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Abstract

We investigate the relationship between the synthetic approach to
topology, in which every set is equipped with an intrinsic topology, and
constructive theory of metric spaces. We relate the synthetic notion of
compactness of Cantor space to Brouwer’s Fan Principle. We show that
the intrinsic and metric topologies of complete separable metric spaces
coincide if they do so for Baire space. In Russian Constructivism the
match between synthetic and metric topology breaks down, as even a
very simple complete totally bounded space fails to be compact, and
its topology is strictly finer than the metric topology. In contrast, in
Brouwer’s intuitionism synthetic and metric notions of topology and
compactness agree.

1 Introduction

By synthetic topology we broadly understand a formulation of topology
which emphasizes representability of the lattice of open subsets. More pre-
cisely, rather than axiomatizing lattices of open sets, we axiomatize the
Sierpiński space Σ and identify the topology O(X) of X with the exponent
ΣX . Topology is thus an intrinsic structure of a space, and not something
that we add to a set at will. This changes the spirit of the subject by linking
topology more closely with intuitionistic logic, λ-calculus, and computation
in general.

Synthetic topology is not a finished subject. Among possible approaches
[19, 6] we chose the one that is most similar to synthetic domain theory
[18, 10], in which spaces are treated as objects of a suitable topos. We
do not emphasize toposes as categories, however, but rather view them as
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models of constructive mathematics and develop our theory constructively
in the style of Errett Bishop.

Metric spaces are prime examples of spaces, both in classical and con-
structive mathematics [2]. A metric d : X ×X → R induces a topology on
the underlying set X. How this topology is related to the intrinsic topol-
ogy ΣX is one of the concerns of the present paper. We also investigate the
relationship between basic (synthetic) topological notions and their metric
analogues: continuity vs. ε-δ continuity, compactness vs. totally bounded
completeness, and overtness vs. separability.

As is customary in constructive mathematics, we use intuitionistic logic
and restrict the use of the axiom of choice to the countable version. In fact,
in the proofs we only apply the following form of Number Choice:

(∀n∈N .∃m∈N . φ(n,m)) =⇒ ∃ f ∈NN . ∀n∈N . φ(n, f(n)).

This principle is also known as AC0,0 and number-number choice. The
pedantic readers will notice that we only apply Number Choice to the case
when φ is an open relation. Nevertheless, we note that the background
theory of metric spaces contains other uses of countable choice, for instance
in the construction of the Cauchy complete field of real numbers R as the
Cauchy completion of the rational numbers Q.

The paper is organized as follows. In Section 2 we review basic notions of
synthetic topology. Section 3 makes initial observations about metric spaces
in synthetic topology. Section 4 relates synthetic and metric compactness.
We prove that synthetic compactness of Cantor space is equivalent to a
variant of Brouwer’s Fan Principle, provided that the metric and synthetic
topologies on Cantor space match. Section 5 is devoted to showing that the
intrinsic and metric topologies of complete separable metric spaces match
if they do so for the Baire space. Section 6 derives basic consequences of
such a desirable match, as well as a way of transferring topological bases
along open surjections. This is applied to the computation of topology of the
non-Hausdorff space ΣN. The last section presents topology in three models
of constructive mathematics: classical mathematics as a trivial example,
Russian constructivism in which the match between synthetic and metric
topology is poor, and Brouwer’s intuitionism with a perfect match.

2 Synthetic Topology

We briefly review the basic notions of synthetic topology, as developed by
Mart́ın Escardó [7]. A dominance is a subset Σ ⊆ Ω of the set of truth
values Ω such that1 ⊥,> ∈ Σ, and the dominance axiom holds: for every

1The original definition by Rosolini [18] does not require ⊥ ∈ Σ and one can indeed
develop some amount of topology without this assumption.
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p ∈ Ω and u ∈ Σ, if u =⇒ (p ∈ Σ) then (u ∧ p) ∈ Σ. From the axiom it
follows easily that Σ is closed under ∧.

We call the elements of Σ open truth values. Similarly, a subset U ⊆ X
is (intrinsically) open when x ∈ U is an open truth value for all x ∈ X, i.e.,
U is classified by a map X → Σ. The (intrinsic) topology O(X) on X is the
set of all open subsets of X. The sets O(X) and ΣX are isomorphic, and in
fact we identify them.

The dominance axiom implies that an open subset U ⊆ V of an open sub-
set V ⊆ X is open in X. Because the decidable truth values 2 = {⊥,>} =
{p ∈ Ω | p ∨ ¬p} are contained in Σ, decidable subsets are open, special cases
of which are the empty subset and the whole set.

In our setting all maps are automatically continuous: given any f :
X → Y and an open U ⊆ Y , f−1(U) is open in X because x ∈ f−1(U) is
equivalent to f(x) ∈ U , which is an open truth value.

In the usual accounts of topology arbitrary unions of open sets are open.
This is not so in synthetic topology. Actually, if all unions of opens are open
then Σ = Ω because each U ⊆ 1 = {?} is the union of the family {1 | ? ∈ U}.
If I is a set such that every I-indexed union of open sets is open, then we
say that I is overt. A set I is overt if, and only if, for every U ∈ O(I), the
truth value of ∃x∈ I . x ∈ U is open.

The empty set and singletons are overt. To get other overt sets we must
make further assumptions. We postulate:

The set of natural numbers N is overt.

This also makes the integers Z and the rational numbers Q overt because
they are isomorphic (as sets) to N. Because N, Z and Q have decidable
equality they are not only overt but also discrete, by which we mean that
equality = is an open relation, and Hausdorff, by which we mean that nega-
tion of equality 6= is an open relation. Similarly, the order relations < and ≤
on N, Z, and Q are open because they are decidable.

In contrast, we cannot show in general that the reals R are overt, al-
though < is still open.

Proposition 2.1 For all x, y ∈ R, x < y is open.

Proof. Because Q is overt and x < y is equivalent to ∃ q ∈Q . x < q∧ q <
y, it suffices to show that x < q and q < y are open. There is a Cauchy
sequence (rn)n in Q such that |x− rn| < 2−n for all n ∈ N. The statement
x < q is open because it is equivalent to ∃n∈N . rn+2−n < q. The statement
q < y is open for a similar reason.

The corollary is that “open intervals are open”, i.e., the intervals (a, b),
(a,∞) and (−∞, a) are intrinsically open.

The following proposition describes basic properties of overt sets.
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Proposition 2.2

1. Overtness is preserved under open subsets, images, and (binary) carte-
sian products.

2. A set is overt if it contains an overt dense subset.

3. Countable, and more generally, separable sets are overt.

Proof. If U ⊆ X is open and X is overt then U is overt because
∃x∈U . x ∈ V is equivalent to ∃x∈X .x ∈ V , where we used the fact
that if V is open in U then it is open in X.

If Y is the image of f : X → Y and X is overt then Y is overt because
∃ y ∈Y . y ∈ U is equivalent to ∃x∈X . f(x) ∈ U .

The cartesian product X × Y of overt spaces X and Y is overt because
∃ p∈X × Y . p ∈ U is equivalent to ∃x∈X . ∃ y ∈Y . 〈x, y〉 ∈ U .

Recall that D ⊆ X is dense if, for every U ∈ O(X), ∃x∈X .x ∈ U is
equivalent to ∃x∈D .x ∈ U . Thus X is overt if D is.

We say that a set S is countable if there exists a surjection2 e : N→ 1+S,
which is the same as saying that S is the image of a decidable subset of N.
But since decidable subsets of N are overt, S is the image of an overt set,
therefore overt.

Lastly, a separable set is one that contains a dense countable set. As
such, it is overt.

In Section 4 we discuss (synthetic) compactness, which is the dual notion
of overtness: a set X is compact when ∀x∈X .x ∈ U is open for all U ∈
O(X). Equivalently, X is compact if, and only if, intersections of X-indexed
families of open sets are open. Kuratowski finite sets are always compact.
For other examples of compact spaces we would need further axioms. The
only property of compactness we use is preservation by images: if X is
compact and f : X → Y surjective then Y is compact because ∀ y ∈Y . y ∈ U
is equivalent to ∀x∈X . f(x) ∈ U .

We conclude this section with a couple of examples of Σ. The largest
dominance is the subobject classifier itself, Σ = Ω. With this choice of Σ,
topology collapses: all sets are open and all spaces are discrete, overt, and
compact. The smallest dominance (containing ⊥ and >) for which N is overt
is Rosolini’s dominance [18] of semidecidable truth values

Σ0
1 =
¶
p ∈ Ω | ∃ q ∈ 2N . (p ⇐⇒ ∃n∈N . q(n))

©
.

In this case the open and countable subsets of N coincide.
Because Σ0

1 is the smallest dominance, it induces the smallest intrinsic
topology, which is more likely to be in good agreement with other structures
that a set may possess, such as a metric or a topological basis. Thus Σ = Σ0

1

implies desirable properties, for instance Corollary 4.5 and Proposition 6.8.
2If S is inhabited, e may be replaced by a surjection N→ S.
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3 Topology of Metric Spaces

We use standard notions from the constructive theory of metric spaces [2,
20]. For a metric space (X, d) the (metric) ball centered at x ∈ X with radius
r > 0 is the set B(x, r) = {y ∈ X | d(x, y) < r}. Balls are intrinsically open
because < is open on R.

Most topological notions in synthetic topology have their corresponding
parts in metric topology. We distinguish them by using the adjective metric
for the metric notions, and when necessary the adjective intrinsic for the
synthetic notions.

For instance, a metric space (X, d) is metric separable if there exists a
countable subset of X which meets every ball. Clearly, an (intrinsically)
separable space is metric separable. For the converse we need an additional
assumption.

Proposition 3.1 Suppose every intrinsically open subset of a metric space X
is a union of balls. If X is metric separable then it is separable.

Proof. If the countable subset meets every ball then it meets every
inhabited open set because such a set is an inhabited union of open balls.

While the previous proposition indicates that it is desirable for open sets to
be unions of balls (which is the classical definition of metric topology), this
is not enough in our setting because an arbitrary union of balls need not be
open. Instead, it makes sense to consider only overt unions of balls.

Definition 3.2 A subset U ⊆ X of a metric space (X, d) is metric open
when it is an overt union of metric balls in the sense that there exists an
overt index set I with families of centers (xi)i∈I and radii (ri)i∈I such that
U =

⋃
i∈I B(xi, ri). The metric topology on X induced by d consists of all

metric open subsets of X.

Because metric balls are open the metric topology is coarser than the in-
trinsic one. We would like to know when they coincide.

Definition 3.3 We say that a set X is metrized by a metric d : X×X → R
when the metric topology on X induced by d coincides with the intrinsic
topology O(X).

An example of a metrized space is an overt set X with decidable equality,
such as N, Z, or Q. It is metrized by the discrete metric

dD(x, y) =

{
0 if x = y,
1 if x 6= y.
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Indeed, every U ∈ O(X) is overt because X is overt, hence U is an overt
union of unit balls U =

⋃
x∈U B(x, 1).

Metrization of one space may imply metrization of another if there is a
good connection between them, such as in the following proposition.

Proposition 3.4 A retract of an overt metrized space is overt and metrized.

Proof. Suppose (X, d) is overt and metrized, and r : X → A is a retrac-
tion to a subset A ⊆ X. Then A is overt because it is the image of an overt
set. For any open V ∈ O(A) the preimage r−1(V ) is open in X, so we may
write it as r−1(V ) =

⋃
i∈I BX(xi, ri) for an overt I. The set

J = {〈i, a〉 ∈ I ×A | a ∈ BX(xi, ri)}

is overt by Proposition 2.2. We claim that

V =
⋃
〈i,a〉∈J

BA(a, ri − d(xi, a)).

For one direction, take any a ∈ V and observe that r(a) = a implies a ∈
r−1(V ), hence 〈i, a〉 ∈ J for some i ∈ I, which gives us a ∈ BA(a, ri −
d(xi, a)). For the other direction, if x ∈ BA(a, ri − d(xi, a)) and 〈i, a〉 ∈ J ,
then x ∈ BX(xi, ri) ⊆ r−1(V ), from which we conclude that x = r(x) ∈ V .

If metrics on a set induce the same metric topologies, we call them
(topologically) equivalent. Every metric d : X ×X → R on an overt set X
is equivalent to a bounded one d′, defined by d′(x, y) = min(d(x, y), 1). To
see this, observe that an overt union of open balls U =

⋃
i∈I B(xi, ri) may

be written as an overt union of balls of radius at most 1,

U =
⋃

(i,x)∈J
B(x,min(ri − d(xi, x), 1)),

where J = {(i, x) ∈ I ×X | x ∈ B(xi, ri)} is overt by Proposition 2.2.
We can now easily find metric spaces which are not metrized simply

because there may be several non-equivalent metrics on a given set. For
instance, in addition to the discrete metric dD, the rationals Q may also be
endowed with the Euclidean metric dE(p, q) = |p−q|. The former metrizes Q
because it is overt and discrete, while the latter is too coarse. We shall
see that the relevant distinguishing characteristic between dD and dE is
completeness. This example also tells us that maps between metric spaces
need not be continuous in the usual ε-δ sense, e.g., the identity on Q as
a map from (Q, dE) to (Q, dD), even though they are always intrinsically
continuous.

However, even if we choose a reasonable metric on a space, its intrinsic
topology might still be strictly finer than the metric one. For example, if
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we take Σ = Ω, then all subsets of R are open, but of course not all of them
are unions of open intervals. We could blame this anomaly on a poor choice
of Σ, but in the Russian constructivism a counter-example of Friedberg’s [8],
see Corollary 7.3, shows that even for Σ = Σ0

1 the intrinsic topology of Baire
space NN is strictly finer than its metric topology. Recall that the Baire
space is a complete separable3 metric space (CSM) with the comparison
metric

dC(α, β) = 2−min{k∈N|αk 6=βk}.

This is even an ultrametric, i.e., it satisfies the inequality

dC(α, γ) ≤ max(dC(α, β), dC(β, γ)).

In an ultrametric space, every point of a ball is its center.

4 Synthetic and Metric Compactness

Recall that a complete totally bounded space (CTB) is a metric space in
which every Cauchy sequence has a limit and for every ε > 0 the space is
covered by a finite family of balls with radius ε. Every CTB is a CSM. The
prototypical CTB is the Cantor space 2N with the comparison metric. In
fact, inhabited CTB’s are precisely the ε-δ uniformly continuous images of
Cantor space, see e.g. [20, 7.4.4].

We cannot expect to get for free a good relationship between (synthetic)
compactness and the CTB property. In the trivial case Σ = Ω every set is
compact but not every metric space is CTB, while in Section 7.2 we show
that even a very simple CTB need not be compact.

Let us first analyze compactness of the simplest interesting CTB, namely
the space

N+ =
¶
α ∈ 2N | ∀n∈N . αn ≤ αn+1

©
with the comparison metric. A good way to think of N+ is as one-point
compactification of N, where a number n ∈ N is represented by the sequence

0, . . . , 0︸ ︷︷ ︸
n

, 1, 1, . . . ,

and the point at infinity ∞ by the zero sequence 0, 0, . . . In view of this we
think of N as a subset of N+. The usual order relation < may be extended
from N to N+ by

s < t ⇐⇒ ∃ k∈N . (sk = 1 ∧ tk = 0) .

Clearly, < is an open relation, and if s ∈ N or t ∈ N then it is even decidable.
We define s ≤ t to mean ¬(t < s). We compute the minimum u = min(s, t)

3We mean metric separability.
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as uk = max(sk, tk) and analogously the maximum u = max(s, t) as uk =
min(sk, tk).

The space N+ is a retract of 2N by the retraction

r(α)(k) =

{
1 if ∃ j ≤ k . αk 6= 0,
0 otherwise.

The comparison metric makes N+ into a CTB. The ε-δ continuous maps from
N+ to a complete metric space (X, d) correspond precisely to convergent
sequences with their limits. Indeed, if a : N+ → X is ε-δ continuous then
limk a(k) = a(∞), and every convergent sequence (xn)n∈N appears as such
a map a : N+ → X, defined by

a(t) = lim
k
xmin(k,t) .

The following principle, which we dub WSO for “weakly sequentially open”,
is related to metrization of N+:

∀U ∈O(N+) . (∞ ∈ U =⇒ ∃n∈N . n ∈ U) . (WSO)

The principle has generally useful consequences such as the following.

Proposition 4.1 If WSO holds then CSM’s are overt.

Proof. Let X be a CSM with a countable dense subset D ⊆ X and
U ∈ O(X). Suppose U is inhabited by x. By Number Choice there is a
Cauchy sequence (an)n in D such that limn an = x, hence there is a map
f : N+ → X such that f(n) = an for n ∈ N and f(∞) = x. Because
f(∞) = x ∈ U there is n ∈ N such that an = f(n) ∈ U . Therefore, every
inhabited open set intersects D. Because D is overt, X is overt too.

Before characterizing metrization of N+, we need a little preparation.
For a metric space (X, d), we define the closed (metric) ball in the usual
way,

B(x, r) = {y ∈ X | d(x, y) ≤ r} .

It is convenient to allow the radius r to be zero. In particular, we consider
radii of the form 2−u for u ∈ N+, where 2−u = limk 2min(u,k). This definition
agrees with the standard one for u < ∞, while 2−∞ = 0. In any case,
2−u ≥ 0, so x ∈ B(x, 2−u).

Lemma 4.2 For any t, u ∈ N+, the following holds:

1. B(t, 2−u) = {x ∈ N+ | ∀ k∈N . (uk = 0 =⇒ xk = tk)}.

2. B(t, 2−u) has the minimal element, namely min(t, u), and the maximal
one, which we denote by m(t, u).
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3. B(t, 2−u) is a retract of N+.

Proof. The first statement follows from equivalences a ≤ 2−u ⇐⇒
∀ k∈N . a ≤ 2−min(u,k) and (uk = 0 =⇒ xk = tk) ⇐⇒ (u ≥ k + 1 =⇒
dC(x, t) ≤ 2−k−1).

We proceed to the second statement. The first statement implies that
min(t, u) ∈ B(t, 2−u) and that for any x ∈ B(t, 2−u), we have, for all k ∈ N,
uk = 0 =⇒ xk = tk. From min(t, u)k = max(tk, uk) = 0 we obtain uk = 0
and xk = tk = 0 and conclude min(t, u) ≤ x. Define

m(t, u)k =


tk if uk = 0 or tk = 0,
0 if uk = tk = 1 and u ≤ t,
1 if uk = tk = 1 and u > t.

By the first statement m(t, u) ∈ N+ is clearly in B(t, 2−u). Take any x ∈
B(t, 2−u) and k ∈ N such that xk = 0; to obtain x ≤ m(t, u), we need to
show m(t, u)k = 0. If tk = 0, then m(t, u)k = tk = 0, and we are done. If
tk = 1, then t ≤ k < x. So 2−t = d(t, x) ≤ 2−u, whence u ≤ t ≤ k, in
particular also uk = tk = 1. Again we conclude m(t, u)k = 0.

Lastly, we prove that B(t, 2−u) is a retract of N+. By the second state-
ment, B(t, 2−u) = {x ∈ N+ | min(t, u) ≤ x ≤ m(t, u)}. The desired retrac-
tion r : N+ → B(t, 2−u) may be defined as

r(x) = min (max(min(t, u), x),m(t, u)) .

Proposition 4.3 The following are equivalent:

1. N+ is metrized by the comparison metric.

2. For every U ∈ O(N+) if ∞ ∈ U then B(∞, r) ⊆ U for some r > 0.

3. N+ is compact and WSO holds.

Proof. Suppose N+ is metrized by the comparison metric and U ∈ O(N+)
contains ∞. Because U is a union of open balls there exists an open ball
B(t, r) such that ∞ ∈ B(t, r) ⊆ U . Because N+ is ultrametric, B(t, r) =
B(∞, r), therefore the second statement is implied by the first one.

Suppose the second statement holds. Evidently, it implies WSO so we
just have to show that N+ is compact. Consider any U ∈ O(N+). Because

(∀ t∈N+ . t ∈ U) ⇐⇒ ∞ ∈ U ∧ (∀ t∈N+ . t ∈ U)

it suffices to show that the right-hand side of the equivalence is open, which
we derive from the dominance axiom. If ∞ ∈ U then there exists k ∈ N

9



such that B(∞, 2−k) ⊆ U , whence ∀ t∈N+ . t ∈ U is equivalent to the open
statement ∀ t ≤ k . t ∈ U .

Lastly, suppose the third statement holds. A closed ball B(t, 2−k) is
compact because it is the image of N+ by Lemma 4.2. For any U ∈ O(N+)
the set

I =
¶
〈t, k〉 ∈ N+ × N | ∀u∈B(t, 2−k) . u ∈ U

©
is overt because N+ is overt by Proposition 4.1. Moreover,

U =
⋃
〈t,k〉∈I

B(t, 2−k).

Only the inclusion of U in the right-hand side needs proof. For t ∈ U the
map f : N+ → Σ defined by f(u) = (∀x∈B(t, 2−u) . x ∈ U) classifies an
open subset of N+. Because f(∞) = (t ∈ U) = > there exists k ∈ N such
that f(k) = >, i.e., t ∈ B(t, 2−k) ⊆ B(t, 2−k) ⊆ U and 〈t, k〉 ∈ I.

An obvious question to ask is how compactness of 2N and Brouwer’s Fan
Principle are related. Let 2∗ be the set of finite sequences of 0’s and 1’s.
The length of a finite sequence a = (a0, . . . , an−1) is |a| = n. If α ∈ 2N let
α(n) = (α0, . . . , αn−1) and write a v α if a is a prefix of α, i.e., a = α(|a|).
Denote the concatenation of a ∈ 2∗ and β ∈ 2N by a::β. For t ∈ N+ and
α, β ∈ 2N, let α�tβ ∈ 2N be

(α�tβ)k =

{
αk if k < t,
βk−t if t ≤ k.

If t < ∞ then α�tβ = α(t)::β, while α�∞β = α. A bar is a subset S ⊆
2∗ such that ∀α∈ 2N . ∃ a∈S . a v α. A bar is uniform if there exists a
bound n ∈ N such that ∀α∈ 2N . ∃ a∈S . (|a| ≤ n ∧ a v α). Brouwer’s Fan
Principle states that every decidable bar is uniform.

Theorem 4.4 The following are equivalent:

1. 2N is compact and WSO holds.

2. 2N is metrized by the comparison metric and every overt bar is uniform.

Proof. Suppose 2N is compact and let S ⊆ 2∗ be an overt bar. The set

U =
¶
t ∈ N+ | ∀α∈ 2N .∃ a∈S . (|a| ≤ t ∧ a v α)

©
is open and ∞ ∈ U because S is a bar. By WSO there exists m ∈ N such
that m ∈ U , which means that m is a bound for S. Take any U ∈ O(2N)
and define

I =
¶
a ∈ 2∗ | ∀β ∈ 2N . a::β ∈ U

©
.
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This is an overt set because 2∗ is isomorphic to N and 2N is compact. Let
o ∈ 2N be the zero sequence. We claim that

U =
⋃
a∈I

B(a::o, 2−|a|).

The right-to-left inclusion is clear. For the opposite inclusion, take α ∈ U
and consider the set

V =
¶
t ∈ N+ | ∀β ∈ 2N . α�tβ ∈ U

©
.

This is an open subset of N+ and since α�∞β = α ∈ U , we have ∞ ∈ V .
By WSO there exists n ∈ N such that B(α�nβ, 2−n) ⊆ U for all β ∈ 2N,
which finishes the first part of the proof because then α(n) ∈ I and we have
α ∈ B(α(n)::o, 2−n).

To prove the converse, suppose 2N is metrized. Then it is overt by
Propositions 3.1 and 2.2. Furthermore, by Proposition 3.4 N+ is metrized, so
by Proposition 4.3 the principle WSO holds. Suppose additionally that every
overt bar is uniform and consider any U ∈ O(2N). We borrow Proposition 6.5
from a later section to write U as an overt union U =

⋃
i∈I B(βi, 2−ki) of

balls whose radii are powers of 1/2. The set

S =
¶
b ∈ 2∗ | ∃ i∈ I . b = βi(ki)

©
is overt and α ∈ U is equivalent to ∃ b∈S . b v α. From this we get the
equivalences

∀α∈ 2N . α ∈ U ⇐⇒ ∀α∈ 2N .∃ b∈S . b v α ⇐⇒
∃m∈N . ∀α∈ 2N . ∃ b∈S . (|b| ≤ m ∧ b v α) ⇐⇒

∃m∈N .∀ a∈ 2m .∃ b∈S . (|b| ≤ m ∧ b v a) .

The second equivalence holds because every overt fan is uniform. The last
statement is open, therefore 2N is compact.

A more transparent connection between compactness of 2N and the Fan
Principle is expressed by the following corollary.

Corollary 4.5 If 2N is metrized then the following are equivalent:

1. 2N is compact.

2. Every overt bar is uniform.

In the special case Σ = Σ0
1, the second statement may be replaced by Brouwer’s

Fan Principle “every decidable bar is uniform”.

Proof. In the proof of Theorem 4.4 we saw that metrization of 2N implies
WSO, which is enough to establish the equivalence.

If Σ = Σ0
1 then the overt bars are the semidecidable bars. By a result

of Ishihara’s [11] the Fan Principles for decidable and semidecidable bars
imply each other.
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5 Transfer of Metrization

Having examined connections between metric and intrinsic topology for spe-
cial spaces, we now focus on the general case. To this end we consider how
metrization of one space affects metrization of another that is related to it
by a map. Call a map f : X → Y metric continuous if preimages of metric
open subsets of Y are metric open in X. This is a strengthening of the
usual ε-δ continuity because we require the unions of balls to be overt. The
following lemma provides simple examples of metric continuous maps.

Lemma 5.1

1. The inclusion of an overt subspace into a metric space is metric con-
tinuous.

2. A map from a metrized space to a metric space is metric continuous.

3. Let f : X → Y be a map from an overt metric space (X, dX) to a
metric space (Y, dY ), and suppose there exist ε > 0 and c > 0 such that
dY (f(x), f(y)) ≤ c · dX(x, y) for all x, y ∈ X satisfying dX(x, y) < ε.
Then f is metric continuous. In particular, a Lipschitz map is metric
continuous.

Proof. The first statement is a special case of the last one.
For the second statement, recall that if V is metric open in Y , then it

is also intrinsically open, so f−1(V ) is open in X. Because X is metrized,
f−1(V ) is metric open.

Let us prove the third statement. Suppose V =
⋃
i∈I BY (yi, ri) is an

overt union of balls in Y . The set U = f−1(V ) is overt because it is an open
subset of X. By Proposition 2.2 the set

J = {〈i, x〉 ∈ I × U | f(x) ∈ BY (yi, ri)}

is overt. We then have

U =
⋃
〈i,x〉∈J

BX

Ç
x,min

Ç
ε,
ri − dY (yi, f(x))

c

åå
.

Definition 5.2 A map f : X → Y between metric spaces is a metric quo-
tient map if it is surjective and, for every V ⊆ Y , V is metric open in Y
if, and only if, f−1(V ) is metric open in X (the “only if” part is metric
continuity).

Proposition 5.3 If X is metrized by its metric and f : X → Y is a metric
quotient map then Y is metrized by its metric.
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Proof. For every open V ⊆ Y , f−1(V ) is open in X, hence metric open
in X, therefore V is metric open in Y . Notice that we do not need the
metric continuity of f .

The previous proposition is a generalization of Proposition 3.4 because a
retraction of an overt metrized space is a metric quotient map. Indeed,
a retraction is surjective, and if X is overt, an examination of the proof
of Proposition 3.4 reveals that r : X → A satisfies the “if” part of the
condition for metric quotient map. Finally, if X is metrized4 then r is
metric continuous by Lemma 5.1.

It is well known that every inhabited CSM is an image of Baire space NN

by an ε-δ continuous map. If we can show that the map is metric quotient
then we can transfer metrization of Baire space to all CSM’s.

Theorem 5.4 For every inhabited CSM (X, d) there is a retract T of NN

and a surjection q : T → X which is a metric quotient map when NN is
overt.

Proof. The first part is a well-known result. Nevertheless, we spell out
the proof, following [20, 7.2.4], to verify the second part of the theorem.

(1) Construction of the retraction r : NN → T .

Let (si)i∈N be a dense sequence in X. The simplest idea for the construction
of T is to take those α ∈ NN for which (sα(i))i∈N is a Cauchy sequence, but
this does not work as we would get stuck when trying to show that T is a re-
tract of NN. A slightly more refined idea works, though. By Number Choice,
there exists a map δ : N×N×N→ Q such that |d(si, sj)− δ(i, j, k)| < 2−k.
That is, δ(i, j, k) is a rational 2−k-approximation of the distance between si
and sj . Now let

T =
¶
α ∈ NN | ∀ k∈N . δ(α(k), α(k + 1), k) < 2−k+2

©
.

To construct a retraction r : NN → T , first define, for α ∈ NN and k ∈ N,

f(α, k) = min
¶
j ∈ N | j = k ∨ δ(α(j), α(j + 1), j) ≥ 2−k+2

©
,

and then r(α)(k) = α(f(α, k)). Since r(α)(k) depends only on the first
k terms of α, r is Lipschitz with coefficient 1. Furthermore, if α ∈ T then
f(α, k) = k for all k ∈ N, hence r(α) = α, which proves that r is a retraction.

(2) Construction of the map q : T → X.

For every α ∈ T and k ∈ N we have d(sα(k), sα(k+1)) < δ(α(k), α(k+1), k)+
2−k < 5 · 2−k, therefore (sα(k))k∈N is a Cauchy sequence and we may define

4We require the assumption that X is metrized: for an example of a retraction which
is not metric continuous, take Q with Euclidean metric and r : Q → Q ∩ (0,∞), defined
by r(q) = 1 for q ≤ 0, and r(q) = q for q > 0.

13



a map q : T → X by q(α) = limk sα(k). Observe that, for all α, β ∈ T with
dC(α, β) < 2−m,

d(q(α), q(β)) ≤ d(q(α), sα(m)) + d(sβ(m), q(β)) < 5 · 2−m+2,

where we used the facts that α(m) = β(m) and d(q(α), sα(m)) < 5 · 2−m+1.
This tells us q is Lipschitz when restricted to balls with radius 1: if dC(α, β) <
1 then there is m ∈ N such that dC(α, β) < 2−m < 3 · dC(α, β), which gives
us the admittedly rough Lipschitz coefficent

d(q(α), q(β)) < 5 · 2−m+2 = 20 · 2−m < 20 · 3 · d(α, β) = 60 · d(α, β).

Next, given any x ∈ X, by Number Choice there exists α ∈ NN such that
d(x, sα(k)) < 2−k for all k ∈ N. Then δ(α(k), α(k+1), k) < d(sα(k), sα(k+1))+
2−k ≤ 2−k + 2−k−1 + 2−k < 2−k+2, hence α ∈ T and q(α) = x. We showed q
is surjective.

(3) A property of q : T → X.

Before proving that q is a metric quotient map when NN is overt, we verify
the following claim:

Given any α ∈ T , let β = λn. α(n+4). Then β ∈ T , q(α) = q(β),
and BX(q(β), r/8) ⊆ q(BT (β, r)) for all 0 < r ≤ 1.

First, β ∈ T because

δ(β(k), β(k + 1), k) = δ(α(k + 4), α(k + 5), k) <

d(α(k + 4), α(k + 5)) + 2−k <

δ(α(k + 4), α(k + 5), k + 4) + 2−k−4 + 2−k <

2−k−2 + 2−k−4 + 2−k < 2−k+2.

Clearly, q(α) = q(β). Suppose x ∈ X such that d(q(β), x) < r/8. There is
m ∈ N such that r/8 < 2−m−1 < 2−m < r. By Number Choice there exists
γ ∈ NN such that d(x, sγ(k)) < 2−k for all k ∈ N. Let ε ∈ NN be defined by

ε(k) =

{
β(k) if k ≤ m,
γ(k) if k > m.

Then ε ∈ T because for all k ∈ N,

δ(γ(k), γ(k + 1), k) < d(sγ(k), sγ(k+1)) + 2−k ≤
d(sγ(k), x) + d(x, sγ(k+1)) + 2−k < 2−k + 2−k−1 + 2−k < 2−k+2,
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and

δ(β(m), γ(m+ 1),m) < d(sβ(m), sγ(m+1)) + 2−m ≤
d(sβ(m), q(β)) + d(q(β), x) + d(x, sγ(m+1)) + 2−m <

5 · 2−m−3 + 2−m−1 + 2−m−1 + 2−m = 21 · 2−m−3 < 2−m+2 ,

where we used the fact that d(sβ(m), q(β)) = d(sα(m+4), q(α)) < 5 · 2−m−3.
Furthermore, q(ε) = x and ε ∈ BT (β, 2−m) ⊆ BT (β, r). This proves the
claim.

(4) If NN is overt then q is metric quotient.

To conclude the proof, suppose NN is overt. Then T is overt because
it is an image of NN. We already showed q is surjective, and it is metric
continuous by Lemma 5.1. We verify that V ⊆ X is metric open if U =
q−1(V ) is metric open. Suppose U =

⋃
i∈I BT (αi, ri) for an overt I. The set

J = {〈α, i〉 ∈ T × I | α ∈ BT (αi, ri)}

is overt and U =
⋃
〈α,i〉∈J BT (α, ri) because BT (αi, ri) = BT (α, ri) whenever

α ∈ BT (αi, ri). Let σ : NN → NN be the shift map σ(β) = λn. β(n + 4).
Define the overt set

K = {〈β, α, i〉 ∈ T × J | σ(β) ∈ BT (α, ri)} .

We claim that

V =
⋃

〈β,α,i〉∈K
BX(q(σ(β)),min(ri, 1)/8) .

The set V contains the right-hand side because by the claim from (3) above,
for all 〈β, α, i〉 ∈ K,

BX(q(σ(β)),min(ri, 1)/8) ⊆ q(BT (σ(β),min(ri, 1))) ⊆
q(BT (σ(β), ri)) = q(BT (α, ri)) ⊆ V.

To establish the opposite inclusion, suppose x ∈ V . There is j ∈ I and
β ∈ BT (αj , rj) such that x = q(β). Because σ(β) ∈ T and q(σ(β)) =
q(β) = x, there exists 〈α, i〉 ∈ J such that σ(β) ∈ BT (α, ri). Therefore
〈β, α, i〉 ∈ K and x = q(σ(β)) ∈ BX(q(σ(β)),min(ri, 1)/8), which proves
that x is a member of the union on the right-hand side.

We are now able to transfer metrization of Baire space to that of any CSM.

Corollary 5.5 If NN is metrized by the comparison metric then every CSM
is metrized by its metric (and the converse holds trivially).
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Proof. Suppose NN is metrized and consider first an inhabited CSM X.
Because every open subset of NN is a union of open balls, NN is overt by
Propositions 3.1 and 2.2 as it is metric separable. Let

NN → T → X

be a retraction NN → T followed by a metric quotient map T → X, as
in Theorem 5.4. By Proposition 3.4 T is metrized and then so is X by
Proposition 5.3.

If X is a possibly non-inhabited CSM, we proceed as follows. Because
N+ is metrized, X is overt by Propositions 4.3 and 4.1. Replace the metric
d on X with an equivalent bounded metric and extend it to a metric d′ :
X ′ ×X ′ → R on X ′ = 1 +X by

d′(x, y) =


min(d(x, y), 1) if x, y ∈ X,
0 if x, y ∈ 1,
1 otherwise.

Observe that (X ′, d′) is an inhabited CSM, hence metrized. Because X is
an open subset of X ′ it is metrized also, as every open in X is also open
in X ′.

6 The Metric Axiom and its Consequences

In view of Corollary 5.5 we consider the following

Metric Axiom: The Baire space is metrized by the comparison
metric.

The axiom ensures a well-behaved theory of complete separable metric spaces.

Theorem 6.1 If the Metric Axiom holds then:

1. Up to topological equivalence, a set may be equipped with at most one
complete separable metric.

2. The principle WSO holds.

3. Complete separable metric spaces are overt.

4. Continuity Principle holds: every map from a CSM to a metric space
is metric continuous.

Proof. If d1 and d2 both make the set X complete and separable then
by Corollary 5.5 they both induce the same topology, namely the intrinsic
one. Hence they are topologically equivalent.
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The principle WSO holds by Proposition 4.3 because N+ is metrized,
and complete separable metric spaces are then overt by Proposition 4.1.

The Continuity Principle follows from Lemma 5.1.

The Metric Axiom is non-classical because it implies that the Law of Ex-
cluded Middle fails.

Proposition 6.2 The Metric Axiom and the Lesser Principle of Omni-
science are not both true.

Proof. Recall [2] that the Lesser Principle of Omniscience (LPO) is a
particular instance of the Law of Excluded Middle,

∀ f ∈NN . (f = o ∨ ¬(f = o)) ,

where o is the constantly zero map o(n) = 0. If LPO holds then the singleton
{o} is open in NN, which contradicts the Metric Axiom.

6.1 Topological basis and transfer by open surjections

Thus far our attention has been restricted to metric spaces. To deal with
non-metric ones, we need to generalize the concept of balls as building blocks
of open sets.

Definition 6.3 A (topological) basis for a setX is a family {Bj ∈ O(X) | j ∈ J}
of basic open sets, indexed by a (possibly non-overt) set J , subject to the
following condition: for every U ∈ O(X) there exists an overt set I and a
map e : I → J such that U =

⋃
i∈I Be(i).

We explicitly require the indexing set J and the map e in order to avoid the
need for choice principles when the same basic open set is indexed several
times, e.g., in a metric space balls with different centers and radii may
coincide. According to our definition, in such cases specific indices (centers
and radii) must be given, rather than just basic opens as sets of points. The
following lemma allows us to reindex topological bases if so desired.

Lemma 6.4 Suppose {Bj | j ∈ J} is a basis for X and r : J → K is a
surjection such that r(i) = r(j) implies Bi = Bj for all i, j ∈ J . Then we
may define Cr(j) = Bj and the family {Ck | k ∈ K} is a basis for X.

Proof. If U =
⋃
i∈I Be(i) for an overt I and a map e : I → J , then also

U =
⋃
i∈I C(r◦e)(i).

To say that a metric space is metrized is the same as to say that the
family of all balls {B(x, r) | x ∈ X, r > 0} is a topological basis for it. Of
course, just as in classical theory of metric spaces, we need not take all the
balls.
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Proposition 6.5 Suppose (X, d) is metrized by its metric and (sk)k∈N is a
dense sequence in X. Then

{
B(sk, 2−j) | k, j ∈ N

}
is a basis for X.

Proof. Let U ∈ O(X); there is an overt I such that U =
⋃
i∈I B(xi, ri).

Define the overt set

J =
¶
〈k, j〉 ∈ N× N | ∃ i∈ I . d(xi, sk) + 2−j < ri

©
.

We claim that
U =

⋃
〈k,j〉∈J

B(sk, 2−j).

The right-to-left inclusion is straightforward. For the other one, if x ∈ U
then x ∈ B(xi, ri) for some i ∈ I. There exist k, j ∈ N such that 2−j <
(ri− d(xi, x))/2 and sk ∈ B(x, 2−j). Then 〈k, j〉 ∈ J and x ∈ B(sk, 2−j).

The previous proposition tells us that a metrized separable metric space
has a countable basis. Thus, if the Metric Axiom holds, every CSM has a
countable basis.

Call f : X → Y an open map if its images of open subsets of X are open
in Y . While we could transfer only metrization along metric quotient maps,
we can transfer bases along open surjections.

Proposition 6.6 Suppose {Bj | j ∈ J} is a basis for X.

1. If f : X → Y maps basic open sets to open sets then it is an open
map.

2. If f : X → Y is an open surjection then {f(Bj) | j ∈ J} is a basis
for Y .

Proof. (1) If U ∈ O(X) then U =
⋃
i∈I Be(i) for an overt I, hence

f(U) =
⋃
i∈I f(Be(i)) is open as I is overt and the sets f(Be(i)) are open.

(2) If V ∈ O(Y ) then f−1(V ) is open in X, therefore f−1(V ) =
⋃
i∈I Be(i)

for an overt I, hence V = f(f−1(V )) =
⋃
i∈I f(Be(i)).

With this we can transfer the basis of a CSM to other spaces, even non-
metric ones. We demonstrate this by computing the topology of ΣN. Let
q : NN → ΣN be the map

q(α) = {n ∈ N | ∃ k∈N . α(k) = 1 + n} . (1)

We would like to transfer the basis for NN along q, for which we need to
know first that it is surjective.

Lemma 6.7 The map q : NN → ΣN is surjective if, and only if, Σ = Σ0
1.
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Proof. If Σ = Σ0
1 then every U ∈ ΣN is countable, i.e., there exists a

surjective e : N→ 1 + U , hence U = q(α) if we take

α(n) =

{
1 + e(n) if e(n) ∈ U ,
0 if e(n) = ?.

Conversely, suppose q is surjective. Because N is overt and ⊥,> ∈ Σ, we
already know that Σ0

1 ⊆ Σ. Suppose p ∈ Σ. There exists α ∈ NN such that

{n ∈ N | p} = {n ∈ N | ∃ k∈N . α(k) = 1 + n} .

In particular, for n = 0 we get p ⇐⇒ (∃ k∈N . α(k) = 1), hence p ∈ Σ0
1.

Recall that a subset U ⊆ ΣN is Scott open when U ∈ ΣN is in U if, and
only if, some finite subset of U is in U .

The family F of all finite subsets of N is overt because it is isomorphic
to N. For any F ∈ F , the set ↑F =

¶
U ∈ ΣN | F ⊆ U

©
is open in ΣN

because F is compact.

Proposition 6.8 (Scott’s Principle) If Σ = Σ0
1 and the Metric Axiom

holds then the family {↑F | F ∈ F} is a basis for ΣN. Moreover, every open
subset of ΣN is Scott open.

Proof. Let N∗ be the set of all finite sequences in N. Notice that N∗
is isomorphic to N. For every a ∈ N∗ define sa = a::o where o is the zero
sequence. Because {sa | a ∈ N∗} is metric dense in NN, the family¶

B(sa, 2−k) | a ∈ N∗, k ∈ N
©

is a basis for NN by Proposition 6.5. The map q : NN → ΣN defined by (1)
maps a basic open ball B(sa, 2−k) to the open subset

q(B(sa, 2−k)) = ↑r(a, k),

where r : N∗ × N→ F is defined by

r(a, k) = {n ∈ N | ∃ j ≤ k . sa(j) = 1 + n} .

Therefore, by Lemma 6.7 and Proposition 6.6 the family¶
q(B(sa, 2−k)) | a ∈ N∗, k ∈ N

©
is a basis for ΣN. We now apply Lemma 6.4 with the reindexing map r to
conclude that {↑F | F ∈ F} is a basis, too.

It remains to be shown that every U ∈ O(ΣN) is Scott open. There is
an overt I and a map e : I → F such that U =

⋃
i∈I ↑e(i). Consider any

U ∈ ΣN. If there is a finite F ⊆ U such that F ∈ U then there is i ∈ I
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such that e(i) ⊆ F , hence e(i) ⊆ U and U ∈ U . Conversely, if U ∈ U then
e(i) ⊆ U for some i ∈ I, but then e(i) ∈ ↑e(i) ⊆ U .

Scott’s Principle furthermore implies that every U ∈ O(ΣN) is an overt union
of basic open sets in a canonical way, namely

U =
⋃
{↑F | F ∈ F ∩ U} .

The set F ∩U is overt because it is the intersection of an overt and an open
set.

Actually, we could have computed the topology of ΣN already from the
weaker principle WSO.

Proposition 6.9 If Σ = Σ0
1 and WSO then the family {↑F | F ∈ F} is a

basis for ΣN. Moreover, every open subset of ΣN is Scott open.

Proof. Let U ∈ O(ΣN) be an open set. It suffices to prove

U =
⋃
{↑F | F ∈ F ∩ U} ,

because F ∩ U is overt.
If F ∈ F ∩ U then ↑F ⊆ U because U is an upper set. To see this,

suppose U ∈ U and U ⊆ V ∈ ΣN. Define the map f : N+ → ΣN by

f(t) = {n ∈ N | n ∈ U ∨ (t <∞∧ n ∈ V )} .

Because f(∞) = U we have f(∞) ∈ U . By WSO there exists k ∈ N such
that f(k) ∈ U , but f(k) = V .

For the opposite inclusion, suppose U ∈ U . Because Σ = Σ0
1, U is

enumerated by some e : N→ 1 + U . Define the map g : N+ → ΣN by

g(t) = {n ∈ N | ∃ i∈N . (i < t ∧ e(i) = n)} .

Because g(∞) = U ∈ U by WSO there exists k ∈ N such that g(k) ∈ U .
This finishes the proof because g(k) ⊆ U and g(k) ∈ F .

7 Varieties of Constructivism

In this section we consider the relationship between synthetic and metric
notions in three varieties of constructive mathematics:

1. Classical mathematics (CLASS).

2. Russian constructivism (RUSS), modeled by the effective topos [9],
which is based on the original notion of number realizability by Kleene
[12]. In computable analysis this setting is known as Type I com-
putability.
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3. A slightly strengthened version of Brouwer’s intuitionism (INT+), which
is modeled by the realizability topos based on Kleene’s function real-
izability [13]. This is also known as Type II computability [21].

Figure 1 summarizes validity of various statements in each of these models,
where Continuity Principle is as stated in Theorem 6.1 and Scott’s Principle
as stated in Proposition 6.8. We see that CLASS serves as a trivialization of
the theory, in RUSS there is little connection between metric and synthetic
topology, while there is a very good match between our theory and INT+.

RUSS INT+ CLASS
WSO • •

Metric Axiom •
2N metrized •
N+ metrized •
NN compact •
2N compact • •

N+ compact • •
Scott principle • •

Continuity principle • •

Figure 1: Metrization and compactness in varieties of constructivism

7.1 Classical Mathematics

If we assume the Law of Excluded Middle nothing much can be said apart
from the fact that synthetic topology collapses because 2 = Σ = Ω. All
spaces are overt, compact, discrete, Hausdorff, and metrized by the discrete
metric. By Proposition 6.2 the Metric Axiom fails.

7.2 Number realizability or Russian Constructivism

We work within the framework of Russian constructivism in the style of
Richman’s [17, 3] and synthetic computability [1]. The following two prin-
ciples are valid in Russian constructivism:

1. Markov Principle: If not all terms of a binary sequence are zeros then
some of them are ones.

2. Enumerability Axiom: There are countably many countable subsets
of N.

At first we restrict attention to Σ = Σ0
1. In this case the set of countable

subsets of N is just ΣN. Let W : N → ΣN be an enumeration. Markov
Principle says that ¬¬p =⇒ p for all p ∈ Σ.
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The Enumerability Axiom implies (and is implied by) Richman’s axiom
CFP, which states that there is an enumeration φ0, φ1, . . . of those partial
maps N ⇀ N that have countable graphs. A partial function f : N ⇀ N
has an enumerable graph if, and only if, “f(n) is defined” is semidecidable
for all n ∈ N. We write f(n)↓ for “f(n) is defined”. Because semidecidable
truth values are open, this implies that, for all a = (a0, . . . , ak−1) ∈ Nk and
n ∈ N, the truth value

∀ i < k . (φn(i)↓ ∧ φn(i) = ai) (2)

is open. We abbreviate (2) as φn(k) = a.
The classical nature of Markov Principle and the non-classical nature of

Enumerability Axiom combine into a strange mix of consequences. We show
that WSO is valid, but N+ is not metrized or compact.

Proposition 7.1 The principle WSO holds.

Proof. A detailed proof can be found in [1, 4.26]. By Lawvere’s fixed
point theorem [15], every f : Σ → Σ has a fixed point, namely Wn(n) =
f(Wn(n)) where n ∈ N is such that Wn(k) = f(Wk(k)). By Markov Princi-
ple it suffices to show

∀U ∈O(N+) . ((∀n∈N . n 6∈ U) =⇒ ∞ 6∈ U) .

Suppose U ∈ O(N+) and n 6∈ U for all n ∈ N. Let q : N+ → Σ be the
quotient map q(t) = (t < ∞). The map U : N+ → Σ factors through q to
give a map f : Σ → Σ, which has a fixed point p ∈ Σ. Because f(>) = ⊥
and f(p) = p, we see that p 6= >, hence p = ⊥. Thus we get U(∞) =
f(q(∞)) = f(⊥) = ⊥, as required.

Proposition 7.2 There exists V ∈ O(N+) which is not a union of balls.

Proof. Let r : NN → N+ be the retraction

r(α)(k) =

{
1 if ∃ j ≤ k . α(k) 6= 0,
0 otherwise,

let Tot ⊆ N be the set of those n for which φn is a total function, and let
ψ : Tot→ N+ be the composition ψ = r ◦ φ.

We prove that N+ is not metrized by constructing an open subset V ⊆
N+ such that ∞ ∈ V but no ball B(∞, 2−k) is contained in V . For this
purpose, define the map s : N+ → N+ by s(α)(k) = α(k2 +2k). It computes
the integer part of square root, i.e., for n ∈ N, s(n) is the m ∈ N such that
m2 ≤ n < (m+ 1)2, and s(∞) =∞. The set

U = {n ∈ Tot | n < s(ψn)∨
(ψn <∞∧ ∃ j < s(ψn) . φj(1 + ψn) = ψn(1 + ψn))}
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is open. Moreover, we claim that n ∈ U and ψn = ψm imply m ∈ U . There
are two cases to consider:

1. If n < s(ψn) there are two further cases: (1) if m ≤ n then m ∈ U
because m ≤ n < s(ψn) = s(ψm), (2) if n < m then either m < s(ψm)
or n < s(ψn) = s(ψm) ≤ m, both of which imply m ∈ U .

2. If ψn <∞ and there is j < s(ψn) such that φj(1 + ψn) = ψn(1 + ψn)
then me may use the same j to conclude that m ∈ U .

It follows that U induces an open subset V ⊆ N+, defined by

V =
¶
α ∈ N+ | ∃n∈Tot . (ψn = α ∧ n ∈ U)

©
,

or equivalently,

V =
¶
α ∈ N+ | ∀n∈Tot . (ψn = α =⇒ n ∈ U)

©
.

We prove that, for any m ∈ N, the set Sm = s−1(m) = {m2, . . . ,m2 + 2m}
is not contained in V . For every k ∈ Sm there is nk ∈ N such that ψnk

= k.
Each of the numbers nm2 , . . . , nm2+2m is an element of U if it satisfies one or
the other disjunct in the definition of U . Since s(ψnk

) = m at most m satisfy
the first disjunct, and at most m satisfy the second one because different
nk’s receive different witnesses j. As there are 2m + 1 numbers nk, not all
of them are in U , therefore not all elements of Sm are in V .

Clearly,∞ ∈ V . For any k ∈ N, the open ball B(∞, 2−k) is not contained
in V because that would also mean that Sm is contained in V for large
enough m.

The complement of the set V from previous proof is neither finite nor
infinite (does not contain an infinite, strictly increasing sequence). In recur-
sion theory such sets are called immune.

By Proposition 4.3 it follows that N+ is not metrized, and because WSO
holds, that it is not compact. This has consequences for NN and 2N.

Corollary 7.3 The spaces NN and 2N are neither metrized nor compact.

Proof. If either were metrized or compact then so would be their re-
tract N+.

The fact that NN is not metrized is essentially a result of Friedberg’s who
constructed an effective but not partial recursive operator [8]. If a space is
not metrized with respect to Σ0

1 then it is not metrized with respect to any
larger dominance Σ. Thus Proposition 7.2 and Corollary 7.3 imply that N+

and NN are not metrized with respect to any dominance that makes N overt.
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7.3 Function Realizability or Brouwer’s Intuitionism

In this section we consider a slightly strengthened version of Brouwer’s in-
tuitionism. We adopt the following principles:

1. Function-Function Choice: for any total relation R ⊆ NN × NN there
exists a choice function f : NN → NN such that 〈α, f(α)〉 ∈ R for all
α ∈ NN.

2. Continuity Principle: for every f : NN → N and α ∈ NN there exists
k ∈ N such that β ∈ B(α, 2−k) implies f(α) = f(β).

3. Fan Principle: every decidable bar is uniform, cf. Section 4.

In the usual setting INT [3, 5.2] only the weaker Function-Number choice
is used. Kleene’s function realizability and the corresponding realizability
topos validate not only Function-Function Choice but even Function Choice:
every total relation with domain NN has a choice function. In Type II effec-
tivity Function Choice manifests itself as the fact that NN has an admissible
injective representation.

We show that Σ = Σ0
1, Function-Function choice, and Continuity Princi-

ple together imply the Metric Axiom. It then follows from the Fan Principle
and Corollary 4.5 that 2N, and more generally any inhabited CTB, is com-
pact.

Let us prove that every open subset U ⊆ NN is a union of balls. Because
the map q : 2N → Σ, defined by q(α) = (∃n∈N . αn = 1) is surjective, by
Function-Function Choice there exists a map f : NN → 2N such that

U =
¶
α ∈ NN | ∃n∈N . f(α)(n) = 1

©
.

By Continuity Principle and Function-Number Choice there exists a mod-
ulus of continuity µ : NN × N → N such that, for every α ∈ NN, β ∈
B(α, 2−µ(α,n)) implies f(α)(n) = f(β)(n). Define

I =
¶
〈α, n〉 ∈ NN × N | f(α)(n) = 1

©
and observe that

U =
⋃

〈α,n〉∈I
B(α, 2−µ(α,n)).

We now know that open subsets are unions of open balls, therefore NN is
overt by Propositions 3.1 and 2.2. Consequently, I is overt as well. The
Metric Axiom is established.

One may wonder if the Continuity Principle alone implies the Metric
Axiom for the case Σ = Σ0

1. This would make the two equivalent because the
Metric Axiom implies the Continuity Principle by Theorem 6.1. However, in
Russian constructivism the Continuity Principle is validated by the Kreisel-
Lacombe-Shoenfield-Ceitin theorem [14, 5, 4] but the Metric Axiom fails, as
we showed in Section 7.2.
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[7] M. Escardó. Topology via higher-order intuitionistic logic. Unpublished
preprint of a talk given at Mathematical Foundations of Programming
Semantics XX, Pittsburgh, USA, May 2004.

[8] R.M. Friedberg. Un contre-example relatif aux functionnelles
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