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What is “synthetic” mathematics?
I Suppose we want to study mathematical structures

forming a category C, such as:
I smooth manifolds and differentiable maps
I topological spaces and continuous maps
I computable sets and computable maps

I Classical approach: objects are sets equipped with extra
structure, morphisms preserve the structure.

I Synthetic approach: embed C in a suitable mathematical
universe E (a model of intuitionistic set theory) and view
structures as ordinary sets and morphisms as ordinary maps
inside E .



A synthetic universe for computability theory
I M. Hyland’s effective topos Eff is the mathematical universe

suitable for computability theory.
I In Eff all objects and morphisms are equipped with

computability structure.
I We need not know how Eff is built—we just use the logic

and axioms which are valid in it.
I In the next lecture we will learn more about Eff.



External and internal view
Comparison of concepts as viewed by us (externally) and by
mathematicians inside Eff (internally):

Symbol External Internal
N natural numbers natural numbers
R computable reals all reals

f : N → N computable map any map
e : N � A computable enumeration of A any enumeration of A
{true, false} truth values decidable truth values

Ω truth values of Eff truth values
∀x computably for all x for all x
∃x there exists computable x there exists x

P ∨ ¬P decision procedure for P P or not P



Related Work
I Friedman [1971], axiomatizes coding and universal

functions
I Moschovakis [1971] & Fenstad [1974], axiomatize

computations and subcomputations
I Hyland [1982], effective topos
I Richman [1984], an axiom for effective enumerability of

partial functions, extended in Bridges & Richman [1987]
I We shall follow Richman [1984] in style, and borrow ideas

from Rosolini [1986], Berger [1983], and Spreen [1998].
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Intuitionistic logic
I We use intuitionistic logic, more precisely the internal

language of a topos.
I What is the status of Law of Excluded Middle (LEM)?

∀ p∈Ω . (p ∨ ¬p)
“For every proposition p, p or not p.”

In intuitionistic mathematics it can only be used in special
cases, when p is decidable.

I At this point we do not know whether all propositions are
decidable, but later one of our axioms will falsify LEM.

I The status of the Axiom of Choice will be discussed later.



Basic sets and constructions
I Basic sets:

∅, 1 = {∗}, N = {0, 1, 2, . . .}

I Set operations:

A× B, A + B, BA = A → B, {x ∈ A
∣∣ p(x)}, PA

I We say that A is
I non-empty if ¬∀ x∈A .⊥,
I inhabited if ∃ x∈A .>.



Relations and functions
I A relation R ⊆ A× B is:

I single-valued if 〈x, y〉 ∈ R ∧ 〈x, z〉 ∈ R =⇒ y = z,
I total if ∀ x∈A .∃ y∈B . 〈x, y〉 ∈ R,
I functional if it is single valued and total.

I Every R ⊆ A× B determines f : A → PB, and vice versa

f (x) = {y ∈ B
∣∣ 〈x, y〉 ∈ R} and 〈x, y〉 ∈ R ⇐⇒ y ∈ f (x)

We say that R is the graph of f .
I Relations as functions:

I single-valued relations are partial functions f : A ⇀ B,
I total relations are multi-valued functions f : A ⇒ B,
I functional relations are just functions f : A → B.



Axiom of Choice
I Axiom of Choice:

Every f : A ⇒ B has a choice function g : A → B such
that g(x) ∈ f (x) for all x ∈ A.

This we do not accept because it implies LEM.
I We accept Number Choice:

Every f : N ⇒ B has a choice function g : N → B.

I We also accept Dependent Choice:

Given x ∈ A and h : A ⇒ A, there exists g : N → A
such that g(0) = x and g(n + 1) ∈ h(g(n)) for all
n ∈ N.

This is a form of simple recursion for multi-valued functions.



Sets of truth values
I The set of truth values:

Ω = P1
truth > = 1, falsehood ⊥ = ∅

I The set of decidable truth values:

2 = {0, 1} = {p ∈ Ω
∣∣ p ∨ ¬p} ,

where we write 1 = > and 0 = ⊥.
I The set of classical truth values:

Ω¬¬ = {p ∈ Ω
∣∣ ¬¬p = p} .

I 2 ⊆ Ω¬¬ ⊆ Ω.



Decidable and classical sets
I A subset S ⊆ A is equivalently given by its characteristic

map
χS : A → Ω, χS(x) = (x ∈ S).

I A subset S ⊆ A is decidable if χS : A → 2, equivalently

∀ x∈A . (x ∈ S ∨ x 6∈ S) .

I A subset S ⊆ A is classical if χS : A → Ω¬¬, equivalently

∀ x∈A . (¬(x 6∈ S) =⇒ x ∈ S) .



Enumerable & finite sets
I A is finite if there exist n ∈ N and a surjection

e : {1, . . . ,n} � A,

called a listing of A. An element may be listed more than
once.

I A is enumerable (countable) if there exists a surjection

e : N � 1 + A,

called an enumeration of A. For inhabited A we may take
e : N � A.

I A is infinite if there exists an injective a : N � A.



Outline

Introduction

Constructive Mathematics

Computability without Axioms

Axiom of Enumerability

Markov Principle

The Topological View

Recursion Theorem

Inseparable Sets

Conclusion



Lawvere → Cantor

Theorem (Lawvere)

If e : A � BA is surjective then B has the fixed point property: for
every f : B → B there is x0 ∈ B such that f (x0) = x0.

Proof.
Given f : B → B, define g(y) = f (e(y)(y)). Because e is surjective there
is x ∈ A such that e(x) = g. Then e(x)(x) = f (e(x)(x)), so x0 = e(x)(x) is
a fixed point of f .

Corollary (Cantor)

There is no surjection e : A � PA.

Proof.
PA = ΩA and ¬ : Ω → Ω does not have a fixed point.



Non-enumerability of Cantor and Baire space
Are there any sets which are not enumerable?
Yes, for example PN, and also:

Corollary

2N and NN are not enumerable.

Proof.
2 and N do not have the fixed-point property.

We have proved our first synthetic theorem:

Theorem (external translation of above corollary)

The set of recursive sets and the set of total recursive functions cannot
be computably enumerated.



Projection Theorem
Recall: the projection of S ⊆ A× B is the set

{x ∈ A
∣∣ ∃ y∈B . 〈x, y〉 ∈ S} .
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Projection Theorem

Theorem (Projection)

A subset of N is enumerable iff it is the projection of a decidable subset
of N× N.

Proof.
If A is enumerated by e : N → 1 + A then A is the projection of
the graph of e,

{〈m,n〉 ∈ N× N
∣∣ m = e(n)}.

If A is the projection of B ⊆ N× N, define e : N× N → 1 + A by

e〈m,n〉 = if 〈m,n〉 ∈ B then m else ? .



Semidecidable sets
I A semidecidable truth value p ∈ Ω is one that is equivalent to

∃n∈N . d(n)

for some d : N → 2.
I The set of semidecidable truth values:

Σ = {p ∈ Ω
∣∣ ∃ d∈2N . (p ⇐⇒ ∃n∈N . d(n))} .

This is a dominance.
I 2 ⊆ Σ ⊆ Ω.
I A subset S ⊆ A is semidecidable if χS : A → Σ.



Semidecidable subsets of N

Theorem
The enumerable subsets of N are the semidecidable subsets of N.

Proof.
An enumerable A ⊆ N is the projection of a decidable
B ⊆ N× N. Then n ∈ A iff ∃m∈N . 〈n,m〉 ∈ B.
Conversely, if A ∈ ΣN, by Number Choice there is
d : N× N → 2 such that n ∈ A iff ∃m∈N . d(m,n).

The enumerable subsets of N:

E = ΣN .

Note: at this point we do not know whether E = PN.



The Single-Value Theorem
A selection for R ⊆ A× B is a partial map f : A ⇀ B such that,
for every x ∈ A,

(∃ y∈B .R(x, y)) =⇒ f (x)↓ ∧ R(x, f (x)) .

This is like a choice function, expect it only chooses when there
is something to choose from.

Theorem (Single Value Theorem)

Every semidecidable relation R ∈ ΣN×N has a Σ-partial selection.



Partial functions
I Given a single-valued R ⊆ B, the corresponding

f : A → PB always factors through

B̃ = {S ∈ PB
∣∣ ∀ x, y∈B . (x ∈ S ∧ y ∈ S =⇒ x = y)}.

I Thus partial maps f : A ⇀ B are just ordinary maps
f : A → B̃.

I Write f (x)↓ when f is defined at x, i.e., ∃ y∈B . y ∈ f (x).



Σ-partial functions
When does a partial f : N ⇀ N have an enumerable graph?

Proposition

f : N → Ñ has an enumerable graph iff f (n)↓ ∈ Σ for all n ∈ N.

Define the lifting operation

A⊥ = {S ∈ Ã
∣∣ (∃ x∈A . x ∈ S) ∈ Σ} .

For f : A → B define f⊥ : A⊥ → B⊥ to be

f⊥(s) = {f (x)
∣∣ x ∈ s} .

A Σ-partial function is a function f : A → B⊥.



Domains of Σ-partial functions
The support (a.k.a. domain) of f : A ⇀ B is {x ∈ A

∣∣ f (x)↓}.

Proposition

A subset is semidecidable iff it is the support of a Σ-partial function.

Proof.
A semidecidable subset S ∈ ΣA is the domain of its characteristic map
χS : A → Σ = 1⊥.
Conversely, if f : A → B⊥ is Σ-partial then its domain is the set
{x ∈ A

∣∣ f (x)↓}, which is obviously semidecidable.

Theorem (External translation)

A set is semidecidable iff it is the domain (support) of a partial
computable map.
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Axiom of Enumerability

Axiom (Enumerability)

There are enumerably many enumerable sets of numbers.

Let W : N � E be an enumeration.

Proposition

Σ and E have the fixed-point property.

Proof.
By Lawvere, W : N � E = ΣN ∼= ΣN×N ∼= EN.



The Law of Excluded Middle Fails
The Law of Excluded Middle says 2 = Ω.

Corollary

The Law of Excluded Middle is false.

Proof.
Among the sets 2 ⊆ Σ ⊆ Ω only the middle one has the
fixed-point property, so 2 6= Σ 6= Ω.



Immune and Simple Sets
I A set is immune if it is neither finite nor infinite.
I A set is simple if it is open and its complement is immune.

Theorem
There exists an immune subset of N.

Proof.
Following Post, consider P = {〈m,n〉 ∈ N× N

∣∣ n > 2m ∧ n ∈ Wm},
and let f : N → N⊥ be a selection for P. We claim that

S = im(f ) = {n ∈ N
∣∣ ∃m∈N . f (m) = n}

is simple and N \ S immune. Because f (m) > 2m the set N \ S cannot
be finite.
For any infinite enumerable set U ⊆ N \ S with U = Wm, we have
f (m)↓, f (m) ∈ Wm = U, and f (m) ∈ S, hence U is not contained in
N \ S.



Enumerability of N → N⊥

Proposition

N → N⊥ is enumerable.

Proof.
Let V : N � ΣN×N be an enumeration. By Single-Value Theorem and
Number Choice, there is ϕ : N → (N → N⊥) such that ϕn is a selection
of Vn. The map ϕ is surjective, as every f : N → N⊥ is the only
selection of its graph.

Corollary (Formal Church’s Thesis)

NN is sub-enumerable (because NN ⊆ NN
⊥).

In other words, ∀ f ∈NN .∃n∈N . f = ϕn.



End of Part I

Walk around and rest your
brain for 10 minutes.
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Markov Principle
I If a binary sequence a ∈ 2N is not constantly 0, does it

contain a 1?
I For p ∈ Σ, does p 6= ⊥ imply p = >?
I Is Σ ⊆ Ω¬¬?

Axiom (Markov Principle)

A binary sequence which is not constantly 0 contains a 1.



Post’s Theorem

Theorem
For all p ∈ Ω,

p ∈ 2 ⇐⇒ p ∈ Σ ∧ ¬p ∈ Σ .

Proof.

⇒ If p ∈ 2 then ¬p ∈ 2, therefore p,¬p ∈ 2 ⊆ Σ.
⇐ If p ∈ Σ and ¬p ∈ Σ then p ∨ ¬p ∈ Σ ⊆ Ω¬¬, therefore

p ∨ ¬p = ¬¬(p ∨ ¬p) = ¬(¬p ∧ ¬¬p) = ¬⊥ = > ,

as required.



Phoa’s principle
What does Σ → Σ look like?

Theorem (Phoa’s Principle)

For every f : Σ → Σ and x ∈ Σ,

f (x) = (f (⊥) ∨ x) ∧ f (>) .

The proof uses Enumeration axiom and Markov Principle. The
principle says that Σ → Σ is a retract of Σ× Σ with

I section: f 7→ 〈f (⊥), f (>)〉
I retraction: (u, v) 7→ λx : Σ . (u ∨ x) ∧ v

A consequence is monotonicity of f : Σ → Σ: if x ≤ y then

f (x) = (f (⊥) ∨ x) ∧ f (>) ≤ (f (⊥) ∨ y) ∧ f (>) = f (y) .
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The Topological View
I The topological view:

semidecidable subsets = open subsets .

I Σ is the Sierpinski space: the space on two points ⊥, > with
{>} open and {⊥} closed.

I The topology of A is ΣA.
I “All functions are continuous.”

Given any f : A → B and U ∈ ΣB, the set f−1(U) is open
because it is classified by U ◦ f : A → Σ.



Topological Exterior and Creative Sets
I The exterior of an open set is the largest open set disjoint

from it.
I An open set U ∈ ΣA is creative if it is without exterior:

every V ∈ ΣA disjoint from U can be enlarged and still be
disjoint from U.

Theorem
There exists a creative subset of N.

Proof.
The familiar K = {n ∈ N

∣∣ n ∈ Wn} is creative. Given any V ∈ E
with V = Wk and K ∩ V = ∅, we have k 6∈ V and k 6∈ K, so
V′ = V ∪ {k} is larger and still disjoint from K.



The generic convergent sequence
I The one-point compactification of N is

N+ = {a : N → 2
∣∣ ∀n∈N . an ≤ an+1} .

I A natural number n is represented by

0, 0, . . . , 0︸ ︷︷ ︸
n

, 1, 1, . . .

I Infinity ∞ corresponds to 0, 0, 0, . . .
I Σ is a quotient of N+ by q : N+ � Σ,

q(a) = (a <∞) = (∃n∈N . an = 1) .



The topology of N+

Theorem
Given U : N+ → Σ, if ∞ ∈ U then n ∈ U for some n ∈ N.

Proof.
By Markov principle, it suffices to show that ∀n∈N .n 6∈ U implies
∞ 6∈ U. Suppose U : N+ → Σ such that ∀n∈N .n 6∈ U. Define a map
f : Σ → Σ by f (q(a)) = U(a). By monotonicity of f ,

⊥ ≤ U(∞) = f (⊥) ≤ f (>) = ⊥ .



The topology of an ω-cpo
A ω-cpo is a poset (P,≤) in which increasing chains have
suprema.

Theorem
An open subset U : P → Σ is

I upward closed: x ∈ U ∧ x ≤ y =⇒ y ∈ U
I inaccessible by chains: given a chain a : N → P, if

∨
k ak ∈ U

then ak ∈ U for some k ∈ N.

Proof.
(a) given x ∈ U and x ≤ y, define f : N+ → P by

f (u) =
_
k∈N

if k < u then x else y .

Then x = f (∞) ∈ U hence for some u <∞we have y = f (u) ∈ U.
(b) Similarly, consider f (u) =

W
k∈N amin(k,u).



The Rice-Shapiro Theorem
I A base for an ω-cpo (P,≤) is an enumerable B ⊆ P such that

I for all b ∈ B and x ∈ P we have (b ≤ x) ∈ Σ,
I every x ∈ P is the supremum of a chain of basic elements.

Each basic b ∈ B determines a basic open
↑b = {x ∈ P

∣∣ b ≤ x}.
I Example: a base for ΣN is the family of finite subsets of N.

Theorem (Rice-Shapiro)

In an ω-cpo with a base every open is the union of basic opens.

Proof.
U : P → Σ is the union of {↑b

∣∣ b ∈ U}.
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Focal sets
I A focal set is a set A together with a map εA : A⊥ → A such

that εA({x}) = x for all x ∈ A:

A
{−} //

AA
AA

AA
AA

AA
AA

AA
AA

A⊥

εA

��
A

The focus of A is ⊥A = εA(⊥).
I A lifted set A⊥ is always focal (because lifting is a monad

whose unit is {−}).



Enumerable focal sets
I Enumerable focal sets, known as Eršov complete sets, have

good properties.
I A flat domain A⊥ is focal. It is enumerable if A is decidable

and enumerable.
I If A is enumerable and focal then so is AN:

N
ϕ // // NN

⊥
eN
⊥ // // AN

⊥
εN

A // // AN

I Some enumerable focal sets are

ΣN, 2N
⊥, NN

⊥ .



Recursion Theorem

Theorem (Recursion Theorem)

If AN is enumerable then every f : A ⇒ A has a fixed point, i.e.,
x ∈ A such that x ∈ f (x).

Proof.
Let ` : N → AN be an enumeration. Then e : N → A defined by
e(k) = `(k)(k) is onto as well. Let h : N → A be a choice map such that
h(n) ∈ f (e(n)) for all n ∈ N. There is j ∈ N such that `(j) = h, from
which we get a fixed point e(j) = `(j)(j) = h(j) ∈ f (e(j)).

Note: The theorem requires no synthetic axioms, but we need
the Axiom of Enumerability to find interesting examples of
such A, e.g., enumerable focal sets.



Classical Recursion Theorem

Corollary (Classical Recursion Theorem)

For every f : N → N there is n ∈ N such that ϕf (n) = ϕn.

Proof.
In Recursion Theorem, take the enumerable focal set A = NN

⊥
and the multi-valued function

F(g) = {h ∈ NN
⊥

∣∣ ∃n∈N . g = ϕn ∧ h = ϕf (n)} .

There is g such that g ∈ F(g). Thus there exists n ∈ N such that
ϕn = g = h = ϕf (n).
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Plotkin’s Domain 2N
⊥

I In a partially ordered set (P,≤) we say that x and y are
incomparable if x 6≤ y and y 6≤ x.

I Must there always be a maximal element above an element
of a poset?

I The set of Σ-partial binary functions N → 2⊥ is a partially
ordered:

f ≤ g ⇐⇒ ∀n∈N . f (n) ⊆ g(n) .

This is Plotkin’s universal domain.



Inseparable sets

Theorem
There exists an element of N → 2⊥ that is inconsistent with every
maximal element.

Proof.
Because 2⊥ is focal and enumerable, 2N

⊥ is as well. Let
ψ : N � 2N

⊥ be an enumeration, and let t : 2⊥ → 2⊥ be the
isomorphism t(x) = ¬⊥x which exchanges 0 and 1, and fixes ⊥.
Consider a ∈ 2N

⊥ defined by a(n) = t(ψn(n)). If b ∈ 2N
⊥ is

maximal with b = ψk, then a(k) = ¬ψk(k) = ¬b(k). Because a(k)
and b(k) are both total and different they are inconsistent.
Hence a and b are inconsistent.



Conclusion
I The theme: we should look for elegant presentations of

structures we study. They can lead to new intuitions (and
destroy old ones).

I These slides, and more, at math.andrej.com.
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