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Teaching theoreticians a lesson
Recently I have been told by an anonymous referee that

“Theoreticians do not like to be taught lessons.”

and by a friend that

“You should stop competing with programmers.”

In defiance of this advice, I shall talk about the lessons I
learned, as a theoretician, in programming exact real arithmetic.
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I Common features:
I Reals are represented by successive approximations.
I Approximations may be computed to any desired accuracy.

I State of the art, as far as speed is concerned:
I iRRAM by Norbert Müller,
I RealLib by Branimir Lambov.



What makes iRRAM and ReaLib fast?
I Reals are represented by sequences of dyadic intervals

(endpoints are rationals of the form m/2k).
I The approximating sequences need not be nested chains of

intervals.
I No guarantee on speed of converge, but arbitrarily fast

convergence is possible.
I Previous approximations are not stored and not reused

when the next approximation is computed.
I Each next approximation roughly doubles the amount of

work done.



The theory behind iRRAM and RealLib
I Theoretical models used to design iRRAM and RealLib:

I Type Two Effectivity
I a version of Real RAM machines
I Type I representations

I The authors explicitly reject domain theory as a suitable
computational model.

I For example, because representing reals as nested chains of
intervals is a bad idea.

I They seem to have convinced even some high priests of
domain theory.



Our goal
I There is usually a significant gap between a theoretical

model and the actual practical implementation.
I We wanted exact real arithmetic that was both efficient and

easily formalizable:
I Extract specification from the theory—automatically.
I Leave the programmer freedom to produce fast

implementation.

I We needed a tool that could extract specifications from
formal descriptions of mathematical theories.



Representations and realizability
I There are many kinds of representations:

I Numbered sets (Eršov)
I Type Two Representations (Weihrauch)
I Domain representations (Blanck)

These are useful in the theory of computability.
I Programmers use representations by real-world programs.
I In a related project, Chris Stone and Andrej Bauer built a

tool RZ which translates first-order constructive theories
into Objective Caml representations.

I RZ uses the realizability interpretation, and handles
first-order logic, dependent types, and more.



Construction of reals
I We axiomatized the following theories (constructively):

I the ring of integers Z,
I the “approximate field” of dyadic rational numbers D,
I the poset of dyadic intervals ID,
I ω-cpos as completions of their bases,
I the interval domain IR as the completion of ID,
I the field of real numbers R as the maximal elements of IR.

I We ran RZ on these to obtain specifications for Objective
Caml (given as module signatures with logical assertions).

I We implemented the specifications by hand.
I We hope our implementation satisfies all the assertions . . .
I Logical reverse-engineering: which logical theory does RZ

translate to a specification for exact real arithmetic in the
style of iRRAM and RealLib?

I Initially, we did not expect domain theory to play a
prominent role.



Integers
I The integers are axiomatized as:

I decidable ordered commutative ring with unit,
I induction principle for natural numbers,
I integer division,
I shift operations shlk(n) = 2k · n and shrk(n) = bn/2kc,
I binary logarithm n 7→ dlog2 ne.

I We used efficient implementations of large integer
arithmetic:

I Numerix by Gabriel Quercia
I GNU Multiple Precision Library



Dyadic rationals
I Dyadic rationals D form a decidable ordered ring.
I Only approximate division:

∀k ∈ N.∀x, y ∈ D. (y 6= 0 =⇒ ∃z ∈ D. |x/y − z| < 2−k)

I In fact, we need approximate versions of all ring
operations, e.g.:

∀k ∈ N.∀x, y ∈ D.∃z ∈ D. |(x + y)− z| < 2−k

I This allows us to control the size of dyadic numbers
involved in interval arithmetic.

I Implementation:
I our own Ocaml implementation using integers,
I with MPFR about threefold speedup.



Dyadic intervals
The poset of dyadic intervals ID:

I A dyadic interval [c − r, c + r] is represented by its
center c ∈ D and radius r ∈ D.

I No need to have very precise c when r is large.
I No need to have very precise r.
I So we always normalize intervals to have r with small

numerator (e.g. 32 bits) and suitably rounded c. This trades
a little bit of precision for quite a bit of space and time.



ω-cpos
I We formalize ω-cpos generated from a base.
I Take care to get continuous domains, not algebraic ones,

and consider only chains, rather than general directed sets.
I Crucial: how do we say that P ⊆ D is a base for domain D?

I Inefficient: every x ∈ D is the supremum of a chain in P.
I Broken: every x ∈ D is the supremum of a sequence in P.
I Right: for every x ∈ D there exists (ak)k ∈ P such that

∀k ∈ N. ak ≤ x and limk ak = x (in Scott topology)

(For D = IR and P = ID this condition was given by
Lambov, without using domains explicitly.)



Reals as maximal elements of the interval domain
I The interval domain IR is the completion of ID.
I The reals are a Cauchy-complete, Archimedean ordered

field.
I IR is a domain model for R.
I Avoiding explict rates of convergence:

I RZ translates the Archimedean axiom
∀x ∈ R.∀k ∈ N.∃d ∈ D. |x − d| < 2−k to specification for

approx : real→ int→ dyadic

computing d from x and k such that |x − d| < 2−k.
I The axiom stating that IR is generated by ID yields

stage : real→ int→ dyadicInterval

such that stage x is a sequence of intervals converging
to x, without a prescribed speed of convergence.



In conclusion
I Other issues not discussed:

I Strict linear order < on R as a map into the ω-cpo of partial
booleans.

I How do we represent continuous real maps?
I Statistics:

I 503 lines of formal theories in RZ.
I 1022 lines of Ocaml implementation.
I 10 times slower than iRRAM for basic arithmetic.

I Lessons learned:
I Domain theory does play a role in state-of-the-art exact real

arithmetic.
I Theoreticians’ sense of elegance can harm efficiency.
I Don’t compete with programmers—teach them new ideas!



Future directions
I Implement something new—it will be horribly inefficient:

I the next big step is to implement locally non-compact
spaces, e.g., Banach spaces C(k)(R), Lp, `p, . . .

I Invent new ways of computing with real numbers, higher
types and hyperspaces.

I A promising direction is “computation with quantifiers”:
I Paul Taylor’s Abstract Stone Duality (ASD) and use of
∃x ∈ R and ∀x : [a, b] in real analysis.

I The Russian version of ASD seems to be Σ-definability
(with ∀K), but ASD has more of a programming flavor.

I Martin Escardó’s implementation of ∀K in Haskell is
surprisingly efficient.


