomorphic to a unique ordinal in O. (In topos-theoretic
terms, O is a classifying object for trichotomous ordinals.)

Proof. We prove four implications: (1)⇒ (2)⇒ (3)⇒ (4)⇒ (1).
First, suppose P is chain-complete and f : P → P is a progressive

map without fixed points. For any trichotomous ordinal L, we can define
the iteration f̃ of f along L as described above. But now, the map f̃ is
injective: if f̃(x) = f̃(y), then x < y cannot hold because that would give
us a fixed point of f :

f(f̃(x)) ≤
∨

x<y
f(f̃(x)) = f̃(y) = f̃(x) ≤ f(f̃(x)).
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The case y < x is similarly impossible, so x = y. Thus every trichotomous
ordinal embeds in P , as required.

Second, if every ordinal injects into a set A, then take

O′ = {(L,<) ∈ P(A)× P(A×A) | (L,<) is a trichotomous ordinal}.

In the third implication we avoid the axiom of choice by using an idea fa-
miliar from the construction of moduli spaces in geometry: if we can weakly
classify a class of objects and they have no non-trivial automorphisms, then
we can classify them. Take the quotient set O′/∼= of equivalence classes
of ordinals up to isomorphism. Now for any equivalence class C ∈ O′/∼=,
we can define a canonical representative as follows. Take the coproduct
SC =

∐
L∈C L, and for L,L′ ∈ C, x ∈ L, y ∈ L′, set x ∼ y if the unique

isomorphism L ∼= L′ sends x to y. Then RC = SC/∼ has a natural bijection
to each L ∈ C, commuting with the isomorphisms between these; so with
the ordering transferred along any of these bijections, RC is a trichotomous
ordinal, and a representative for C. Thus O = {RC | C ∈ O′/∼=} is as
desired.

The last implication is easy because the set O of trichotomous ordinals,
if it exists, is a chain-complete poset under the initial-segment preorder; and
the successor map on O is progressive and has no fixed points. �

4 Topos models

4.1 Bourbaki-Witt fails in realisability toposes

The Bourbaki-Witt principle fails in the effective topos Eff, as was shown
by the first author [2]. We indicate how the proof can be adapted easily to
work in any realisability topos. For background on realisability see [14].

Let A be a partial combinatory algebra and RT(A) the realisability topos
over it. The category of sets Set is equivalent to the category of sheaves
in RT(A) for the ¬¬-coverage. The inverse image part of the inclusion
RT(A) → Set is the global points functor Γ : RT(A) → Set, and we denote
the direct image by ∇ : Set→ RT(A).

Let κ be the cardinality of A, where we work classically in Set. The suc-
cessor κ+ is a regular cardinal, which we view as an ordinal. The successor
map s : κ+ → κ+ is progressive and monotone but has no fixed points. This
is no suprise as κ+ is not chain-complete, although it has suprema of chains
whose cardinality does not exceed κ. But the poset ∇κ+ is chain-complete
in RT(A) because every chain in RT(A) has at most κ elements (to see what
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exactly this means in the internal language of RT(A) consult [2]), therefore
the successor map ∇s : ∇κ+ → ∇κ+ provides a counterexample to both the
Bourbaki-Witt and the Knaster-Tarski principle.

In the effective topos Eff the object O′ from Theorem 3.10 has a familiar
description. It is none other than Kleene’s universal system of notations O
for recursive ordinals, see [10, 11.7].

4.2 Bourbaki-Witt does not hold in the free topos

Recall [6] that there is an elementary topos Efree, “the free topos”, con-
structed from the syntax of intuitionistic higher-order logic (IHOL), and
pseudo-initial in the category of elementary toposes and logical morphisms.
Objects in Efree are thus exactly such objects as are definable in IHOL, and
have exactly such properties as are provable.

Does Bourbaki-Witt hold in the free topos? It cannot fail, since the
canonical logical morphism Efree → Set would preserve any failure. But it
might not hold either: there could be some poset defined in IHOL, provably
chain-complete, with a definable and provably progressive map, for which
the existence of a fixed point is not provable. To show this unprovability
for some particular P and f , it suffices to give a topos E in which the
interpretation of f has no fixed point. Happily, with just a little work, the
poset ∇ω1 in Eff (an instance of the construction of Subsection 4.1), and its
successor map, can be exhibited as such an interpretation.

Theorem 4.1 The Bourbaki-Witt principle does not hold in Efree.

Proof. As we saw above, ∇ embeds Set as sheaves for the ¬¬ topology on
Eff. In Set, ω1 is definable as a subquotient of 2N: the set of all subsets of
N × N describing well-orderings of N, modulo isomorphism of the resulting
well-orders. Thus, interpreting this definition in the Kripke-Joyal semantics
for ¬¬ in Eff, ∇(ω1) is definable as the ¬¬-sheafification of a certain quotient
of a certain subobject of Ω¬¬

N×N; similarly, its order and the successor map
are definable, so we have a poset ω¬¬1 in Efree, together with a progressive
endomap s, which are interpreted as ∇(ω1) and its successor map in Eff.

Unfortunately, ω¬¬1 cannot be chain-complete in Efree, since in Set it is
interpreted as ω1. We can remedy this, however, using an exponenential by
a truth-value. Let t denote the set {∗ ∈ 1 | ω¬¬1 is chain-complete}, and set

P := (ω¬¬1 )t =
∏
u∈t

ω¬¬1 .
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This now has a natural chain-complete ordering, since the second description
exhibits it as a dependent product of chain-complete posets: ω¬¬1 is not in
general chain-complete, but given any u ∈ t, it certainly is! Similarly, the
endomap f = st is progressive. But in Eff, the truth-value in question is
1, so P is interpreted as ∇(ω1)1 ∼= ∇(ω1), and f as successor. Thus the
existence of a fixed point of f is not provable, so we have a non-example of
Bourbaki-Witt in Efree. �

Taking exponentials by truth-values in this fashion may be seen as an
intuitionistic implementation of the classical construction “if P is chain-
complete then P , else 1”.

4.3 Bourbaki-Witt holds in cocomplete toposes

We have seen that the Bourbaki-Witt and Tarski conditions are not in gen-
eral constructively valid. However, they hold in an important class of models
thanks to the following transfer principle.

Theorem 4.2 If E → F is a geometric morphism and F satisfies the
Bourbaki-Witt principle, then so does E.

In particular, any cocomplete topos E has a geometric morphism (Γ,∆) :
E → Set, where Γ(A) = E(1, A) is the global-points functor and ∆(X) =∐
X 1 takes a set X to the X-fold coproduct of 1’s. By applying the theorem

to this case, we see that the Bourbaki-Witt principle holds in cocomplete
toposes:

Corollary 4.3 Any cocomplete topos, in particular any sheaf topos, satisfies
the Bourbaki-Witt principle.

Since this is our guiding example, we will write the geometric morphism as
(Γ,∆) in general, for the comforting familiarity it provides. To prove the
theorem one requires a main lemma:

Lemma 4.4 If (∆,Γ) : E → F is a geometric morphism and P is chain-
complete in E, then Γ(P ) is chain-complete in F .

Proof. We wish to construct a supremum map
∧

ΓP : Ch(ΓP ) → ΓP .
Consider the universal chain in ΓP , i.e. the Ch(ΓP )-indexed subset of ΓP

C = {(x, c) | c ∈ x} ↪→ Ch(ΓP )× ΓP.
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∆C is now a ∆(Ch(ΓP ))-indexed subset of ∆ΓP , and indeed is a chain,
since ∆ preserves ∨; so its image Ĉ under εP : ∆ΓP → P (the co-unit of
the geometric morphism) is a ∆(Ch(ΓP ))-indexed chain in P . Thus there
is a map s : ∆(Ch(ΓP ))→ P giving suprema for Ĉ, and hence for ∆(C).

Its transpose š : Ch(ΓP ) → ΓP is our candidate for
∧

ΓP . We just
need to show that E validates “for all c : Ch(ΓP ) and x : P , š(c) ≤ x ⇔
∀ y ∈ c . (y ≤ x)”, or in other words, that for any (c, x) : A→ Ch(ΓP )×ΓP ,
the map

(š ◦ c, x) : A→ ΓP × ΓP

factors through Γ(≤) if and only if the map

m : C ×Ch(ΓP ) A = {(y, a) | y ∈ c(a)} → ΓP × ΓP

sending (y, a) to (y, x(a)) factors through Γ(≤).
But by the universal property of the adjunction, (š◦c, x) factors through

Γ(≤) if and only if its transpose

̂(š ◦ c, x) = ((s ◦∆(c)), x̂) : ∆(A)→ P × P

factors through ≤. Since s gives suprema for ∆(C), this in turn happens if
and only if the map

m̂ : ∆(C)×∆Ch(ΓP ) ∆(A)→ P × P

sending (y, a) to (y, x̂(a)) factors through ≤. But m̂ is just the transpose of
m, and so m̂ factors through ≤ exactly if m factors through Γ(≤). Thus š
gives suprema for chains in ΓP , as desired. �

Proof of Theorem 4.2. Suppose now that P is a chain-complete poset in E ,
f : P → P is progressive, and F satisfies the Bourbaki-Witt principle.

Γ(P ) is chain-complete, by Lemma 4.4, and Γ(f) is progressive, so F
validates “Γ(f) has some fixed point in Γ(P )”. Being a statement of geo-
metric logic, this is preserved by ∆, so E validates “∆(Γ(f)) has some fixed
point in ∆(Γ(P ))”.

But now εP ◦∆(Γ(f)) = f ◦ εP (by naturality), so if x ∈ ∆(Γ(P )) is any
fixed point of ∆(Γ(f)), then εP (x) ∈ P is a fixed point of f . So E validates
“f has some fixed point in P”, as desired. �

The only point in this section at which classical logic is required is for
Corollary 4.3, to know that the Bourbaki-Witt theorem holds in Set.
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4.4 Bourbaki-Witt does not imply ordinal existence

In Subsection 3.3 above, we asked: if Bourbaki-Witt holds, can any fixed
point be computed by some long enough ordinal iteration? Here, we present
a counterexample: a topos in which Bourbaki-Witt holds, but there are not
enough ordinals to compute fixed points.

The rough idea is as follows: we first consider ordinals and posets in the
presheaf topos Set·→·, where an ordinal turns out to be a pair of ordinary
ordinals with a strictly monotone map between them, written as [L1 → L0].
Since in any ordinal, < implies 6=, the length of the first component L1 is
bounded by the length of its second component L0. By contrast, looking at
chain-complete posets [P1 → P0] with progressive maps, the length of iter-
ation required to find fixed points can be made arbitrarily large by blowing
up just P1, while holding P0 fixed.

So in any assignment (P, f) 7→ L providing ordinals to compute fixed
points, L0 must depend on P1, not only on P0. But in any purely logical
(i.e. IHOL) construction, L0 would depend only on P0, by the construction
of the logical structure in Set·→·. So although Set·→· has enough ordinals
to compute fixed points, this fact cannot be realised by any purely logical
construction.

Thus in EBW[P, f ], the free topos satisfying the Bourbaki-Witt principle
and with a distinguished chain-complete poset and monotone map, there
cannot be any ordinal computing the fixed point of f , since this would give
a logical construction of such ordinals in any other topos, which we have
seen is not possible.

We now formalise this argument, first setting up some terminology for
the eventual goal.

Definition 4.5 Say that a topos E satisfying the Bourbaki-Witt principle
has enough ordinals if for any chain-complete poset P in E with a progressive
map f , there is some object B, inhabited in the internal sense (i.e. B → 1
is epi), and some B-indexed family of ordinals 〈Lb | b ∈ B〉, such that
E validates “for each b ∈ B, the iteration fLb of f along Lb has as its
supremum a fixed point of f”. (We say that the ordinals Lb compute fixed
points for f .)

Definition 4.6 Let LBW[P, f ] be the theory in IHOL given by adding to
pure type theory an axiom schema asserting that the Bourbaki-Witt princi-
ple holds, together with a new type Puniv, constants ≤ and funiv, and axioms
asserting that (Puniv,≤) is a chain-complete poset and funiv a progressive
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map thereon. Let EBW[P, f ] be the syntactic topos of this type theory [6,
II.11–16].

The universal property of EBW[P, f ] tells us that given any topos F satis-
fying Bourbaki-Witt and a progressive endomap f on a chain-complete poset
P therein, there is a logical functor EBW[P, f ]→ F , unique up to canonical
natural isomorphism, sending Puniv and funiv to P and f respectively.1

The goal of this section is now:

Theorem 4.7 The topos EBW[P, f ] does not have enough ordinals. In par-
ticular, there is no inhabited family of ordinals L → B � 1 that computes
fixed points for funiv.

As indicated above, we begin by investigating ordinals and partial orders
in Set·→·. We will write objects of Set·→· as X = [X1 → X0]. Since the
functors ev1, ev0 : Set·→· → Set preserve finite limits, we may similarly write
any (stric) partial order P in Set·→· as a map [P1 → P0] of (strict) partial
orders in Set.

The functor ev0 is moreover logical; so if L is an ordinal in Set·→·, then L0

is an ordinal in Set. More generally, any slice functor ev0 /X : Set·→·/X →
Set/X0 is logical; so if L→ B is a family of ordinals in Set·→·, then L0 → B0

is a family of ordinals 〈(L0)b | b ∈ B0〉.

Lemma 4.8 For any ordinal α in Set, let Pα be the poset [α + 1 → 1] in
Set·→·, and fα the progressive endomap of Pα that acts as successor on α,
and as the identity elsewhere. Then:

1. Pα is chain-complete in Set·→·; and

2. if L → B is any inhabited family of ordinals computing fixed points
for fα, then supb∈B0

(L0)b > α. In other words, with Pα, we have
succeeded in blowing up the required length of L0 to α+1, while holding
P0 constant at 1.

Proof. Chain-completeness follows immediately from Lemma 4.4, since α+1
is chain-complete in Set, and the functor sending a set X to [X → 1] is the
forward image of a geometric morphism, with inverse image ev1.

1Contrary to what one might at first expect, these will not be the only logical functors
out of EBW[P, f ]; the axiom schema only forces Bourbaki-Witt to hold for posets in the
image of the functor, not in the whole target topos.
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Explicitly, the object of chains in Pα is given by

Ch(Pα) = P(Pα) ∼= [{S, T | S ⊆ α+ 1, T ⊆ 1, im(S) ⊆ T} → P(1)

and the supremum map sup: Ch(Pα)→ Pα is given by

sup1(S, T ) = supS ∈ α+ 1 sup0(T ) = ∗ ∈ 1.

With this in hand, suppose L → B is some inhabited family of ordinals
computing fixed points for fα, and let f̃ : L→ Pα denote the iteration of fα
along L.

For any ordinals α, β in Set, there is a canonical map of partial orders
α → β + {>}, the initial-segment embedding if α ≤ β, or stabilising at the
top if α > β. (One may regard this as a truncated rank function.) Viewing
L0 as the disjoint union of the ordinals 〈(L0)b | b ∈ B0〉, we obtain a notion
of (α+ {>})-valued rank for elements of L0, and hence of L1:

rk : L1 → L0 → α+ {>}.

This is very nearly strictly monotone: if x < y, then either rk(x) < rk(y) or
rk(x) = rk(y) = >.

Now, we see that for every x ∈ L1, f̃1(x) ≤ rk(x). If rk(x) = >, this is
trivial; otherwise, we work by induction on rk(x):

f̃1(x) = sup1({f̃1(y) | y < x}, {f̃0(z) | z < x|0})
= sup{f̃1(y) | y < x}
≤ sup{rk y | y < x} (by induction)

≤ rkx.

Now, by hypothesis, Set·→· validates “for each b ∈ B, sup{f̃(i) | i ∈ Lb}
is a fixed point of fα”. Since B is inhabited, there is some b ∈ B1; so
calculating as above, we see that

> = sup{f̃1(x) | x ∈ (L1)b}
≤ sup{rkx | x ∈ (L1)b}
≤ sup{rk i | i ∈ (L0)b|0},

whence the ordinal (L0)b|0 must be at least α, as desired. �

Finally, let us prove Theorem 4.7. Let L → B be any inhabited family
of ordinals in EBW[P, f ]; we wish to show that L does not compute fixed
points for f .
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Coonsider the logical morphism F1 : EBW[P, f ] → Set sending (P, f) to
the terminal poset 1 and its unique endomap. This sends L to some inhab-
ited family of ordinals 〈λb | b ∈ F1(B)〉; let α be an ordinal greater than the
supremum of this family.

Now consider the logical morphism FPα : EBW[P, f ] → Set·→·, sending
(P, f) to (Pα, fα). Since ev0 is a logical morphism and (Pα)0 = 1, the uni-
versal property of EBW[P, f ] enforces that ev0 ◦FPα = F1. So, in particular,
FPα(L)0 is again the family of ordinals 〈λb | b ∈ F1(B)〉, with supremum
less than α.

Thus, by Lemma 4.8, the family of ordinals FPα(L) cannot compute
fixed-points for fα in Set·→·. So, since FPα is logical, L cannot compute
fixed points for f in EBW[P, f ]. But L was arbitrary; so no inhabited family
of ordinals can suffice, and EBW[P, f ] does not have enough ordinals.

A word of caution is necessary here, however: all these negations have
been external, so for all we know it could still be the case that EBW[P, f ]
validates the double-negated version “L does not fail to compute fixed points
for f”, for some L→ B.
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