Efficient Computation with Dedekind Reals

Andrej Bauer
(joint work with Paul Taylor)

Department of Mathematics and Physics
University of Ljubljana, Slovenia

MAP, Trieste, August 2008
In this talk

We present a mathematical language which is powerful enough to let us talk about real analysis, but also simple enough to be an efficient programming language.
Our language is based on *Abstract Stone Duality* (ASD) by Paul Taylor.

ASD is a variant of λ-calculus which directly axiomatizes spaces and continuous maps.

We use a fragment of ASD which can be understood on its own.

Further material: http://www.paultaylor.eu/ASD/
A language for real analysis

- Number types \(\mathbb{N}, \mathbb{Q}, \mathbb{R} \)
- Arithmetic \(+, -, \times, /\)
- Decidable equality \(=\) and decidable order \(<\) on \(\mathbb{N}\) and \(\mathbb{Q}\)
- General recursion on \(\mathbb{N}\)
- Semidecidable order relation \(<\) on \(\mathbb{R}\)
- Logic:
 - truth \(\top\) and falsehood \(\bot\)
 - connectives \(\land\) and \(\lor\)
 - existential quantifiers:

 \[\forall x : \mathbb{R}, \quad \exists x : [a, b], \quad \exists x : (a, b), \quad \exists n : \mathbb{N}, \quad \exists q : \mathbb{Q} \]

 - universal quantifier: \(\forall x : [a, b]\)
Axioms for real numbers

The real numbers \mathbb{R} are:

- an ordered field,
- with Archimedean property,
- Dedekind complete,
- overt Hausdorff space,
- and $[0, 1]$ is compact.
Dedekind cuts

A cut is a pair of rounded, bounded, disjoint, and located open sets.
Lower and upper reals

By taking the lower rounded sets we obtain the *lower reals*, and similarly for *upper reals*. These are more fundamental than reals.
Examples of cuts

- A number a determines a cut, which determines a:
 \[
 a = \text{cut } x \text{ left } x < a \text{ right } a < x
 \]

- \sqrt{a} is the cut
 \[
 \text{cut } x \text{ left } (x < 0 \lor x^2 < a) \text{ right } (x > 0 \land x^2 > a)
 \]

- Exercise:
 \[
 \text{cut } x \text{ left } (x < -a \lor x < a) \text{ right } (-a < x \land a < x)
 \]

- The full notation for cuts is
 \[
 \text{cut } x : [a, b] \text{ left } \phi(x) \text{ right } \psi(x)
 \]
 This means that the cut determines a number in $[a, b]$.

A logical formula $\phi(x)$ where $x : A$ has two readings:
- **logical**: a predicate on A
- **topological**: an open subset of A

In particular, a closed formula ϕ is
- **logically**, a truth value
- **topologically**, an element of Sierpinski space Σ

We use this to express topological and analytic notions **logically**.
Example: \mathbb{R} is locally compact

- Classically: for open $U \subseteq \mathbb{R}$ and $x \in \mathbb{R}$,

 $$x \in U \iff \exists d, u \in \mathbb{Q}. x \in (d, u) \subseteq [d, u] \subseteq U$$

- Topologically: for $\phi : \mathbb{R} \to \Sigma$ and $x : \mathbb{R}$,

 $$\phi(x) \iff \exists d, u \in \mathbb{Q}. d < x < u \land \forall y \in [d, u]. \phi(y)$$
Example: \([0, 1]\) is connected

- Classically: for open \(U, V \subseteq [0, 1]\),
 \[
 U \cap V = \emptyset \land U \cup V = [0, 1] \implies U = [0, 1] \lor V = [0, 1]
 \]

- (Topo)logically: for \(\phi, \psi : [0, 1] \to \Sigma\), if
 \[
 \bot \iff \phi(x) \land \psi(x)
 \]
 then
 \[
 \forall x \in [0, 1]. (\phi(x) \lor \psi(x)) \implies (\forall x \in [0, 1]. \phi(x)) \lor (\forall x \in [0, 1]. \psi(x))
 \]
Example: \mathbb{R} is connected

- Classically: for open $U, V \subseteq \mathbb{R}$,

 $$U \cup V = \mathbb{R} \land U \neq \emptyset \land V \neq \emptyset \implies U \cap V \neq \emptyset$$

- (Topo)logically: for $\phi, \psi : \mathbb{R} \to \Sigma$, if

 $$\top \iff \phi(x) \lor \psi(x)$$

 then

 $$(\exists x \in \mathbb{R}. \phi(x)) \land (\exists x \in \mathbb{R}. \psi(x)) \implies \exists x \in \mathbb{R}. \phi(x) \land \psi(x).$$
The maximum of $f : [0, 1] \to \mathbb{R}$

- **Cut x left**: $(\exists y \in [0, 1]. x < f(y))$
- **Cut x right**: $(\forall z \in [0, 1]. f(z) < x)$
Cauchy completeness

- A rapid Cauchy sequence \((a_n)_n\) satisfies
 \[|a_{n+1} - a_n| < 2^{-n}. \]

- Its limit is the cut

 \[
 \text{cut } x \text{ left } (\exists n \in \mathbb{N} . x < a_n - 2^{-n+1}) \\
 \text{right } (\exists n \in \mathbb{N} . a_n + 2^{-n+1} < x)
 \]
From mathematics to programming

▶ We would like to *compute* with our language.
▶ We limit attention to logic and \mathbb{R}, and leave recursion and \mathbb{N} for future work.
▶ Not surprisingly, we compute with intervals.
▶ The prototype is written in OCaml and uses the MPFR library for fast dyadic rationals.
The interval lattice L

- The lattice of pairs $[a, b]$, where a is upper and b lower real.
- Ordered by $[a, b] \sqsubseteq [c, d] \iff a \leq c \land d \leq b$.
- The lattice contains \mathbb{R}.
Extending arithmetic to L

- We extend arithmetic operations from $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ to $L \times L \to L$.
- The interesting case is Kaucher multiplication.
- Given an arithmetical expression e we compute its lower and upper approximants e^- and e^+ in L:
 \[e^- \sqsubseteq e \sqsubseteq e^+. \]
- We also extend $<$ to $L \times L \to \Sigma$:
 \[[a, b] < [c, d] \iff b < c \]
Lower and upper approximants

- For each sentence ϕ we define a lower and upper approximants $\phi^-, \phi^+ \in \{\top, \bot\}$ such that
 \[\phi^- \implies \phi \implies \phi^+. \]

- The approximants should be easy to compute.
- If $\phi^- = \top$ then $\phi = \top$, and if $\phi^+ = \bot$ then $\phi = \bot$.
- Easy cases:
 \[
 \begin{align*}
 \bot^- &= \bot & \bot^+ &= \bot \\
 \top^- &= \top & \top^+ &= \top \\
 (\phi \land \psi)^- &= \phi^- \land \psi^- & (\phi \land \psi)^+ &= \phi^+ \land \psi^+ \\
 (\phi \lor \psi)^- &= \phi^- \lor \psi^- & (\phi \lor \psi)^+ &= \phi^+ \lor \psi^+ \\
 (e_1 < e_2)^- &= (e_1^- < e_2^-) & (e_1 < e_2)^+ &= (e_1^+ < e_2^+).
 \end{align*}
 \]
Approximants for cuts and quantifiers

▶ Cuts:

\[
(\text{cut } x : [a, b] \text{ left } \phi(x) \text{ right } \psi(x))^- = [a, b] \\
(\text{cut } x : [a, b] \text{ left } \phi(x) \text{ right } \psi(x))^+ = [b, a]
\]

▶ Quantifiers:

\[
\phi([a, b]) \implies \forall x \in [a, b]. \phi(x) \implies \phi\left(\frac{a+b}{2}\right)
\]

\[
\phi\left(\frac{a+b}{2}\right) \implies \exists x \in [a, b]. \phi(x) \implies \phi([b, a])
\]
Refinement

- If $\phi^- = \bot$ and $\phi^+ = \top$ we cannot say much about ϕ.
- To make progress, we refine ϕ to an equivalent formula in which quantifiers range over smaller intervals.
- A simple strategy is to split quantified intervals in halves:
 - $\forall x \in [a, b] \cdot \phi(x)$ is refined to
 $$(\forall x \in [a, \frac{a+b}{2}] \cdot \phi(x)) \land (\forall x \in [\frac{a+b}{2}, b] \cdot \phi(x))$$
 - $\exists x \in [a, b] \cdot \phi(x)$ is refined to
 $$(\exists x \in [a, \frac{a+b}{2}] \cdot \phi(x)) \lor (\exists x \in [\frac{a+b}{2}, b] \cdot \phi(x))$$
- This amounts to searching with bisection.
Refinement of cuts

- To refine a cut

\[
\text{cut } x : [a, b] \text{ left } \phi(x) \text{ right } \psi(x)
\]

we try to move \(a \mapsto a'\) and \(b \mapsto b'\).

- If \(\phi^{-1}(a') = \top\) then move \(a \mapsto a'\).
- If \(\psi^{-1}(b') = \top\) then move \(b \mapsto b'\).
- One or the other endpoint moves eventually because cuts are located.
Evaluation

- To evaluate a sentence ϕ:
 - if $\phi^- = \top$ then output \top,
 - if $\phi^+ = \bot$ then output \bot,
 - otherwise refine ϕ and repeat.

- Evaluation may not terminate, but this is expected, as ϕ is only semidecidable.

- Is the procedure semicomplete, i.e., if ASD proves ϕ then ϕ evaluates to \top?
Speeding up the computation

Estimate an inequality $f(x) < 0$ on $[a, b]$ by approximating f with a linear map from above and below.

This is essentially Newton’s interval method.
Future

- Incorporate \mathbb{N} and recursion.
- Extend Newton’s method to multivariate case.
- Write a more efficient interpreter.
- Can we do higher-type computations?
- Can this be implemented as a library for a standard language, rather than a specialized language?