Synthetic Computability

Andrej Bauer

Department of Mathematics and Physics
University of Ljubljana
Slovenia

MFPS XXIII, New Orleans, April 2007

What is "synthetic" mathematics?

- Suppose we want to study mathematical structures forming a category \mathcal{C}, such as:
- smooth manifolds and differentiable maps
- topological spaces and continuous maps
- computable sets and computable maps
- Classical approach: objects are sets equipped with extra structure, morphisms preserve the structure.
- Synthetic approach: embed \mathcal{C} in a suitable mathematical universe \mathcal{E} (a model of intuitionistic set theory) and view structures as ordinary sets and morphisms as ordinary maps inside \mathcal{E}.

A synthetic universe for computability theory

- M. Hyland's effective topos Eff is the mathematical universe suitable for computability theory.
- In Eff all objects and morphisms are equipped with computability structure.
- We need not know how Eff is built—we just use the logic and axioms which are valid in it.
- In the next lecture we will learn more about Eff.

External and internal view

Comparison of concepts as viewed by us (externally) and by mathematicians inside Eff (internally):

Symbol	External	Internal
\mathbb{N}	natural numbers	natural numbers
\mathbb{R}	computable reals	all reals
$f: \mathbb{N} \rightarrow \mathbb{N}$	computable map	any map
$e: \mathbb{N} \rightarrow A$	computable enumeration of A	any enumeration of A
$\{$ true, false $\}$	truth values	decidable truth values
Ω	truth values of Eff	truth values
$\forall x$	computably for all x	for all x
$\exists x$	there exists computable x	there exists x
$P \vee \neg P$	decision procedure for P	P or not P

Related Work

- Friedman [1971], axiomatizes coding and universal functions
- Moschovakis [1971] \& Fenstad [1974], axiomatize computations and subcomputations
- Hyland [1982], effective topos
- Richman [1984], an axiom for effective enumerability of partial functions, extended in Bridges \& Richman [1987]
- We shall follow Richman [1984] in style, and borrow ideas from Rosolini [1986], Berger [1983], and Spreen [1998].

Outline

Introduction
Constructive Mathematics
Computability without Axioms
Axiom of Enumerability
Markov Principle
The Topological View
Recursion Theorem
Inseparable Sets
Conclusion

Intuitionistic logic

- We use intuitionistic logic, more precisely the internal language of a topos.
- What is the status of Law of Excluded Middle (LEM)?

$$
\forall p \in \Omega .(p \vee \neg p)
$$

"For every proposition p, p or not $p . "$
In intuitionistic mathematics it can only be used in special cases, when p is decidable.

- At this point we do not know whether all propositions are decidable, but later one of our axioms will falsify LEM.
- The status of the Axiom of Choice will be discussed later.

Basic sets and constructions

- Basic sets:

$$
\emptyset, \quad 1=\{*\}, \quad \mathbb{N}=\{0,1,2, \ldots\}
$$

- Set operations:

$$
A \times B, \quad A+B, \quad B^{A}=A \rightarrow B, \quad\{x \in A \mid p(x)\}, \quad \mathcal{P} A
$$

- We say that A is
- non-empty if $\neg \forall x \in A . \perp$,
- inhabited if $\exists x \in A$. T.

Relations and functions

- A relation $R \subseteq A \times B$ is:
- single-valued if $\langle x, y\rangle \in R \wedge\langle x, z\rangle \in R \Longrightarrow y=z$,
- total if $\forall x \in A . \exists y \in B .\langle x, y\rangle \in R$,
- functional if it is single valued and total.
- Every $R \subseteq A \times B$ determines $f: A \rightarrow \mathcal{P} B$, and vice versa

$$
f(x)=\{y \in B \mid\langle x, y\rangle \in R\} \quad \text { and } \quad\langle x, y\rangle \in R \Longleftrightarrow y \in f(x)
$$

We say that R is the graph of f.

- Relations as functions:
- single-valued relations are partial functions $f: A \rightharpoonup B$,
- total relations are multi-valued functions $f: A \rightrightarrows B$,
- functional relations are just functions $f: A \rightarrow B$.

Axiom of Choice

- Axiom of Choice:

Every $f: A \rightrightarrows B$ has a choice function $g: A \rightarrow B$ such that $g(x) \in f(x)$ for all $x \in A$.

This we do not accept because it implies LEM.

- We accept Number Choice:

Every $f: \mathbb{N} \rightrightarrows B$ has a choice function $g: \mathbb{N} \rightarrow B$.

- We also accept Dependent Choice:

$$
\begin{aligned}
& \text { Given } x \in A \text { and } h: A \rightrightarrows A \text {, there exists } g: \mathbb{N} \rightarrow A \\
& \text { such that } g(0)=x \text { and } g(n+1) \in h(g(n)) \text { for all } \\
& n \in \mathbb{N} \text {. }
\end{aligned}
$$

This is a form of simple recursion for multi-valued functions.

Sets of truth values

- The set of truth values:

$$
\begin{gathered}
\Omega=\mathcal{P} 1 \\
\text { truth } T=1, \quad \text { falsehood } \perp=\emptyset
\end{gathered}
$$

- The set of decidable truth values:

$$
2=\{0,1\}=\{p \in \Omega \mid p \vee \neg p\}
$$

where we write $1=\top$ and $0=\perp$.

- The set of classical truth values:

$$
\Omega_{\neg\urcorner}=\{p \in \Omega \mid \neg \neg p=p\} .
$$

$-2 \subseteq \Omega_{\neg \neg} \subseteq \Omega$.

Decidable and classical sets

- A subset $S \subseteq A$ is equivalently given by its characteristic map

$$
\chi_{S}: A \rightarrow \Omega, \quad \chi_{S}(x)=(x \in S)
$$

- A subset $S \subseteq A$ is decidable if $\chi_{S}: A \rightarrow 2$, equivalently

$$
\forall x \in A .(x \in S \vee x \notin S) .
$$

- A subset $S \subseteq A$ is classical if $\chi_{S}: A \rightarrow \Omega_{\neg \neg, ~ e q u i v a l e n t l y ~}$

$$
\forall x \in A .(\neg(x \notin S) \Longrightarrow x \in S)
$$

Enumerable \& finite sets

- A is finite if there exist $n \in \mathbb{N}$ and a surjection

$$
e:\{1, \ldots, n\} \rightarrow A
$$

called a listing of A. An element may be listed more than once.

- A is enumerable (countable) if there exists a surjection

$$
e: \mathbb{N} \rightarrow 1+A
$$

called an enumeration of A. For inhabited A we may take $e: \mathbb{N} \rightarrow A$.

- A is infinite if there exists an injective $a: \mathbb{N} \mapsto A$.

Outline

Introduction
 Constructive Mathematics

Computability without Axioms

Axiom of Enumerability

Markov Principle
The Topological View
Recursion Theorem
Inseparable Sets
Conclusion

Lawvere \rightarrow Cantor

Theorem (Lawvere)

If e : $A \rightarrow B^{A}$ is surjective then B has the fixed point property: for every $f: B \rightarrow B$ there is $x_{0} \in B$ such that $f\left(x_{0}\right)=x_{0}$.

Proof.

Given $f: B \rightarrow B$, define $g(y)=f(e(y)(y))$. Because e is surjective there is $x \in A$ such that $e(x)=g$. Then $e(x)(x)=f(e(x)(x))$, so $x_{0}=e(x)(x)$ is a fixed point of f.

Corollary (Cantor)

There is no surjection $e: A \rightarrow \mathcal{P} A$.

Proof.

$\mathcal{P} A=\Omega^{A}$ and $\neg: \Omega \rightarrow \Omega$ does not have a fixed point.

Non-enumerability of Cantor and Baire space

Are there any sets which are not enumerable?
Yes, for example $\mathcal{P N}$, and also:

Corollary

$2^{\mathbb{N}}$ and $\mathbb{N}^{\mathbb{N}}$ are not enumerable.

Proof.

2 and \mathbb{N} do not have the fixed-point property.
We have proved our first synthetic theorem:
Theorem (external translation of above corollary)
The set of recursive sets and the set of total recursive functions cannot be computably enumerated.

Projection Theorem

Recall: the projection of $S \subseteq A \times B$ is the set

$$
\{x \in A \mid \exists y \in B .\langle x, y\rangle \in S\} .
$$

Projection Theorem

Theorem (Projection)

A subset of \mathbb{N} is enumerable iff it is the projection of a decidable subset of $\mathbb{N} \times \mathbb{N}$.

Proof.

If A is enumerated by $e: \mathbb{N} \rightarrow 1+A$ then A is the projection of the graph of e,

$$
\{\langle m, n\rangle \in \mathbb{N} \times \mathbb{N} \mid m=e(n)\}
$$

If A is the projection of $B \subseteq \mathbb{N} \times \mathbb{N}$, define $e: \mathbb{N} \times \mathbb{N} \rightarrow 1+A$ by

$$
e\langle m, n\rangle=\operatorname{if}\langle m, n\rangle \in B \text { then } m \text { else } \star .
$$

Semidecidable sets

- A semidecidable truth value $p \in \Omega$ is one that is equivalent to

$$
\exists n \in \mathbb{N} . d(n)
$$

for some $d: \mathbb{N} \rightarrow 2$.

- The set of semidecidable truth values:

$$
\Sigma=\left\{p \in \Omega \mid \exists d \in 2^{\mathbb{N}} .(p \Longleftrightarrow \exists n \in \mathbb{N} . d(n))\right\}
$$

This is a dominance.

- $2 \subseteq \Sigma \subseteq \Omega$.
- A subset $S \subseteq A$ is semidecidable if $\chi_{S}: A \rightarrow \Sigma$.

Semidecidable subsets of \mathbb{N}

Theorem

The enumerable subsets of \mathbb{N} are the semidecidable subsets of \mathbb{N}.

Proof.

An enumerable $A \subseteq \mathbb{N}$ is the projection of a decidable $B \subseteq \mathbb{N} \times \mathbb{N}$. Then $n \in A$ iff $\exists m \in \mathbb{N} .\langle n, m\rangle \in B$.
Conversely, if $A \in \Sigma^{\mathbb{N}}$, by Number Choice there is $d: \mathbb{N} \times \mathbb{N} \rightarrow 2$ such that $n \in A$ iff $\exists m \in \mathbb{N} . d(m, n)$.

The enumerable subsets of \mathbb{N} :

$$
\mathcal{E}=\Sigma^{\mathbb{N}}
$$

Note: at this point we do not know whether $\mathcal{E}=\mathcal{P} \mathbb{N}$.

The Single-Value Theorem

A selection for $R \subseteq A \times B$ is a partial map $f: A \rightharpoonup B$ such that, for every $x \in A$,

$$
(\exists y \in B \cdot R(x, y)) \Longrightarrow f(x) \downarrow \wedge R(x, f(x))
$$

This is like a choice function, expect it only chooses when there is something to choose from.

Theorem (Single Value Theorem)

Every semidecidable relation $R \in \Sigma^{\mathbb{N} \times \mathbb{N}}$ has a Σ-partial selection.

Partial functions

- Given a single-valued $R \subseteq B$, the corresponding $f: A \rightarrow \mathcal{P B}$ always factors through

$$
\widetilde{B}=\{S \in \mathcal{P} B \mid \forall x, y \in B .(x \in S \wedge y \in S \Longrightarrow x=y)\}
$$

- Thus partial maps $f: A \rightharpoonup B$ are just ordinary maps $f: A \rightarrow \widetilde{B}$.
- Write $f(x) \downarrow$ when f is defined at x, i.e., $\exists y \in B . y \in f(x)$.

Σ-partial functions

When does a partial $f: \mathbb{N} \rightharpoonup \mathbb{N}$ have an enumerable graph?

Proposition

$f: \mathbb{N} \rightarrow \widetilde{\mathbb{N}}$ has an enumerable graph iff $f(n) \downarrow \in \Sigma$ for all $n \in \mathbb{N}$.
Define the lifting operation

$$
A_{\perp}=\{S \in \widetilde{A} \mid(\exists x \in A . x \in S) \in \Sigma\}
$$

For $f: A \rightarrow B$ define $f_{\perp}: A_{\perp} \rightarrow B_{\perp}$ to be

$$
f_{\perp}(s)=\{f(x) \mid x \in s\}
$$

A Σ-partial function is a function $f: A \rightarrow B_{\perp}$.

Domains of Σ-partial functions

The support (a.k.a. domain) of $f: A \rightharpoonup B$ is $\{x \in A \mid f(x) \downarrow\}$.

Proposition

A subset is semidecidable iff it is the support of a Σ-partial function.

Proof.

A semidecidable subset $S \in \Sigma^{A}$ is the domain of its characteristic map $\chi_{S}: A \rightarrow \Sigma=1_{\perp}$.
Conversely, if $f: A \rightarrow B_{\perp}$ is Σ-partial then its domain is the set $\{x \in A \mid f(x) \downarrow\}$, which is obviously semidecidable.

Theorem (External translation)

A set is semidecidable iff it is the domain (support) of a partial computable map.

Outline

Introduction

Constructive Mathematics
Computability without Axioms
Axiom of Enumerability
Markov Principle
The Topological View
Recursion Theorem
Inseparable Sets
Conclusion

Axiom of Enumerability

Axiom (Enumerability)

There are enumerably many enumerable sets of numbers.
Let $\mathrm{W}: \mathbb{N} \rightarrow \mathcal{E}$ be an enumeration.

Proposition

Σ and \mathcal{E} have the fixed-point property.

Proof.

By Lawvere, $\mathrm{W}: \mathbb{N} \rightarrow \mathcal{E}=\Sigma^{\mathbb{N}} \cong \Sigma^{\mathbb{N} \times \mathbb{N}} \cong \mathcal{E}^{\mathbb{N}}$.

The Law of Excluded Middle Fails

The Law of Excluded Middle says $2=\Omega$.

Corollary

The Law of Excluded Middle is false.

Proof.

Among the sets $2 \subseteq \Sigma \subseteq \Omega$ only the middle one has the fixed-point property, so $2 \neq \Sigma \neq \Omega$.

Immune and Simple Sets

- A set is imтипе if it is neither finite nor infinite.
- A set is simple if it is open and its complement is immune.

Theorem

There exists an immune subset of \mathbb{N}.

Proof.

Following Post, consider $P=\left\{\langle m, n\rangle \in \mathbb{N} \times \mathbb{N} \mid n>2 m \wedge n \in W_{m}\right\}$, and let $f: \mathbb{N} \rightarrow \mathbb{N}_{\perp}$ be a selection for P. We claim that

$$
S=\operatorname{im}(f)=\{n \in \mathbb{N} \mid \exists m \in \mathbb{N} . f(m)=n\}
$$

is simple and $\mathbb{N} \backslash S$ immune. Because $f(m)>2 m$ the set $\mathbb{N} \backslash S$ cannot be finite.
For any infinite enumerable set $U \subseteq \mathbb{N} \backslash S$ with $U=\mathrm{W}_{m}$, we have $f(m) \downarrow, f(m) \in \mathbf{W}_{m}=U$, and $f(m) \in S$, hence U is not contained in $\mathbb{N} \backslash S$.

Enumerability of $\mathbb{N} \rightarrow \mathbb{N}_{\perp}$

Proposition

$$
\mathbb{N} \rightarrow \mathbb{N}_{\perp} \text { is enumerable. }
$$

Proof.

Let $V: \mathbb{N} \rightarrow \Sigma^{\mathbb{N} \times \mathbb{N}}$ be an enumeration. By Single-Value Theorem and Number Choice, there is $\varphi: \mathbb{N} \rightarrow\left(\mathbb{N} \rightarrow \mathbb{N}_{\perp}\right)$ such that φ_{n} is a selection of V_{n}. The map φ is surjective, as every $f: \mathbb{N} \rightarrow \mathbb{N}_{\perp}$ is the only selection of its graph.

Corollary (Formal Church's Thesis)

$\mathbb{N}^{\mathbb{N}}$ is sub-enumerable (because $\mathbb{N}^{\mathbb{N}} \subseteq \mathbb{N}_{\perp}^{\mathbb{N}}$).
In other words, $\forall f \in \mathbb{N}^{\mathbb{N}} . \exists n \in \mathbb{N} . f=\varphi_{n}$.

End of Part I

Walk around and rest your brain for 10 minutes.

Outline

Introduction

Constructive Mathematics
Computability without Axioms
Axiom of Enumerability
Markov Principle
The Topological View
Recursion Theorem
Inseparable Sets
Conclusion

Markov Principle

- If a binary sequence $a \in 2^{\mathbb{N}}$ is not constantly 0 , does it contain a 1 ?
- For $p \in \Sigma$, does $p \neq \perp$ imply $p=$ T?
- Is $\Sigma \subseteq \Omega_{\neg \neg}$?

Axiom (Markov Principle)

A binary sequence which is not constantly 0 contains a 1.

Post's Theorem

Theorem

For all $p \in \Omega$,

$$
p \in 2 \Longleftrightarrow p \in \Sigma \wedge \neg p \in \Sigma .
$$

Proof.

\Rightarrow If $p \in 2$ then $\neg p \in 2$, therefore $p, \neg p \in 2 \subseteq \Sigma$.
\Leftarrow If $p \in \Sigma$ and $\neg p \in \Sigma$ then $p \vee \neg p \in \Sigma \subseteq \Omega_{\neg \neg \text {, therefore }}$

$$
p \vee \neg p=\neg \neg(p \vee \neg p)=\neg(\neg p \wedge \neg \neg p)=\neg \perp=\top,
$$

as required.

Phoa's principle

What does $\Sigma \rightarrow \Sigma$ look like?

Theorem (Phoa's Principle)

For every $f: \Sigma \rightarrow \Sigma$ and $x \in \Sigma$,

$$
f(x)=(f(\perp) \vee x) \wedge f(\top)
$$

The proof uses Enumeration axiom and Markov Principle. The principle says that $\Sigma \rightarrow \Sigma$ is a retract of $\Sigma \times \Sigma$ with

- section: $f \mapsto\langle f(\perp), f(T)\rangle$
- retraction: $(u, v) \mapsto \lambda x: \Sigma .(u \vee x) \wedge v$

A consequence is monotonicity of $f: \Sigma \rightarrow \Sigma$: if $x \leq y$ then

$$
f(x)=(f(\perp) \vee x) \wedge f(\top) \leq(f(\perp) \vee y) \wedge f(\top)=f(y)
$$

Outline

Introduction

Constructive Mathematics
Computability without Axioms
Axiom of Enumerability
Markov Principle
The Topological View
Recursion Theorem
Inseparable Sets
Conclusion

The Topological View

- The topological view: semidecidable subsets $=$ open subsets .
- Σ is the Sierpinski space: the space on two points \perp, \top with $\{T\}$ open and $\{\perp\}$ closed.
- The topology of A is Σ^{A}.
- "All functions are continuous."

Given any $f: A \rightarrow B$ and $U \in \Sigma^{B}$, the set $f^{-1}(U)$ is open because it is classified by $U \circ f: A \rightarrow \Sigma$.

Topological Exterior and Creative Sets

- The exterior of an open set is the largest open set disjoint from it.
- An open set $U \in \Sigma^{A}$ is creative if it is without exterior: every $V \in \Sigma^{A}$ disjoint from U can be enlarged and still be disjoint from U.

Theorem

There exists a creative subset of \mathbb{N}.

Proof.

The familiar $K=\left\{n \in \mathbb{N} \mid n \in \mathbb{W}_{n}\right\}$ is creative. Given any $V \in \mathcal{E}$ with $V=\mathrm{W}_{k}$ and $K \cap V=\emptyset$, we have $k \notin V$ and $k \notin K$, so $V^{\prime}=V \cup\{k\}$ is larger and still disjoint from K.

The generic convergent sequence

- The one-point compactification of \mathbb{N} is

$$
\mathbb{N}^{+}=\left\{a: \mathbb{N} \rightarrow 2 \mid \forall n \in \mathbb{N} . a_{n} \leq a_{n+1}\right\}
$$

- A natural number n is represented by

$$
\underbrace{0,0, \ldots, 0}_{n}, 1,1, \ldots
$$

- Infinity ∞ corresponds to $0,0,0, \ldots$
- Σ is a quotient of \mathbb{N}^{+}by $q: \mathbb{N}^{+} \rightarrow \Sigma$,

$$
q(a)=(a<\infty)=\left(\exists n \in \mathbb{N} \cdot a_{n}=1\right) .
$$

The topology of \mathbb{N}^{+}

Theorem

Given $U: \mathbb{N}^{+} \rightarrow \Sigma$, if $\infty \in U$ then $n \in U$ for some $n \in \mathbb{N}$.

Proof.

By Markov principle, it suffices to show that $\forall n \in \mathbb{N}$. $n \notin U$ implies $\infty \notin U$. Suppose $U: \mathbb{N}^{+} \rightarrow \Sigma$ such that $\forall n \in \mathbb{N} . n \notin U$. Define a map $f: \Sigma \rightarrow \Sigma$ by $f(q(a))=U(a)$. By monotonicity of f,

$$
\perp \leq U(\infty)=f(\perp) \leq f(T)=\perp
$$

The topology of an ω-сро

A ω-cpo is a poset (P, \leq) in which increasing chains have suprema.

Theorem

An open subset $U: P \rightarrow \Sigma$ is

- upward closed: $x \in U \wedge x \leq y \Longrightarrow y \in U$
- inaccessible by chains: given a chain $a: \mathbb{N} \rightarrow P$, if $\bigvee_{k} a_{k} \in U$ then $a_{k} \in U$ for some $k \in \mathbb{N}$.

Proof.

(a) given $x \in U$ and $x \leq y$, define $f: \mathbb{N}^{+} \rightarrow P$ by

$$
f(u)=\bigvee_{k \in \mathbb{N}} \text { if } k<u \text { then } x \text { else } y
$$

Then $x=f(\infty) \in U$ hence for some $u<\infty$ we have $y=f(u) \in U$.
(b) Similarly, consider $f(u)=\bigvee_{k \in \mathbb{N}} a_{\min (k, u)}$.

The Rice-Shapiro Theorem

- A base for an ω-cpo (P, \leq) is an enumerable $B \subseteq P$ such that
- for all $b \in B$ and $x \in P$ we have $(b \leq x) \in \Sigma$,
- every $x \in P$ is the supremum of a chain of basic elements.

Each basic $b \in B$ determines a basic open
$\uparrow b=\{x \in P \mid b \leq x\}$.

- Example: a base for $\Sigma^{\mathbb{N}}$ is the family of finite subsets of \mathbb{N}.

Theorem (Rice-Shapiro)

In an ω-cpo with a base every open is the union of basic opens.

Proof.

$U: P \rightarrow \Sigma$ is the union of $\{\uparrow b \mid b \in U\}$.

Outline

Introduction

Constructive Mathematics
Computability without Axioms
Axiom of Enumerability
Markov Principle
The Topological View
Recursion Theorem
Inseparable Sets
Conclusion

Focal sets

- A focal set is a set A together with a map $\epsilon_{A}: A_{\perp} \rightarrow A$ such that $\epsilon_{A}(\{x\})=x$ for all $x \in A$:

The focus of A is $\perp_{A}=\epsilon_{A}(\perp)$.

- A lifted set A_{\perp} is always focal (because lifting is a monad whose unit is $\{-\})$.

Enumerable focal sets

- Enumerable focal sets, known as Eršov complete sets, have good properties.
- A flat domain A_{\perp} is focal. It is enumerable if A is decidable and enumerable.
- If A is enumerable and focal then so is $A^{\mathbb{N}}$:

$$
\mathbb{N} \xrightarrow{\varphi} \mathbb{N}_{\perp}^{\mathbb{N}} \xrightarrow{e_{\perp}^{\mathbb{N}}} A_{\perp}^{\mathbb{N}} \xrightarrow{\epsilon_{A}^{\mathbb{N}}} A^{\mathbb{N}}
$$

- Some enumerable focal sets are

$$
\Sigma^{\mathbb{N}}, \quad 2_{\perp}^{\mathbb{N}}, \quad \mathbb{N}_{\perp}^{\mathbb{N}}
$$

Recursion Theorem

Theorem (Recursion Theorem)

If $A^{\mathbb{N}}$ is enumerable then every $f: A \rightrightarrows A$ has a fixed point, i.e., $x \in A$ such that $x \in f(x)$.

Proof.

Let $\ell: \mathbb{N} \rightarrow A^{\mathbb{N}}$ be an enumeration. Then $e: \mathbb{N} \rightarrow A$ defined by $e(k)=\ell(k)(k)$ is onto as well. Let $h: \mathbb{N} \rightarrow A$ be a choice map such that $h(n) \in f(e(n))$ for all $n \in \mathbb{N}$. There is $j \in \mathbb{N}$ such that $\ell(j)=h$, from which we get a fixed point $e(j)=\ell(j)(j)=h(j) \in f(e(j))$.

Note: The theorem requires no synthetic axioms, but we need the Axiom of Enumerability to find interesting examples of such A, e.g., enumerable focal sets.

Classical Recursion Theorem

Corollary (Classical Recursion Theorem)

For every $f: \mathbb{N} \rightarrow \mathbb{N}$ there is $n \in \mathbb{N}$ such that $\varphi_{f(n)}=\varphi_{n}$.

Proof.

In Recursion Theorem, take the enumerable focal set $A=\mathbb{N}_{\perp}^{\mathbb{N}}$ and the multi-valued function

$$
F(g)=\left\{h \in \mathbb{N}_{\perp}^{\mathbb{N}} \mid \exists n \in \mathbb{N} \cdot g=\varphi_{n} \wedge h=\varphi_{f(n)}\right\} .
$$

There is g such that $g \in F(g)$. Thus there exists $n \in \mathbb{N}$ such that $\varphi_{n}=g=h=\varphi_{f(n)}$.

Outline

Introduction

Constructive Mathematics
Computability without Axioms
Axiom of Enumerability
Markov Principle
The Topological View
Recursion Theorem
Inseparable Sets
Conclusion

Plotkin's Domain $2_{\perp}^{\mathbb{N}}$

- In a partially ordered set (P, \leq) we say that x and y are incomparable if $x \not \leq y$ and $y \not \leq x$.
- Must there always be a maximal element above an element of a poset?
- The set of Σ-partial binary functions $\mathbb{N} \rightarrow 2_{\perp}$ is a partially ordered:

$$
f \leq g \Longleftrightarrow \forall n \in \mathbb{N} . f(n) \subseteq g(n) .
$$

This is Plotkin's universal domain.

Inseparable sets

Theorem

There exists an element of $\mathbb{N} \rightarrow \mathbf{2}_{\perp}$ that is inconsistent with every maximal element.

Proof.

Because 2_{\perp} is focal and enumerable, $2_{\perp}^{\mathbb{N}}$ is as well. Let $\psi: \mathbb{N} \rightarrow 2_{\perp}^{\mathbb{N}}$ be an enumeration, and let $t: 2_{\perp} \rightarrow 2_{\perp}$ be the isomorphism $t(x)=\neg \perp x$ which exchanges 0 and 1 , and fixes \perp. Consider $a \in 2_{\perp}^{\mathbb{N}}$ defined by $a(n)=t\left(\psi_{n}(n)\right)$. If $b \in 2_{\perp}^{\mathbb{N}}$ is maximal with $b=\psi_{k}$, then $a(k)=\neg \psi_{k}(k)=\neg b(k)$. Because $a(k)$ and $b(k)$ are both total and different they are inconsistent. Hence a and b are inconsistent.

Conclusion

- The theme: we should look for elegant presentations of structures we study. They can lead to new intuitions (and destroy old ones).
- These slides, and more, at math. andrej.com.

References

- Berger, U., Total sets and objects in domain theory, Annals of Pure and Applied Logic 60 (1993), pp. 91-117
- Bridges, D., Richman, F., Varieties of Constructive Mathematics, Lecture Notes Ser., 97, London Math. Soc., 1987.
- Fenstad, J., On axiomatizing recursion theory, in: J.E. Fenstadt et al., editor, Generalized Recursion Theory, North Holland, 1974 pp. 385-404.
- Friedman, H., Axiomatic recursive function theory, in: Gandy et al., editor, Logic Colloquium '69 (1971), pp. 113-137.
- Hyland, J., The effective topos, in: A. Troelstra and D. V. Dalen, editors, The L.E.J. Brouwer Centenary Symposium (1982), pp. 165-216.
- Hyland, J., First steps in synthetic domain theory, in: Category Theory, number 1488 in Lecture Notes in Mathematics, 1991.
- Moschovakis, Y., Axioms for computation theories - first draft, in: Gandy et al., editor, Logic Colloquium '69 (1971), pp. 199-255.
- Richman, F., Church's thesis without tears, The Journal of Symbolic Logic 48 (1983), pp. 797-803.
- Rosolini, G., Continuity and Effectiveness in Topoi, Ph.D. thesis, University of Oxford (1986).
- Spreen, D., On effective topological spaces, The Journal of Symbolic Logic 63 (1998), pp. 185-221.

