
The Role of the Interval Domain
in Modern Exact Real Airthmetic

Andrej Bauer Iztok Kavkler

Faculty of Mathematics and Physics
University of Ljubljana, Slovenia

Domains VIII &
Computability over Continuous Data Types

Novosibirsk, September 2007

Teaching theoreticians a lesson
Recently I have been told by an anonymous referee that

“Theoreticians do not like to be taught lessons.”

and by a friend that

“You should stop competing with programmers.”

In defiance of this advice, I shall talk about the lessons I
learned, as a theoretician, in programming exact real arithmetic.

The spectrum of real number computation

fastslow

"theoretical"

floating point

iRRAM

"practical"

RealLib

Mathematica
Moebius transformtions

continued fractions

Cauchy sequences

streams of signed digits

Formally verified,
extracted from
proofs

I Common features:
I Reals are represented by successive approximations.
I Approximations may be computed to any desired accuracy.

I State of the art, as far as speed is concerned:
I iRRAM by Norbert Müller,
I RealLib by Branimir Lambov.

What makes iRRAM and ReaLib fast?
I Reals are represented by sequences of dyadic intervals

(endpoints are rationals of the form m/2k).
I The approximating sequences need not be nested chains of

intervals.
I No guarantee on speed of converge, but arbitrarily fast

convergence is possible.
I Previous approximations are not stored and not reused

when the next approximation is computed.
I Each next approximation roughly doubles the amount of

work done.

The theory behind iRRAM and RealLib
I Theoretical models used to design iRRAM and RealLib:

I Type Two Effectivity
I a version of Real RAM machines
I Type I representations

I The authors explicitly reject domain theory as a suitable
computational model.

I For example, because representing reals as nested chains of
intervals is a bad idea.

I They seem to have convinced even some high priests of
domain theory.

Our goal
I There is usually a significant gap between a theoretical

model and the actual practical implementation.
I We wanted exact real arithmetic that was both efficient and

easily formalizable:
I Extract specification from the theory—automatically.
I Leave the programmer freedom to produce fast

implementation.

I We needed a tool that could extract specifications from
formal descriptions of mathematical theories.

Representations and realizability
I There are many kinds of representations:

I Numbered sets (Eršov)
I Type Two Representations (Weihrauch)
I Domain representations (Blanck)

These are useful in the theory of computability.
I Programmers use representations by real-world programs.
I In a related project, Chris Stone and Andrej Bauer built a

tool RZ which translates first-order constructive theories
into Objective Caml representations.

I RZ uses the realizability interpretation, and handles
first-order logic, dependent types, and more.

Construction of reals
I We axiomatized the following theories (constructively):

I the ring of integers Z,
I the “approximate field” of dyadic rational numbers D,
I the poset of dyadic intervals ID,
I ω-cpos as completions of their bases,
I the interval domain IR as the completion of ID,
I the field of real numbers R as the maximal elements of IR.

I We ran RZ on these to obtain specifications for Objective
Caml (given as module signatures with logical assertions).

I We implemented the specifications by hand.
I We hope our implementation satisfies all the assertions . . .
I Logical reverse-engineering: which logical theory does RZ

translate to a specification for exact real arithmetic in the
style of iRRAM and RealLib?

I Initially, we did not expect domain theory to play a
prominent role.

Integers
I The integers are axiomatized as:

I decidable ordered commutative ring with unit,
I induction principle for natural numbers,
I integer division,
I shift operations shlk(n) = 2k · n and shrk(n) = bn/2kc,
I binary logarithm n 7→ dlog2 ne.

I We used efficient implementations of large integer
arithmetic:

I Numerix by Gabriel Quercia
I GNU Multiple Precision Library

Dyadic rationals
I Dyadic rationals D form a decidable ordered ring.
I Only approximate division:

∀k ∈ N.∀x, y ∈ D. (y 6= 0 =⇒ ∃z ∈ D. |x/y − z| < 2−k)

I In fact, we need approximate versions of all ring
operations, e.g.:

∀k ∈ N.∀x, y ∈ D.∃z ∈ D. |(x + y)− z| < 2−k

I This allows us to control the size of dyadic numbers
involved in interval arithmetic.

I Implementation:
I our own Ocaml implementation using integers,
I with MPFR about threefold speedup.

Dyadic intervals
The poset of dyadic intervals ID:

I A dyadic interval [c − r, c + r] is represented by its
center c ∈ D and radius r ∈ D.

I No need to have very precise c when r is large.
I No need to have very precise r.
I So we always normalize intervals to have r with small

numerator (e.g. 32 bits) and suitably rounded c. This trades
a little bit of precision for quite a bit of space and time.

ω-cpos
I We formalize ω-cpos generated from a base.
I Take care to get continuous domains, not algebraic ones,

and consider only chains, rather than general directed sets.
I Crucial: how do we say that P ⊆ D is a base for domain D?

I Inefficient: every x ∈ D is the supremum of a chain in P.
I Broken: every x ∈ D is the supremum of a sequence in P.
I Right: for every x ∈ D there exists (ak)k ∈ P such that

∀k ∈ N. ak ≤ x and limk ak = x (in Scott topology)

(For D = IR and P = ID this condition was given by
Lambov, without using domains explicitly.)

Reals as maximal elements of the interval domain
I The interval domain IR is the completion of ID.
I The reals are a Cauchy-complete, Archimedean ordered

field.
I IR is a domain model for R.
I Avoiding explict rates of convergence:

I RZ translates the Archimedean axiom
∀x ∈ R.∀k ∈ N.∃d ∈ D. |x − d| < 2−k to specification for

approx : real→ int→ dyadic

computing d from x and k such that |x − d| < 2−k.
I The axiom stating that IR is generated by ID yields

stage : real→ int→ dyadicInterval

such that stage x is a sequence of intervals converging
to x, without a prescribed speed of convergence.

In conclusion
I Other issues not discussed:

I Strict linear order < on R as a map into the ω-cpo of partial
booleans.

I How do we represent continuous real maps?
I Statistics:

I 503 lines of formal theories in RZ.
I 1022 lines of Ocaml implementation.
I 10 times slower than iRRAM for basic arithmetic.

I Lessons learned:
I Domain theory does play a role in state-of-the-art exact real

arithmetic.
I Theoreticians’ sense of elegance can harm efficiency.
I Don’t compete with programmers—teach them new ideas!

Future directions
I Implement something new—it will be horribly inefficient:

I the next big step is to implement locally non-compact
spaces, e.g., Banach spaces C(k)(R), Lp, `p, . . .

I Invent new ways of computing with real numbers, higher
types and hyperspaces.

I A promising direction is “computation with quantifiers”:
I Paul Taylor’s Abstract Stone Duality (ASD) and use of
∃x ∈ R and ∀x : [a, b] in real analysis.

I The Russian version of ASD seems to be Σ-definability
(with ∀K), but ASD has more of a programming flavor.

I Martin Escardó’s implementation of ∀K in Haskell is
surprisingly efficient.

