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Abstract

Cauchy’s construction of reals as sequences of rational approximations is the theoretical basis for a number
of implementations of exact real numbers, while Dedekind’s construction of reals as cuts has inspired
fewer useful computational ideas. Nevertheless, we can see the computational content of Dedekind reals
by constructing them within Abstract Stone Duality (ASD), a computationally meaningful calculus for
topology. This provides the theoretical background for a novel way of computing with real numbers in the
style of logic programming. Real numbers are defined in terms of (lower and upper) Dedekind cuts, while
programs are expressed as statements about real numbers in the language of ASD. By adapting Newton’s
method to interval arithmetic we can make the computations as efficient as those based on Cauchy reals.
The results reported in this talk are joint work with Paul Taylor.
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1 Introduction

The material presented in this talk is joined work with Paul Taylor. We thank
Danko Ilik, Matija Pretnar, and Chris Stone for taking part in fruitful discussions
during our meeting in June 2008 in Ljubljana.

Implementations of (exact) real numbers are usually based on Cauchy’s con-
struction of real numbers as sequences of rational approximations. Typically, a real
number is represented as stream of signed binary digits −1, 0, 1, or a sequence of
intervals with dyadic 2 endpoints whose widths converge to zero. The preference
for Cauchy reals is also visible in Bishop’s constructive analysis [2] and Type Two
Effectivity [9].

Dedekind’s construction of reals as cuts is well known, but used less often in real
number computation. This may be so because it is less natural to compute with sets
than with sequences. Nevertheless, Dedekind’s construction may be carried out in
a constructive setting, such as type theory, constructive set theory, or topos theory.

1 Email: Andrej.Bauer@andrej.com
2 A dyadic rational is one of the form m/2k.
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The question is what precisely the computational content of such a construction is,
and how to use it to compute with real numbers.

Recall that a Dedekind cut 〈L,U〉 is a pair of subsets L,U ⊆ Q, called respec-
tively the lower and upper cut, which are

(i) (lower and upper) rounded: q ∈ L ⇐⇒ ∃ r . (q < r ∧ r ∈ L) and q ∈ U ⇐⇒
∃ r . (r < q ∧ r ∈ U),

(ii) bounded (or inhabited): ∃ q . q ∈ L and ∃ q . q ∈ U ,

(iii) disjoint: ¬(q ∈ U ∧ q ∈ L),

(iv) located: q < r =⇒ q ∈ L ∨ r ∈ U .

The set/type/object of Dedekind reals R consists of all Dedekind cuts. Depending
on the underlying foundational setting, R may enjoy all or some of the properties
stated in the following definition of Dedekind reals.

Definition 1.1 A Dedekind real line is

(i) an overt Hausdorff space, which is

(ii) an ordered Archimedean field,

(iii) Dedekind complete, and such that

(iv) the closed interval [0, 1] is compact.

Few would dispute that the reals are overt 3 and Hausdorff, or that they form an
Archimedean ordered field. Dedekind completeness says that nothing is gained by
iterating Dedekind’s construction: a pair 〈L,U〉 of sets of reals L,U ⊆ R determines
a unique real x ∈ R such that ` < x < u for all ` ∈ L, u ∈ U . Compactness of
the closed interval is not universally accepted, partly because there are several
definitions of compactness, and partly because of difference of opinion in what
constructive mathematics is. Anyhow, it is not our purpose here to debate this
issue. We are taking Definition 1.1 as a starting point from which we want to
develop a novel way of computing with real numbers.

2 Dedekind Reals in Abstract Stone Duality

Our foundational setting is Abstract Stone Duality (ASD), which is a calculus for
topology developed by Paul Taylor [7]. It gives topological notions and constructions
a computational meaning. For background on ASD, the construction of Dedekind
reals in ASD, and verification that they satisfy Definition 1.1 we refer to [1]. Here
we summarize those points which are relevant for the task at hand. Furthermore, in
order to simplify and focus the presentation we limit our attention to a “first-order”
part of ASD and the of space of reals in the style of [8]. 4

The terms of our language are arithmetical expressions involving rational num-
bers, variables ranging over R, and Dedekind cuts as described below. The rationals
may be replaced by any dense Archimedean subring of R with decidable order, and

3 You may never have heard of the topological property of overtness because classically all spaces are overt.
4 In particular, we are omitting higher-order exponentials ΣΣ...

, formation of subspaces, and general re-
cursion on natural numbers.
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in fact our prototype implementation uses dyadic rationals. If (the full) ASD cal-
culus proves the existence of a term t(x) with a free variable x, we may adjoin a
term constructor t. This allows us to introduce elementary functions, such as roots,
exponentials and trigonometric functions.

The (topo)logical formulae are built from constants for falsehood ⊥ and truth
>, strict inequalities e1 < e2, conjunctions φ1 ∧ φ2, disjunctions φ1 ∨ φ2, existential
quantifications of the form ∃x∈R . φ and ∃x∈ [a, b] . φ, and universal quantifications
∀x∈ [a, b] . φ, where a and b are rational constants. These operations are monotone
and preserve open sets, whereas equality =, inequality ≤, negation, implication,
and universal quantification ∀x∈R . φ are excluded because they do not. Thus
the logical formulae have a double reading, as truth values and as open sets. We
introduce the shorthand e1 6= e2 for e1 < e2 ∨ e2 < e1, and e1 =ε e2 for −ε <
e1 − e2 < ε.

If we prove that a pair of predicates δ, υ with a free variable x form a Dedekind
cut, 5 then we may introduce the real number cut(x, δ, υ). For instance,

√
2 is

expressed as
cut(x, (x < 0 ∨ x2 < 2), (0 < x ∧ 2 < x2)).

More generally, if an expression f(x) is strictly increasing in the interval [a, b] and
f(a) < 0 < f(b) then we may define the unique root of f on [a, b] as cut(x, δ(x), υ(x))
where

δ(x) ≡ x < a ∨ (x < b ∧ f(x) < 0)

and
υ(x) ≡ b < x ∨ (a < x ∧ 0 < f(x)).

A cut may always be eliminated because φ(cut(x, δ, υ)) is equivalent to 6

∃ d, u∈R . (δ(d) ∧ d < u ∧ υ(u) ∧ ∀x∈ [d, u] . φ(x)) .

The topological reading of this equivalence is that R is locally compact.
Even though the language is rather restricted we can still express interesting

facts about real numbers, such as local compactness. We refer to [8] for elabo-
rate examples of real analysis in ASD, including the intermediate value theorem,
connectedness of the real line, and maximum of a function on a closed interval.

3 Computing with Dedekind Reals

In ASD the Dedekind reals are constructed in several steps. First the ascending R
and descending reals R are defined, the former being just the lower and the latter
just the upper cuts, and they need not be bounded or inhabited so that −∞ and +∞
are included as elements, too. Then we define the interval lattice L = R×R whose
elements can be thought of as intervals [a, b], except that the endpoints may be
infinite or even back to front, i.e., b < a. After several more steps of construction the
reals R are formed as a subspace of L. Consequently, the monadic principle of ASD
guarantees that open subsets of R may be canonically 7 extended to open subsets

5 By this we mean that the extensions L = {x ∈ R | δ} and U = {x ∈ R | υ} form a cut.
6 We assume that δ and υ do not contain any variables which are bound in φ.
7 The extension procedure itself is continuous, and effective.
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of L. Similarly, the arithmetical operations are extended from R to L using Moore’s
interval arithmetic [6] and Kaucher multiplication [4]. It therefore makes sense to
apply a formula φ(x) to an interval [a, b]. When x ∈ [a, b] the value of φ([a, b])
approximates that of φ(x), which allows us to replace real numbers with intervals
(with dyadic endpoints). This is the basis for a computational procedure, which
we describe briefly. For simplicity we limit attention to the bounded existential
quantifier ∃x∈ [a, b] . φ, and omit ∃x∈R . φ from further discussion.

Given an ASD formula φ, we compute lower and upper approximants φ− and φ+.
These are simple formulae whose truth values can be easily determined and such
that we have the logical entailments

φ− =⇒ φ =⇒ φ+.

If φ− is true or φ+ is false then the logical value of φ is known and the computation
stops. The approximants are computed as follows:

>− = > >+ = >
⊥− = ⊥ ⊥+ = ⊥

(φ1 ∧ φ2)− = φ−1 ∧ φ
−
2 (φ1 ∧ φ2)+ = φ−1 ∧ φ

+
2

(φ1 ∨ φ2)− = φ−1 ∨ φ
−
2 (φ1 ∨ φ2)+ = φ+

1 ∨ φ
+
2

(∀x∈ [a, b] . φ)− = φ([a, b])− (∀x∈ [a, b] . φ)+ = φ(a+b
2 )+

(∃x∈ [a, b] . φ)− = φ(a+b
2 )− (∃x∈ [a, b] . φ)+ = φ([b, a])+.

To compute the lower and upper approximant of e1 < e2 we evaluate both sides of
inequality using interval arithmetic. This gives us an interval inequality [a1, b1] <
[a2, b2]. If b1 < a2 then the lower approximant is >, if b2 < a1 then the upper
approximant is ⊥, otherwise both approximants are just e1 < e2.

Notice how we substitute an interval [a, b] for a real variable x in the lower
approximant for universal quantification, and even a back to front interval [b, a] in
the upper approximant for existential quantification.

If the lower approximant of ∃x∈ [a, b] . φ is true, then we record a+b
2 as a wit-

ness of truth. Dually, when the upper approximant of ∀x∈ [a, b] . φ is false, a+b
2

is a witness of falsehood. The computational procedure collects the witnesses and
outputs them if so desired. For instance, a witness for ∃x∈ [a, b] . f(x) =ε 0 is a
number q ∈ [a, b] such that −ε < f(q) < ε. This way we can handle general equa-
tion solving, and even equations with parameters ranging over closed intervals, e.g.,
∀x∈ [a, b] .∃ y ∈ [c, d] . f(x, y) =ε 0 would produce a list of witnesses, showing how
the solution y depends on the parameter x.

When the truth value of φ cannot be determined from its approximants, φ is
refined to an equivalent formula φ′, and the procedure repeats with φ′. Refinement
performs a number of basic optimizations such as φ ∧ ⊥ = ⊥ and φ ∨ ⊥ = φ.
The most interesting bit is refinement of quantifiers. An existential ∃x∈ [a, b] . φ is
refined to

(∃x∈ [a, a+b
2 ] . φ) ∨ (∃x∈ [a+b

2 , b] . φ)
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and a universal ∀x∈ [a, b] . φ is refined to

(∀x∈ [a, a+b
2 ] . φ) ∧ (∀x∈ [a+b

2 , b] . φ).

Splitting intervals like this amounts to a search procedure akin to the familiar idea
of solving equations with bisection. Unfortunately, this is just about the slowest
officially recognized numerical method, because it only adds one bit of precision
in each iteration. To counter this, we use Newton’s interval method, which may
roughly double the number of precise bits in each iteration. The basic idea is as
follows.

Given an inequality f(x) < 0 on the interval [a, b] we would like to estimate the
region in which the inequality definitely holds and definitely fails. Let d1 and d2 be
lower and upper Lipschiz constants for f so that we have, for all x ∈ [a, b],

d1(x− a) ≤ f(x)− f(a) ≤ d2(x− a).

The constants d1 and d2 are computed by symbolically differentiating f and evaluat-
ing the derivative at the interval [a, b]. We may approximate f(x) < 0 and 0 ≤ f(x)
by linear inequalities d2(x − a) + f(a) < 0 and 0 ≥ f(x) by 0 ≤ d1(x − a) + f(a),
respectively. From these we may easily compute subintervals I1 and I2 of [a, b] on
which the original inequality f(x) < 0 definitely holds and fails, respectively. If for
example, the inequality appears inside an existential quantifier, ∃x∈ [a, b] . f(x) < 0,
and I1 is non-empty then the search may terminated. If I1 is empty then the search
proceeds on the complement of I2.

When we combine Newton’s interval method with interval splitting, the result
is a robust procedure which makes progress by halving intervals until it focuses on
sufficiently small interval for Newton’s method to become efficient.

It should be pointed out that the computation may diverge in “borderline” cases
such as ∀x∈ [a, b] . 0 < f(x) with f positive everywhere except in a single point
x0 ∈ [a, b]. In the neighborhood of x0 the procedure keeps refining the universal
quantifier. In any case, we cannot expect a full decision procedure (certainly not
with elementary functions and general recursion added to the language) neither do
we want one. Our objective is to provide a high-level programming language for
real number computation.

Our prototype implementation is written in Objective Caml [5] and uses the
MPFR library for fast dyadic computations [3]. The performance is promising,
but many issues remain for future work. In particular, we intend to investigate
Newton’s interval method in several variables, and take advantage of the obvious
opportunities for parallel computation.
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