The Role of the Interval Domain in Modern Exact Real Arithmetic

Andrej Bauer Iztok Kavkler

Faculty of Mathematics and Physics
University of Ljubljana, Slovenia

Domains VIII & Computability over Continuous Data Types
Novosibirsk, September 2007
Teaching theoreticians a lesson

Recently I have been told by an anonymous referee that

“Theoreticians do not like to be taught lessons.”

and by a friend that

“You should stop competing with programmers.”

In defiance of this advice, I shall talk about the lessons I learned, as a theoretician, in programming exact real arithmetic.
The spectrum of real number computation

<table>
<thead>
<tr>
<th>Slow</th>
<th>Fast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formally verified, extracted from proofs</td>
<td>Cauchy sequences</td>
</tr>
<tr>
<td>Moebius transformations</td>
<td>streams of signed digits</td>
</tr>
<tr>
<td>continued fractions</td>
<td>iRRAM</td>
</tr>
<tr>
<td>RealLib</td>
<td>floating point</td>
</tr>
<tr>
<td>Mathematica</td>
<td></td>
</tr>
</tbody>
</table>

"theoretical" "practical"

- **Common features:**
 - Reals are represented by successive approximations.
 - Approximations may be computed to any desired accuracy.

- **State of the art, as far as speed is concerned:**
 - iRRAM by Norbert Müller,
 - RealLib by Branimir Lambov.
What makes iRRAM and ReaLib fast?

- Reals are represented by sequences of dyadic intervals (endpoints are rationals of the form $m/2^k$).
- The approximating sequences need not be nested chains of intervals.
- No guarantee on speed of converge, but arbitrarily fast convergence is possible.
- Previous approximations are not stored and not reused when the next approximation is computed.
- Each next approximation roughly doubles the amount of work done.
The theory behind iRRAM and RealLib

- Theoretical models used to design iRRAM and RealLib:
 - Type Two Effectivity
 - a version of Real RAM machines
 - Type I representations
- The authors explicitly reject domain theory as a suitable computational model.
 - For example, because representing reals as nested chains of intervals is a bad idea.
 - They seem to have convinced even some high priests of domain theory.
Our goal

- There is usually a significant gap between a theoretical model and the actual practical implementation.
- We wanted exact real arithmetic that was both efficient and easily formalizable:
 - Extract specification from the theory—automatically.
 - Leave the programmer freedom to produce fast implementation.
- We needed a tool that could extract specifications from formal descriptions of mathematical theories.
Representations and realizability

- There are many kinds of representations:
 - Numbered sets (Eršov)
 - Type Two Representations (Weihrauch)
 - Domain representations (Blanck)

These are useful in the theory of computability.

- Programmers use representations by real-world programs.

- In a related project, Chris Stone and Andrej Bauer built a tool RZ which translates first-order constructive theories into Objective Caml representations.

- RZ uses the realizability interpretation, and handles first-order logic, dependent types, and more.
Construction of reals

- We axiomatized the following theories (constructively):
 - the ring of integers \mathbb{Z},
 - the “approximate field” of dyadic rational numbers \mathbb{D},
 - the poset of dyadic intervals $\mathbb{I}D$,
 - ω-cpos as completions of their bases,
 - the interval domain $\mathbb{I}R$ as the completion of $\mathbb{I}D$,
 - the field of real numbers \mathbb{R} as the maximal elements of $\mathbb{I}R$.

- We ran RZ on these to obtain specifications for Objective Caml (given as module signatures with logical assertions).

- We implemented the specifications by hand.

- We hope our implementation satisfies all the assertions . . .

- Logical reverse-engineering: which logical theory does RZ translate to a specification for exact real arithmetic in the style of iRRAM and RealLib?

- Initially, we did not expect domain theory to play a prominent role.
Integers

- The integers are axiomatized as:
 - decidable ordered commutative ring with unit,
 - induction principle for natural numbers,
 - integer division,
 - shift operations $\text{shl}_k(n) = 2^k \cdot n$ and $\text{shr}_k(n) = \lfloor n/2^k \rfloor$,
 - binary logarithm $n \mapsto \lceil \log_2 n \rceil$.

- We used efficient implementations of large integer arithmetic:
 - Numerix by Gabriel Quercia
 - GNU Multiple Precision Library
Dyadic rationals

- Dyadic rationals \mathbb{D} form a decidable ordered ring.
- Only *approximate* division:

$$\forall k \in \mathbb{N}. \forall x, y \in \mathbb{D}. (y \neq 0 \implies \exists z \in \mathbb{D}. |x/y - z| < 2^{-k})$$

- In fact, we need approximate versions of all ring operations, e.g.:

$$\forall k \in \mathbb{N}. \forall x, y \in \mathbb{D}. \exists z \in \mathbb{D}. |(x + y) - z| < 2^{-k}$$

- This allows us to control the size of dyadic numbers involved in interval arithmetic.
- Implementation:
 - our own Ocaml implementation using integers,
 - with MPFR about threefold speedup.
Dyadic intervals

The poset of dyadic intervals \mathbb{ID}:

- A dyadic interval $[c - r, c + r]$ is represented by its center $c \in \mathbb{D}$ and radius $r \in \mathbb{D}$.
- No need to have very precise c when r is large.
- No need to have very precise r.
- So we always normalize intervals to have r with small numerator (e.g. 32 bits) and suitably rounded c. This trades a little bit of precision for quite a bit of space and time.
We formalize ω-cpos generated from a base.

Take care to get continuous domains, not algebraic ones, and consider only chains, rather than general directed sets.

Crucial: how do we say that $P \subseteq D$ is a base for domain D?

- Inefficient: every $x \in D$ is the supremum of a chain in P.
- Broken: every $x \in D$ is the supremum of a sequence in P.
- Right: for every $x \in D$ there exists $(a_k)_k \in P$ such that

\[\forall k \in \mathbb{N}. \ a_k \leq x \quad \text{and} \quad \lim_k a_k = x \ (\text{in Scott topology}) \]

(For $D = \mathbb{R}$ and $P = \mathbb{D}$ this condition was given by Lambov, without using domains explicitly.)
Reals as maximal elements of the interval domain

- The interval domain \mathbb{IR} is the completion of \mathbb{ID}.
- The reals are a Cauchy-complete, Archimedean ordered field.
- \mathbb{IR} is a domain model for \mathbb{R}.
- Avoiding explicit rates of convergence:
 - RZ translates the Archimedean axiom:
 \[
 \forall x \in \mathbb{R}. \forall k \in \mathbb{N}. \exists d \in \mathbb{D}. |x - d| < 2^{-k}
 \]
 to specification for
 \[
 \text{approx} : \text{real} \rightarrow \text{int} \rightarrow \text{dyadic}
 \]
 computing d from x and k such that $|x - d| < 2^{-k}$.
 - The axiom stating that \mathbb{IR} is generated by \mathbb{ID} yields
 \[
 \text{stage} : \text{real} \rightarrow \text{int} \rightarrow \text{dyadicInterval}
 \]
 such that $\text{stage} x$ is a sequence of intervals converging to x, without a prescribed speed of convergence.
In conclusion

- Other issues not discussed:
 - Strict linear order $<$ on \mathbb{R} as a map into the ω-cpo of partial booleans.
 - How do we represent continuous real maps?

- Statistics:
 - 503 lines of formal theories in RZ.
 - 1022 lines of Ocaml implementation.
 - 10 times slower than iRRAM for basic arithmetic.

- Lessons learned:
 - Domain theory does play a role in state-of-the-art exact real arithmetic.
 - Theoreticians’ sense of elegance can harm efficiency.
 - Don’t compete with programmers—teach them new ideas!
Future directions

- Implement something new—it will be horribly inefficient:
 - the next big step is to implement locally non-compact spaces, e.g., Banach spaces \(C^{(k)}(\mathbb{R}) \), \(L^p \), \(\ell^p \), ...

- Invent new ways of computing with real numbers, higher types and hyperspaces.

- A promising direction is “computation with quantifiers”:
 - Paul Taylor’s Abstract Stone Duality (ASD) and use of \(\exists x \in \mathbb{R} \) and \(\forall x : [a, b] \) in real analysis.
 - The Russian version of ASD seems to be \(\Sigma \)-definability (with \(\forall K \)), but ASD has more of a programming flavor.
 - Martin Escardó’s implementation of \(\forall_K \) in Haskell is surprisingly efficient.