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Abstract
In the effective topos there exists a chain-complete distributive lat-
tice with a monotone and progressive endomap which does not have
a fixed point. Consequently, the Bourbaki-Witt theorem and Tarski’s
fixed-point theorem for chain-complete lattices do not have construc-
tive (topos-valid) proofs.

1 Introduction

Fixed-point theorems state that maps have fixed points under certain con-
ditions. They are used prominently in denotational semantics, for example
to give meaning to recursive programs. In fact, it is hard to overestimate
their applicability and importance in mathematics in general.

A constructive proof of a fixed-point theorem makes the theorem twice
as worthy because it yields an algorithm for computing a fixed point. In-
deed, many fixed-point theorems have constructive proofs, of which we might
mention Lawvere’s fixed-point theorem [5], Tarski’s fixed-point theorem for
a monotone map on a complete lattice [7], and Pataraia’s generalization of
it to directed-complete posets [6]. Two that have defied constructive proofs
are Tarski’s theorem for chain-complete posets and the Bourbaki-Witt the-
orem [1, 9] for progressive maps on chain-complete posets, see Section 5 for
their precise statements.

I show that in the effective topos [3] there is a chain-complete distribu-
tive lattice with a monotone and progressive endomap which does not have
a fixed point. An immediate consequence of this is that both Tarski’s the-
orem for chain-complete posets and the Bourbaki-Witt theorem have no
constructive (topos-valid) proofs.



The outline of the argument is as follows. In the effective topos Eff
every chain is a quotient of a subobject of the natural numbers, hence it has
at most countably many global points. Consequently, the poset w; of set-
theoretic countable ordinals is chain-complete in the effective topos, even
though it is only countably complete in the topos of sets. The successor
function on wp is monotone, progressive, and does not have a fixed point.
We work out the details of the preceding argument carefully in order not to
confuse external and internal notions of chain-completeness and countability.
We use [8] as a reference on the effective topos. For the uninitiated, we have
included a brief overview of the effective topos in Appendix A.

2 Discrete objects in the effective topos

An object in the effective topos is discrete! when it is a quotient of a subob-
ject of the natural numbers object N. Such objects were studied in [4], where
it is shown that X is discrete precisely when it is orthogonal to 2, by which
we mean that the diagonal map X — X V2 is constant. Here 2 = {0,1} is
the two-element set and V : Set — Eff is the “constant objects” functor, see
Appendix A.3. In the internal language of Eff discreteness of X is expressed
by the statement

VfeXY2.Vpev2. f(p) = f(1), (1)

which says that every f : V2 — X is constant. We are interested in the
object D(X) of discrete subobjects of X, which we define in the internal
language as

DX)={AecP(X)|ALV2},

where P(X) is the powerobject and A | V2 is the statement?
VFEXY2. (VpeV2. f(p) € A) = (VpeV2.f(p) = f(1). (2)

Let us explicitly compute D(X) in case X = VS for a set S. The powerob-
ject P(VS) is the set P(N)® with the non-standard equality predicate

The object D(V.S) is the set P(N)¥ with non-standard equality predicate

[A =pws) Bl = (A= B) A (B= A) A\ D(A),

!The terminology is established and somewhat unfortunate, as it falsely suggests that
a discrete object has decidable equality.

*We take care not to assume that a variable A ranging over a powerobject P(X) is an
actual object in the topos, which is why (1) and (2) differ slightly.



where D : P(N)® — P(N) is a strict extensional relation representing the
predicate (2). To compute D we recall how universal quantification over a
constant object works.

Suppose T is a set, X is an object, and ¢ is a formula with free variables
t and x ranging over VI and X, respectively, represented by the strict
extensional relation F' : T' x | X| — P(N). Then the predicate Vt € VT . ¢ is
represented by the strict extensional relation |X| — P(N) defined by

x ﬂteTF(t, x).

When we apply this to the universal quantifiers in (2), and use the fact that
VSV? is isomorphic to V(S?), we find after a short calculation that

D(A) = ), g AU(©) N AFD) = [£(0) =vs £(1)
=Ny ypese A@) NAG) = [ =vs bl

We will need to know precisely when D(A) is non-empty. If z # y then
A(xz) N A(y) = [x =vs y| is inhabited only if A(z) N A(y) = (), because
x # y implies [x =yg y] = 0. Thus a necessary condition for D(A) to be
non-empty is that = # y implies A(z) N A(y) = (). But this condition is also
sufficient, since it implies that

D(A) =, s A@ NAW) = o =55 3] =
(N,_, A@ AW = e =vs y]) N (), A@) NAW) = v =vs 3]) =
(N,_,A@=N)n (N, 0=0)= (N, A@)=N)

is non-empty because it contains at least (the Godel codes of) the constant
function n — 0.

Let cl-— : P(V.S) — VP(S) be the operator which composes with double
negation ——: ) — V2:

o

1R

P(VS) Ovs

(V2)V$ VP(S)

Let P,(S) be the set of all countable subsets of a set S.

Proposition 2.1 For any set S, the restriction of cl-— to D(VS) factors
through VP, (S5):

D(VS) ——= P(VS)

clo

VP(S)



Proof. In the diagram above i and j are inclusions D(V.S) C P(VS) and
P,(S) C P(S), respectively. Because V is right adjoint to the global points
functor I', and I'o V is naturally isomorphic to the identity, there is a unique
c¢: T(D(VS)) — P(S) such that cl. o4 is the composition of Ve and the
unit of the adjunction 7:

D(VS) — = VI (D(S))

Ve

clo—o1

VP(S)

It suffices to show that ¢ factors through j, since then cl. oi = Vcon
factors through Vj.

A global point [A] : 1 — D(V.S) is represented by A : S — P(N) such
that D(A) # (. Because cl--, is composition with —=—, we get

c([A]) = {x € S| A(z) # 0}

Earlier we established that D(A) # 0 implies A(z) N A(y) = () whenever
x # y. Therefore, for each n € N there is at most one x € A such that
n € A(z), which means that there are at most countably many = € S for
which A(z) # 0. But then ¢([A]) is a countable subset of S, which is what
we wanted to prove. O

We shall need one more piece of knowledge about discrete objects. Define
the object B = ({0,1},=p) to have the equality predicate

{0} ifx=y=0,
[z =py]l=< {1} fz=y=1,
0 otherwise.

The object B is isomorphic to 1+ 1. By the uniformity principle [8, 3.2.21],
the following statement is valid in the internal language of Eff: for all ¢ €
P(V2x B), it VpeV2.3de B.¢(p,d) then 3de B.VpeV2.¢(p,d). We
require the following equivalent form.

Lemma 2.2 The following statement is valid in the internal language of
Eff: for all ¢,7p : V2 — Q, if VpeV2.(é(p) V(p)) then Vpe V2. ¢p(p) or
VpeV2.¢4(p).

Proof. We argue in the internal language of Eff. IfVp e V2. (¢(p) V ¢ (p))
then
VpeV2.3de2.((d=0A¢(p)) VvV (d=1AP(p))).



To see this, take d = 0 if ¢(p) holds and d = 1 if ¢(p) holds. By the

uniformity principle
3de2.VpeV2.((d=0A¢(p)) V(d=1AY(p))).

Consider such d € 2. If d = 0 then Vpe V2.¢(p), and if d = 1 we obtain
VpeV2.¢4(p). O

3 Posets and Chains in the Effective Topos

In this section we work entirely in the internal language of the effective topos.
First we recall several standard order-theoretic notions. A poset (L, <) is an
object L with a relation < which is reflexive, transitive, and antisymmetric.
A lattice (L,<,A,V) is a poset in which every elements z,y € L have a
greatest lower bound = Ay, and least upper bound x V y. Note that a lattice
need not have the smallest and the greatest element. A lattice is distributive
if A and V satisfy the distributivity laws (x Ay)V z=(zV 2) A (yV z) and
(xVy)ANz=(xANz)V(yAz). An endomap f: L — L on a poset (L, <) is
monotone when

Vo,yel.(z<y = f(z) < f(y)),

and progressive when Ve € L.x < f(x).
For z € L and A € P(L) define bound(z, A) to be the relation

bound(z,A) <= Vyel.(yc A = y<ux).
We say that z € L is the supremum of A € P(L) when
bound(z, A) AVy e L. (bound(y,4A) = y < z).

Lemma 3.1 Suppose (L, <) is a poset with a ~—-stable order. For all A €
P(L) and x € L, if x is the supremum of cl.. A then x is the supremum of

A.

Proof. By definition of cl--, y € cl. A is equivalent to =—(y € A). If <
is m—-stable then

bound(z,cl.~A) <= VyeL.(——(ye A) = y<uz)
< VyeLl.(ye A = -~(y<z))
< Vyel.(ye A = y<ux)
<= bound(z, A).

Because cl- A and A have the same upper bounds, if x is the supremum of
one of them then it is the supremum of the other as well. O



By a chain in a poset (L, <) we mean C' € P(L) such that
Ve,yeL.(xeCANyeC = z<yVy<ux).
The object of chains in L is defined as
CeL)y={CeP(L)|Va,yecL.(reCAhyeC = z<yVy<uz)}.
Proposition 3.2 Every chain is discrete, i.e., C(L) C D(L).

Proof. Consider any C' € C(L) and f : V2 — LsuchthatVpe V2. f(p) €
C'. We need to show that f is constant. Because C is a chain we have

Vp,qeV2.(f(p) < f(@)V flg) < f(p))-

By a double application of Lemma 2.2 we obtain

(Vp,geV2. f(p) < f(q) vV (Vp,qe V2. f(q) < f(p)).

Because < is antisymmetric, either of these two cases implies f(p) = f(q)
for all p,q € V2, as required. O

4 The poset Vuw;

Let (w1, =) be the distributive lattice of countable ordinals in Set. This is
not a chain-complete poset, but it is complete with respect to countable
subsets. Let sup : P, (w1) — w1 be the supremum operator which maps a
countable subset A C wy to its supremum.

The object Vwi, ordered by V=, is a distributive lattice in Eff. One
way to see this is to observe that V preserves finite products, therefore it
maps models of the equational theory of distributive lattices to models of
the same theory. Moreover, V also preserves the statement

VAePR,(S). “sup(A) is the supremum of A”

because the statement is expressed in the negative fragment of logic (A,
—, V), which is preserved by V.

Proposition 4.1 The poset Vwy is chain-complete in Eff.

Proof. We claim that the supremum operator C(Vw;) — Vw; is the
composition

clo— V sup

@(Vu}l)

@(le)

V(Fy(w1))

le



The arrow marked by C comes from Lemma 3.2, while the one marked as
cl-- is the factorization D(Vw;) — VP, (w1) from Proposition 2.1.

We argue in the internal language of Eff. Consider a chain C' € €(Vwy).
Then cl..C € VP, (w), therefore (V sup)(cl--C) is the supremum of clC.
But since the order V< on Vw; is =—-stable it is also the supremum of C
by Lemma 3.1. O

Corollary 4.2 In the effective topos, there is a chain-complete distributive
lattice with a monotone and progressive endomap which does not have a
fixed point.

Proof. The successor map succ : w; — wp iS monotone, progressive,
and does not have a fixed point. The functor V preserves these properties
because they are all expressed in the negative fragment. Therefore, in the
effective topos Vwi is a chain-complete distributive lattice and Vsucc is
monotone, progressive and does not have a fixed point. O

5 Discussion

An immediate consequence of Corollary 4.2 is that the following theorems
cannot be proved constructively, i.e., in higher-order intuitionistic logic:

1. Tarski’s Theorem [7] for chain-complete lattices: a monotone map on
a chain-complete lattice has a fixed point.

2. Bourbaki-Witt theorem [1, 9]: a progressive map on a chain-complete
poset has a fixed point above every point.

The theorems cannot be proved even if we assume Dependent Choice because
it is valid in the effective topos.

Dito Pataraia [6] proved constructively Tarski’s fixed-point theorem for
dcpos. A natural question is whether perhaps the Bourbaki-Witt theorem
can also be proved constructively for dcpos. The following observation by
France Dacar [2] shows that this is not possible because the Bourbaki-Witt
theorems for chain-complete posets and dcpos are constructively equivalent.

Theorem 5.1 (France Dacar) The following are constructively equiva-
lent:

1. FEvery progressive map on a chain-complete inhabited poset has a fixed
point.

2. Every progressive map on o directed-complete inhabited poset has a
fized point.



Proof. For this theorem we require chains to be inhabited.? The direc-
tion from chain-complete posets to directed-complete ones is trivial because
every directed-complete poset is chain-complete. To prove the converse,
suppose (2) holds and let (P, <) be a chain-complete inhabited poset with
a progressive map f : P — P. The set C of inhabited chains in P, or-
dered by inclusion, is inhabited and closed under directed unions, therefore
it is a depo. Define the map F': C' — C by F(A) = AU f(sup(A)). This
is a progressive map on C, therefore by (2) it has a fixed point B. Now
f(sup(B)) € B and hence f(sup B) < sup B, which means that sup(B) is a
fixed point of f. O

In constructive mathematics the tradition is not to despair when a clas-
sical theorem turns out to be unprovable, but rather to find a constructively
acceptable formulation and prove it. What that might be in the present
case remains to be seen.

Acknowledgment. I thank France Dacar for inspiration and many useful
bits of knowledge.
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A The Effective Topos

We rely on [8] as a reference on the effective topos and give only a quick
overview of the basic constructions here.

A.1 Definition of the effective topos

Recall that a non-standard predicate on a set X is a map A : X — P(N),
where we think of A(z) as the set of realizers (Godel codes of programs)
which witness the fact that x has the property A. The non-standard predi-
cates on X form a Heyting prealgebra P(N)X with the partial order

A< B < dneN.VezeX.VmeA(z).pn(m)| A pn(m) € B(x),

where ¢, is the n-th partial recursive function and ¢,(m)| means that
©n(m) is defined. In words, A entails B if there is a program that translates
realizers for A(z) to realizers for B(x), uniformly in z. Predicates A and
B are equivalent when A < B and A < B. If we quotient P(N)X by the
equivalence we obtain an honest Heyting algebra, but we do not do that.

Let (—, —) be a computable pairing function on the natural numbers N,
e.g., {m,n) = 2™(2n + 1). The Heyting prealgebra structure of P(N)¥X is as
follows:

T(x) =N (3)
1(z)=10

(AN B)(z) = {(m,n) | m e A(x) An € B(x)}

(AV B)(z) = {(0,n) | n € A(x)} U{(L,n) | n € B(x)}

(A= B)(z)={neN|VmeA(z).on(m)| A pn(m) € B(z)}.

We say that a non-standard predicate A is valid if T < A, in which case we
write = A. The condition T < A is equivalent to requiring that [ .y A(x)
contains at least one number. Often a non-standard predicate is given as a
map x — ¢(x) where ¢ is an expression with a free variable z. In this case
we abuse notation and write = ¢(x) instead of = Az: X .¢(z). In other
words, free variables are to be implicitly abstracted over.



An object X = (|X|,=x) in the effective topos is a set | X| with a non-
standard equality predicate =x : | X| x | X| — P(N), which is required to be
symmetric and transitive (where we write [z =x y| instead of z =x y for
better readability):

Flr=xyl=[y=x 2], (symmetric)
Flr=xylAly=x2]=[r=x 2] (transitive)

Usually we write Ex(z) for [v =x x]. Think of Ex as an “existence predi-
cate”, and Ex(x) as the set of realizers which witness the fact that = exists.

In the effective topos a morphism F' : X — Y is represented by a non-
standard functional relation F': X x Y — P(N). More precisely, we require
that

= F(z,y) = Ex(z) ANEy(y) (strict)
E 2 =x 2] AF(z,y) ANy =y V] = F(2',y) (extensional)
E F(z,y) AF(z,y) = [y =x V] (single-valued)

)

= Ex(z) = Uyey Ey(y) A F(z,y). (total

Two such functional relations F, F’ represent the same morphism when F' <
F' and F' < F in the Heyting prealgebra P(N)X*Y. Composition of F :
X —Y and G : Y — Z is the functional relation G o F' given by

(GoF)(z,2) = Uer F(z,y) NG(y, z).

The identity morphism I : X — X is represented by the relation I(z,y) =
[x =x y].

The category Eff is a topos. Let us give a description of powerobjects.
If X is an object then the powerobject P(X) is the set P(N)XI with the
non-standard equality predicate

[A=px) B] = (A= B) A (B= A) A

The complicated part in the second line says that A is strict and extensional.
If z and y are variables of type X and P(X), respectively, then the atomic
predicate x € y is represented by the strict extensional predicate E : | X| x
P(N)XI — P(N) defined by E(u, A) = Ex(u) A Epx)(4) A A(u).

A.2 Interpretation of first-order logic in Eff

The effective topos supports an interpretation of intuitionistic first-order
logic, which we outline in this section. Each subobject of an object X =

10



(|X],=x) is represented by a strict extensional predicate, which is a non-
standard predicate A : |X| — P(N) that satisfies:

= A(r) = Ex(x), (strict)
E A(z) A [z =x 2] = A(2). (extensional)

Such a predicate represents the subobject determined by the mono I : Y —
X where Y| = |X]|, [z =y y] = [z =x y] AN A(z), and I(z,y) = [z =y
y]. Strict predicates represent the same subobject precisely when they are
equivalent as elements of the Heyting prealgebra P(N)*X.

The interpretation of first-order logic with equality in Eff may be ex-
pressed in terms of strict extensional predicates and non-standard equality
predicates. Suppose ¢ is a formula with a free variable z ranging over an
object X.* The interpretation of ¢ is the subobject of X represented by
the non-standard predicate [¢] : |X| — P(N), defined inductively on the
structure of ¢ as follows. The propositional connectives are interpreted by
the Heyting prealgebra structure of non-standard predicates, cf. (3):

[T]=T
[L]=1
[0 A ] =16] A Y]
[0V ] =10V [¥]
[0 =] = [0] = [¥].
Suppose ¥ is a formula with free variables x of type X and y of type Y,

and let A= [¢] : | X| x |Y| — P(N) be a strict extensional predicate which
interprets ¥. Then the interpretation of the quantifiers is:

BreX ¢l =/
VzeX . y)y) =)

Ex(2) A Az, y), (4)

Ex(z) = A(z,y).

z€|X|

z€| X|

Suppose f,g : X — Y are morphisms represented by functional relations
F,G : |X]| x |Y| — P(N), respectively. The atomic formula f = g, where z
is a variable of type X, is interpreted as the subobject of X represented by
the non-standard predicate [f = g] : | X| — P(N), defined by

[f = a)@) =, Fl@:9) A Gla,y).

If other atomic predicates appear in a formula, their interpretation must be
given in terms of corresponding strict extensional predicates.

“In the general case ¢ may contain free variables zi,...,z, ranging over objects
X1,...,Xn, respectively. Such a ¢ is interpreted as a subobject of X7 x -+ x X,. It
is easy to work out the details once you have seen the case of a single variable.
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A.3 The functor V : Set — Eff

The topos of sets Set is (equivalent to) the topos of sheaves for the ——-
topology on Eff. The direct image part of the inclusion Set — Eff is the
functor V : Set — Eff which maps a set S to the object V.S = (5, =vgs)

where
[ ] N ifzx=y,
xr = =
vy 0 ifz#y.

A map f:S — T is mapped to the morphism Vf : VS — VT represented
by the functional relation

(VH)(@,y) = [f(z) =vr 9] .

The inverse image part is the global sections functor I" : Eff — Set, defined
as I'(X) = Eff(1, X). Concretely, a global point 1 — X is represented by an
element x € | X| such that Ex(z) # (. Two such z,y € |X| represent the
same global point when [z =x y| # 0.

If S is a set then every element of V.S exists uniformly, in the sense that
Es(z) = N. Every map S — P(N) is strict and extensional with respect
to =vg. These two observations allow us to simplify calculations involving
VS. For example, the powerobject P(VS) is the set P(N)® with the equality
predicate simplified to [A =pvg) B] = (A= B) A (B = A). Similarly, the
interpretation (4) of existential and universal quantifiers simplifies to

[Bzevs.vly) =J
[Veevs.dly) =[)

Az, y),
Az, y).

zeSs

€S
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