
Implementing real numbers with RZ

Andrej Bauer Iztok Kavkler

Faculty of Mathematics and Physics
University of Ljubljana

Slovenia

April 12, 2007

Abstract

RZ is a tool which translates axiomatizations of mathematical struc-
tures to program specifications using the realizability interpretation of
logic. This helps programmers correctly implement data structures for
computable mathematics. RZ does not prescribe a particular method of
implementation, but allows programmers to write efficient code by hand,
or to extract trusted code from formal proofs, if they so desire. We used
this methodology to axiomatize real numbers and implemented the spec-
ification computed by RZ. The axiomatization is the standard domain-
theoretic construction of reals as the maximal elements of the interval
domain, while the implementation closely follows current state-of-the-art
implementations of exact real arithmetic. Our results shows not only that
the theory and practice of computable mathematics can coexist, but also
that they work together harmoniously.

1 Introduction

At Computability and Complexity in Analysis 2003 [7], the first author was
asked to suggest open problems and research directions in constructive and
computable mathematics. One of the suggestions was:

“Suggestion 2: Get closer to practice

Put more emphasis on actual programming.
(Turing machines are fine, but you can’t buy one.)

But do not cheat! The relationship between constructive mathematics
and programming should be mathematically rigorous.”

The suggestion asks not that everyone should forget constructive and com-
putable mathematics and start programming their own exact real arithmetic,
but rather implies that it would be useful to strengthen the connection between
theory and practice. In order to validate such a claim, we would have to

1. move theory closer to practice by using models of computability which re-
fer to actual programming languages instead of (Type 2) Turing machines,
and

1

2. move practice closer to theory by making sure that practical implemen-
tations follow formal specifications that are computed directly from the-
oretical models.

For the first item we have in mind something like a theory of representations
in which Type 2 Turing machines are replaced by a real-world programming
language. This should not affect the fundamental results of computable mathe-
matics, since general-purpose programming languages are as powerful as Turing
machines (and they also support infinite streams and non-terminating compu-
tations). For the second item, we would like to see implementations of exact
real arithmetic supported by formal specifications that at least in principle al-
low (automatic or human-assisted) checking of correctness. Such specifications
should be generated from (formal) descriptions of theoretical models on which
the implementations are based.

Taking our own suggestion seriously, we implemented exact real arithmetic
while making sure that the connection between the constructive theory of re-
als and the practical implementation of exact real arithmetic is explicit and
mathematically rigorous. In this paper we report on the experience.

The results of a project along these lines can be judged as successful only if
theory and practice turn out to help each other, rather than impose unnatural
constraints on each other. For example, it would be unacceptable if a program-
mer adhering closely to a mathematical model were forced to write inefficient or
useless code. Conversely, we would not want to sacrifice mathematical elegance
just to accommodate programming tricks. Much to our satisfaction, our project
shows that constructive and computable theories of reals are indeed in harmony
with state-of-the-art implementations of real arithmetic. We are hopeful that
in the future our methodology will help develop implementations of other, more
advanced computable structures.

The paper is organized as follows. In Section 2 we describe the tools that we
used. In Section 3 we discuss our implementation of exact real arithmetic. In
Section 4 we evaluate our achievements and suggest directions for future work.

2 Realizability and RZ

Algorithms and data structures in computable mathematics are usually ex-
pressed in terms of Turing machines and Gödel encodings (either by numbers or
by infinite sequences). This is a natural choice when one considers theoretical
questions about computability, but in an actual implementation we use struc-
tured programming with datatypes, classes, and other programming constructs.
In order to keep mathematics and programming close to each other, we replaced
the customary Type 2 representations with representations in a programming
language, in our case Objective Caml [11], but other languages could be used.
Then we used RZ [5], a tool written in a related project by Chris Stone and
Andrej Bauer, to automatically translate the constructive theory of reals to
a formal program specification. Finally, we implemented the specification in
Objective Caml.

It is beyond the scope of this paper to fully describe how RZ works. We
refer to [4] for resources on RZ, and to [3, 2] for background on how realizability
theory is used to connect constructive and computable mathematics. In this
section we explain enough to make the rest of the paper comprehensible.

2

A representation in a programming language1 P is a triple (A, τA, δA) where
A is the represented set, τA is a type in P of representing values, and δA :
[[τA]] ⇀ A a partial surjection. Here [[τA]] denotes the set of values of type τA.2

The usual Type 2 representations [20] are a special case of representations in
which [[τA]] is fixed as the set ΣN of infinite sequences over an alphabet Σ. This
difference is not as essential as it may seem, because Type 2 representations are
typically described in such a way that the intended type τA can be recognized
as a suitable subset of ΣN.

A representation (A, τA, δA) determines a partial equivalence relation (per)
≈A on [[τA]], given by

u ≈A v ⇐⇒ ∃x∈A . δA(u) = δA(v) = x .

The relation ≈A need not be reflexive because δA need not be defined every-
where. It is convenient to define the support ‖A‖ as the set of those values that
represent something,

‖A‖ = {u ∈ [[τA]] | u ≈A u}.

The representation δA may be recovered from ≈A up to isomorphism if we take
the represented set to be the equivalence classes of ≈A and δA the canonical
quotient map. Thus a representation (A, τA, δA) may be viewed equivalently as
a per (τA,≈A). RZ uses pers because they refer only to types and values of P,
rather than to arbitrary represented sets.

Pers form a category in which a morphism f : (τA,≈A) → (τB ,≈B) is
represented by a value f ∈ [[τA → τB]] which is extensional with respect to
≈A and ≈B , meaning that u ≈A v implies f(u) ≈B f(v) for all u, v ∈ [[τA]].
Two such extensional values f1 and f2 represent the same morphism when
u ≈A v implies f1(u) ≈B f2(v) for all u, v ∈ [[τA]]. RZ uses the realizability
interpretation of constructive logic and dependent type theory in the category
of pers to compute specifications from mathematical theories, as is explained
in [5].

RZ takes as input one or more theories which are written in the usual first-
order logic with a rich assortment of set constructions (dependent products and
sums, function spaces, subsets, quotients, but no powersets). A theory comprises
a list of declarations and definitions of sets, constants, predicates and relations,
as well as axioms. For example, Figure 1 shows the theory of a commutative
group. To save the world from yet another syntax, RZ mostly follows the syntax
of the proof assistant Coq [6] (the relationship between RZ and Coq is discussed
in Section 4). For better readability we here display symbols such as forall,
exists, \/, /\, -> as ∀, ∃, ∨, ∧, →, respectively.

The first four lines of CommutativeGroup are declarations (the Parameter
keyword) of a set s, a constant zero, a binary operation add, and a unary
operation neg on s. The Implicit Type declaration says that, unless other-
wise specified, variables x, y and z are presumed to range over s. With the
Definition keyword we define a binary operation sub, while the four axioms
say that s, zero, add and neg together form a commutative group.

1In our case P is Objective Caml. Any general-purpose programming language with suf-
ficiently well-defined semantics could be used instead. The technical requirement is that P
forms a typed partial combinatory algebra [12].

2The type τA is not a set but just a formal expression in P, which is why we distinguish
between τA and its set of values [[τA]].

3

Definition CommutativeGroup :=

thy

Parameter s : Set.

Parameter zero : s.

Parameter add : s → s → s.

Parameter neg : s → s.

Implicit Type x y z : s.

Definition sub x y := add x (neg y).

Axiom add_associative: ∀ x y z, add x (add y z) = add (add x y) z.

Axiom zero_neutral: ∀ x, add x zero = x.

Axiom neg_inverse: ∀ x, add x (neg x) = zero.

Axiom add_commutative: ∀ x y, add x y = add y x.

end.

Figure 1: The theory of a commutative group

RZ translates a theory to a module specification, which is an OCaml module
type3 (consisting of type declarations and definitions, and value declarations)
annotated with assertions, written as comments, which state the properties
that must be satisfied by the declared types and values. We demonstrate the
translation procedure on a few typical examples.

A set declaration Parameter s : Set is translated to

type s

(** predicate (≈s) : s → s → bool *)

(** assertion symmetric_s : ∀ x:s, y:s, x ≈s y → y ≈s x

assertion transitive_s :

∀ x:s, y:s, z:s, x ≈s y ∧ y ≈s z → x ≈s z *)

(** predicate ‖s‖ : s → bool *)

(** assertion support_def_s : ∀ x:s, x : ‖s‖ ↔ x ≈s x *)

This says that the programmer should define a type s, and a relation ≈s on s
which is symmetric and transitive, in other words a per (s,≈s). The last two
lines define the support ‖s‖ discussed earlier, viewed as a predicate rather than a
subset. Note that assertions are written inside comments, which is necessary as
OCaml does not know about assertions. Another important observation is that
≈s and ‖s‖ are abstract predicates which are not required to be computable.
We cannot expect ≈s to be computable in general, e.g., when s implements a
group with an undecidable word problem [16].

A value declaration Parameter zero : s is translated to

val zero : s

(** assertion zero_support : zero : ‖s‖ *)

which says that the programmer should define a value zero of type s which is
in the support ‖s‖.

The definition of sub in Figure 1 is translated to
3Module types are also called signatures and vaguely correspond to header files in C,

interfaces or abstract classes in Java, pure virtual classes in C++, and declarations in Haskell.

4

val sub : s → s → s

(** assertion sub_def :

sub ≈s → s → s (fun x : s ⇒ fun y : s ⇒ add x (neg y)) *)

The above assertion does not force sub x y to be implemented as add x (neg y),
only to be equivalent to it with respect to the per. This is useful, as often the
easiest way to define a value is not the most efficient way to compute it. The
programmer is not limited to a purely functional programming style and is free
to implement a specification using any features that exist in OCaml, including
computational effects such as state and exceptions.

The driving force behind the translation of logic is a meta-theorem [19,
4.4.10] saying that under the realizability interpretation every formula φ is
equivalent to one that says, informally speaking, “there exists u ∈ |φ|, such
that u
 φ”, where |φ| is a type computed from φ and u
 φ stands for “u
realizes φ”. Furthermore, the formula u
 φ is negative, meaning that it may
contain ∧, →, ∀, =, ¬, ⊥, >, but not ∨ or ∃. A welcome consequence of this
is that the interpretation of u
 φ is the same under both the constructive and
classical reading. Therefore, programmers are able to understand the transla-
tion even if they are not familiar with constructive logic (which usually they are
not).

The translation of a predicate φ then consists of its underlying type |φ| of
realizers and the relation u
 φ, expressed as a negative formula. Thus an axiom
Axiom A : φ in the input is translated to

val u : |φ|
(** assertion A : u
 φ *)

which requires the programmer to validate φ by providing a realizer for it. The
axioms of a commutative group are universally quantified equations, which are
negative formulas. As such they have no computational content (the underlying
type of realizers is unit) and RZ translates them directly to assertions, e.g.,
commutativity is translated as

(** assertion add_commutative :

∀ (x:‖s‖, y:‖s‖), add x y ≈s add y x *)

To get an interesting example, suppose we have already defined the usual struc-
ture of complex numbers complex and consider the “axiom” stating that every
complex number has a square root:

Axiom sqrt : ∀ z : complex, ∃ w : complex, z = mul w w.

The translation is

val sqrt : complex → complex

(** assertion sqrt : ∀ (z:‖complex‖),
let p = sqrt z in p : ‖complex‖ ∧ z ≈complex mul p p *)

The axiom is validated by a value sqrt which computes square roots. Crucially,
sqrt is not required to be extensional, i.e., it may compute two different square
roots from two different representatives for the same complex number. In the
language of Type Two Effectivity we would say that sqrt realizes a multi-valued
function.

5

To see that the logic of RZ must be constructive, assume nat denotes the
set of natural numbers, and consider the classically valid statement4

Axiom lpo : ∀ f : nat → nat,

[‘zero: ∀ n : nat, f n = zero] ∨
[‘nonzero: ¬ (∀ n : nat, f n = zero)].

is translated to the specification

val lpo : (nat → nat) → [‘zero | ‘nonzero]

(** assertion lpo : ∀ (f:‖nat → nat‖),
(match lpo f with

‘zero ⇒ ∀ (n:‖nat‖), f n ≈nat zero

| ‘nonzero ⇒ ¬ (∀ (n:‖nat‖), f n ≈nat zero)) *)

In order to validate the axiom, we would have to implement a function lpo
which accepts as input (a representative of) a function f : N → N and outputs
either ‘zero or ‘nonzero, depending on whether f is constantly zero or not.
But the existence of such a decision procedure is equivalent to the existence of
a Halting Oracle.

3 Implementing Real Numbers

There are several ways to characterize or construct real numbers. Even though
they all result in isomorphic structures (as ordered fields), the choice of a rep-
resentation and basic operations can have an enormous effect on efficiency of
an implementation. Since we wanted to achieve performance that was compa-
rable to fast implementations of exact real arithmetic such as iRRAM [15, 14],
RealLib [10, 9] and MPFR [8], we looked for a theoretical model that would
correspond closely to these under translation by RZ. A good starting point are
the following observations about characteristics of iRRAM, RealLib and MPFR:

1. They are based on fast large integer libraries, such as GMP [1].

2. They work with dyadic rationals (those whose denominator is a power of
two) rather than arbitrary ones.

3. On top of dyadic rationals, they implement interval arithmetic [13] and
use intervals as approximations to reals.

4. Computations are started at a certain initial precision. As errors propa-
gate, the quality of results deteriorates. If the final result is not precise
enough, the entire computation is restarted from scratch with better initial
precision.

It may seem wasteful to restart entire computations from scratch when the
initial precision turns out to be too low. Indeed, earlier implementations of
exact reals worked by propagating the precision backwards through intermediate
computations in order to guarantee a final result with goal precision. But this
often turned out to be even more expensive because the needed intermediate
precisions tend to be overestimated so that too much work is done.

4In RZ the disjuncts φ, ψ in a disjunction φ ∨ ψ may be labelled as [‘`1 : φ] ∨ [‘`2 : ψ] for
easier reference.

6

Prohibitive memory consumption is another kind of problem that may occur
when the representation of reals contains computation trees. For example, if a
number is computed as a sum

∑n
k=0 f(k) its computation tree has size Θ(n),

which may cause problems for large values of n. The iRRAM and MPFR avoid
storing computation trees altogether (but take control of the main loop of the
program), while RealLib stores computation trees implicitly, for example by
storing f instead of the computation tree corresponding to the sum.

With all these issues in mind we looked for an axiomatizations of integers,
dyadics, intervals, and reals that would give us suitable specifications.

3.1 Integers

Integers Z may be described concisely as the initial ring. Such a “mathemat-
ically optimal” characterization is not suitable for implementation, because it
forces us to implement everything, even equality testing and linear ordering
of Z, in terms of unique ring homomorphisms from Z. Instead an RZ theory
of integers should mention those operations and properties that are actually
computationally useful, even if some of them are interderivable. This allows the
programmer to implement them all as efficiently as possible.

We used the axiomatization of integers shown in Appendix B. The include
statement incorporates the theory of a decidable ordered ring from Appendix A.
We define the natural numbers nat as a subset of integers, and state the usual
induction principle, which RZ translates as a specification for a polymorphic
function

val induction : α → (nat → α → α) → nat → α

with the following assertion: given any type α, an (abstract) predicate p :
nat → α → bool, an element x : α, and a function f : nat → α → α such
that p 0 x and, for all n : nat and y : α, p n y implies p (n + 1)(f n y), then
p n (induction x f n) for all n : nat. A moment’s thought reveals that the
assertion can be satisfied if we define induction to be the recursion operator
characterized by

induction x f 0 = x ,

induction x f (n + 1) = f n (induction x f n) .

The fact that the nonnegative integers satisfy the induction principle determines
the ring of integers uniquely up to isomorphism. The rest of the axiomatization
of integers deals with quotients and powers of two. This part of the theory is
not strictly necessary, but is useful for an implementation of dyadic rationals.

For the implementation of integer arithmetic we used the Numerix library
by Michel Quercia [17]. We also tested our implementation with GMP [1]. Both
Numerix and GMP give similar performance which is much better than that of
Big int module from Objective Caml standard library.

3.2 Dyadic Rationals

A dyadic rational has the form m · 2−k where m ∈ Z is the mantissa and k ∈ N
is the exponent. The dyadic rationals are more efficient than the ordinary ones
both in terms of memory consumption and basic arithmetic operations +, −

7

and ×. The fact that dyadic rationals form a decidable ordered ring, rather
than a field, does not present a problem, because we still have approximate
division: for all x and y > 0 we can find z such that z · y is as close to x as
we wish. In fact, even though exact ring operations on dyadics are available,
interval arithmetic uses their approximate versions in order to reduce memory
consumption. Thus our axiomatization of dyadic rationals in Appendix B states
not only that dyadics form a decidable ordered ring, but also that the basic
operations may be approximated from below and above. For example, the
axiom add approx down says that for all x and y there exists z such that z ≤
x + y ≤ z + 2−k. The axiom is valid since we could just take z = x + y, but
that misses the point. An efficient realizer for the axiom would compute z as
the sum x′+ y′ where x′ and y′ are suitably rounded x and y, so that they have
smaller mantissas and exponents.

A careful inspection of theory Dyadic reveals that no axiom requires every
element of the ring to be of the form m·2−k. Indeed, we could take any decidable
ordered ring in which the dyadic rationals are dense. This is quite similar to
the ring of base reals in Exact Geometric Computation [21]. Note also that the
axiom magnitude, which states that for every x there exists an integer k such
that 2k ≤ |x| < 2k+1, implies that the ring is Archimedean.

3.3 Dyadic Intervals

Our intention is to approximate real numbers with intervals [a, b] whose end-
points are dyadic rationals, or dyadic intervals for short.5 It is convenient to
adjoin an element undefined, corresponding to the interval (−∞,∞), which
allows for undefined results like division by zero. Dyadic intervals form a de-
cidable conditional upper semilattice (cusl) under ordering by reverse inclusion,
with undefined the least element.

Instead of following Moore’s [13] definitions of addition, subtraction and
multiplication of intervals, we make an adjustment that sacrifices a little bit of
precision for quite a bit of speed and memory. The idea is to represent intervals
as balls [c − r, c + r], and then to approximate an interval by a slightly larger
one whose radius r has a small mantissa. The approximation may save almost
half the memory, as well as improve performance of basic operations. However,
this means that Moore’s exact interval operations become approximate. This is
an acceptable compromise because typically we do not care about exact widths
of intervals.

Our axiomatization of interval arithmetic is the theory DyadicInterval
shown in Appendix D. First we include the theory of a conditional upper semi-
lattice, see Appendix C. The operation make l u constructs an interval [l, u].
Note that the type of make is dependent, since u is required to be larger than l.
RZ removes dependent types in the translation but still outputs obligations that
make sure make is never used illegally. The operations lower and upper com-
pute the endpoints of an interval, as witnessed by the axiom endpoints. Axiom
below is superset characterizes the partial order as superset.

We axiomatize interval approximation discussed earlier by stipulating a func-
tion normalize for which there exists a tolerance factor t ≥ 1 such that,

5Strictly speaking, since the real numbers are constructed from such intervals, a dyadic
interval is the pair [a, b] of its endpoints, and not the set of reals between a and b.

8

[c′ − r′, c′ + r′] = normalize [c − r, c + r] ⊇ [c − r, c + r] and r′ ≤ t · r. We
could trivially implement normalize as identity and t = 1, but the intention is
to take t = 1 + 2−b for a fixed b, c′ = c, and r′ with at most b-bit mantissa and
slightly larger than r.

Given a function f : D → D on the set of dyadic rationals D, say that
[l′, u′] contains the f-image of [l, u], written as f [l, u] ⊆ [l′, u′], if, for all x ∈
D, x ∈ [l, u] implies f(x) ∈ [l′, u′]. An approximate f-image of [l, u] is an
interval [l′, u′] such that f [l, u] ⊆ [l′, u′], and whenever f [l, u] ⊆ [l′′, u′′] then
[l′, u′] ⊆ normalize [l′′, u′′]. We similarly define an approximate image of a
binary function D× D → D.

The axioms for +, −, ×, min and max on intervals state that the corre-
sponding operations on dyadic rationals have approximate images, and the RZ
translation asks for operations which compute them. One possibility is to use
Moore’s interval arithmetic which computes exact images, but we implemented
operations with normalization of intervals built in. The axiom for negation re-
quires an exact image because nothing is gained by computing an approximate
one. The axiom for division follows the approximate image idea but must be
expressed differently because dyadic rationals do not form a field.

The last part of the theory DyadicInterval introduces a decidable preorder
less on intervals. This is used in the construction of real numbers for linear
ordering of reals.

3.4 Interval Domain

One of the characteristics of real numbers is that arbitrarily close to a real we
can find a (dyadic) rational, i.e.,6

Axiom dense: ∀ x : real, ∀ k : nat, ∃ d : dyadic,

abs (x - incl d) ≤ incl (pow2 (neg k)).

This translates to the specification

val dense : real → nat → dyadic

(** assertion dense :

∀ (x:‖real‖, k:‖nat‖), let p = dense x k in

p : ‖dyadic‖ ∧ abs (x - incl p)≤ incl (pow2 (neg k)) *)

which says that densex k computes a dyadic approximation within 2−k of x.
Such a function is of course essential for any implementation of exact reals, but
taking it as one of the basic operations from which others are constructed leads to
the sort of undesirable implementation that is based on backward propagation
of accuracy goals. We have to look for an axiomatization of reals in which
density of rationals comes as an afterthought.

As mentioned earlier, efficient implementations of exact real arithmetic com-
pute in stages. We can represent this by a function

stage : real→ nat→ interval ,

where stage x k is the approximation to x obtained at stage k. This is very
similar to dense above, except that there is no guarantee about the quality

6We assume that incl is the inclusion of dyadics into reals and that pow2 (neg k) stands
for 2−k.

9

of k-th stage. Instead, all we know is that the next stage is no worse than
the previous one7 and that x is the only number which is approximated by all
stages. In other words, x is the supremum of the chain of its approximations,
which strongly suggests that we should look at a domain-theoretic construction
of real numbers.

The poset ID of dyadic intervals may be completed to Dana Scott’s interval
domain IR [18], which is the set of closed real intervals ordered by reverse inclu-
sion ⊇. The completion i : ID → IR is a universal continuous map to ω-cpos,8

i.e., for every continuous f : ID → C to an ω-cpo C there exists a unique con-
tinuous g : IR → C such that f = g ◦ i. This characterizes IR up to isomorphism
but is a bit inconvenient to write down in RZ.9 Thus we use another character-
ization, namely that i : ID → IR is a continuous embedding to an ω-cpo with
dense image, in the sense that every element of IR is the supremum of a chain
from ID.

If we required that i : ID → IR be a universal monotone map, i.e., such that
every monotone f : ID → C has a unique continuous extension IR → C along i,
we would obtain an alternative domain-theoretic model of real numbers known
as the algebraic interval domain. For a while we hesitated about which of the
two models we should adopt, until we discovered that, although mathematically
different, both structures can be implemented with exactly the same data struc-
tures and functions. This curious fact is explained when we notice that in both
cases the elements of the completion are represented by chains of dyadic inter-
vals, but the chains represent different things. In one case they represent their
intersections (which are real intervals), while in the other they represent ideals.
In the end we chose the interval domain IR because it corresponds directly to
real interval arithmetic.

An RZ axiomatization of the relevant order-theoretic structures is shown in
Appendix C:

Poset axiomatizes the theory of a poset. It also defines basic concepts such as
maximality, chain, upper bound and supremum.

DecidableCusl axiomatizes a conditional upper semilattice with a decidable
order. This theory is used in the axiomatization of dyadic intervals.

CompletePoset axiomatizes an ω-cpo. It is just the theory of a poset with an
additional axiom stating that every chain has a supremum. RZ translates
it to a specification for an operator computing suprema of chains.

ChainCompletion describes the ω-chain completion of a poset P . The axiom
stage states that every element of the completion is the supremum of a
chain in P . It is translated to a function stage discussed earlier.

The theory RealInterval describing the interval domain IR is just the parame-
terized theory ChainCompletion applied to DyadicInterval, see Appendix D.

7Actually, iRRAM does not guarantee that approximations form a nested chain of intervals,
but this is not essential for our argument, and can be dealt with anyhow.

8Recall that an ω-cpo is a poset in which every increasing sequence (a chain) has a supre-
mum, and that a monotone map between posets is continuous if it preserves existing suprema
of chains.

9While RZ is well suited for descriptions of objects of a category, dealing with morphisms
is cumbersome. There is definitely room for improvement here.

10

3.5 Real Numbers

We finally come to the theory of real numbers, shown in Appendix E. We first
include the theory OrderedField, see Appendix A, which takes care of basic
arithmetic and the lattice operations min, max. The rest of the axiomatization
deals with the relationship between reals and the interval domain, continuity
of arithmetic operations, completeness properties of reals, linear order, and the
Archimedean property. We briefly comment on each of these.

Reals and the interval domain. The reals are isomorphic to the space
of maximal elements of the interval domain. Thus we postulate two maps
to interval and of interval which convert real numbers to maximal inter-
vals and vice versa. Because in the implementation we happen to use the same
datatype to represent both reals and intervals, the conversions are just identi-
ties. In fact, we could have avoided them altogether if we defined reals to be the
maximal intervals, but we did not do that because we wanted to keep a clear dis-
tinction between the abstract characterization of reals and their representation
as maximal intervals.

Continuity of arithmetic operations. Our implementation represents real
numbers (and real intervals) as chains of dyadic intervals converging to them.
Thus to compute f(x) for a continuous f : R → R and x ∈ R represented by
a chain d0 ≤ d1 ≤ · · · in ID, we need to find a chain e0 ≤ e1 ≤ · · · in ID
whose supremum is f(x). Ideally, ei should depend only on di because that
allows us to compute the i-th approximation of the result by computing only
the i-th approximation of the argument. What we are asking for is a particular
form of continuity of f , namely that there exist a continuous g : ID → ID such
that f(supi di) = supi(g(di)) for every chain (di)i whose supremum is in R.
In this case we can take ei = g(di). We defer a general discussion about this
kind of continuity for general functions to another occasion, and just observe
that the basic arithmetic operations are indeed just extensions of corresponding
(approximate) operations on dyadic intervals, as is stated in the theory Real.

Completeness. We express completeness of reals with a variant of Cauchy
completeness. Say that a sequence (ai)i is Cauchy if there exists a decreasing
sequence r0 ≥ r1 ≥ r2 ≥ · · · of non-negative numbers whose infimum is 0 and
such that |am − ak| ≤ rk whenever k ≤ m. We call r the remainder sequence
because it tells us how far from the limit the terms of the sequence are. Further,
say that x is an accumulation point of (ai)i if for every k the infimum of the
sequence (|x−ai|)i≥k is zero. Now completeness of R means that every Cauchy
sequence of reals has an accumulation point (which turns out to be unique).
However, we still have a choice as to what it means for a sequence of non-
negative numbers (ai)i to have infimum zero:

1. for every ε > 0 there exists k such that ai ≤ ε for all i ≥ k, or

2. if x ≤ ai for all i then x ≤ 0.

The first definition is the usual constructive one, but we use the second one
because it is better suited for the order-theoretic approach we have taken. The

11

axiom lim, which states that every Cauchy sequence has an accumulation point,
translates to a specification for a function

val lim : (I.nat → s) → (I.nat → s) → s

which computes the limit from a sequence and its remainder sequence. Had
we taken the first definition of infimum above, lim would also require as input
a realizer telling us how fast the reminder sequence decreases to zero. This is
something we want to avoid, as it can be quite cumbersome to compute such
information, and the implementation of lim does not need it anyway.

Linear order. The inclusion of OrderedField into the theory of reals axiom-
atizes the lattice structure in terms of the operations min and max. The order
relation x ≤ y is defined as max x y = y, and the strict order < is defined
as the negation of ≤. From this RZ determines that ≤ and < are stable and
do not carry any computational content. However, we can do better and pos-
tulate partial comparison which takes values in the domain of partial booleans
PartialBoolean, see Appendix C. The axiom less states that for all x and y
there exists a partial boolean b which is true when x < y and false when x > y.
The axiom does not state what the value of b should be when x = y, but it can
be easily seen that the only (computable) option is the undefined value. RZ
translates the axiom into a specification for a map less computing a partial
boolean b from x and y. Such a b is represented by a chain of values ‘undefined
that may eventually become either ‘ff or ‘tt. At stage k, less compares the
k-th approximations of x and y with the help of cmp less from DyadicInterval
to see if it can reach a decision about the ordering of x and y.

Archimedean property. The last axiom approx to asserts the Archimedean
property of reals, namely that dyadic rationals form a dense subset of the reals.
The translation is a specification for a function approx to which accepts a
real x and a natural number k, and computes a dyadic 2−k-approximation of x.
This can be implemented, and the axiom validated, by a search procedure which
computes the stages of x until it finds an approximation whose width is no wider
than 2−k. We employ Markov’s principle to prove that the search terminates:
since it is impossible for all approximations of x to be wider than 2−k, there is
one which is no wider than 2−k.

4 Discussion

Implementation and performance. The entire axiomatization consists of
about 600 lines of code describing rings, ordered rings and fields, posets, cusls,
poset completions, interval arithmetic and real numbers. The Objective Caml
implementation reaches about 800 lines of code and includes modules for inter-
facing with a large integer library, dyadic rationals, dyadic and real intervals,
partial booleans and real number.

We called our implementation of reals Era, which stands for Exact Real
Arithmetic. We hoped, but did not expect the performance of Era to rival that
of other libraries. Indeed, initial measurements show that iRRAM is about 40
times faster than Era. Such a large difference can be partially explained by
the fact that C++ generally compiles to more efficient code than Objective

12

Caml, and that iRRAM is a much more mature and highly optimized piece of
software. The gap ought to decrease in the future, as we find ways to improve
the performance of Era.

Nevertheless, we have achieved our main goal, namely to demonstrate that
there is a harmony between theory and practice. Era is a direct implementation
of a standard domain-theoretic construction of reals as the maximal elements of
interval domain which uses data structures and algorithms that closely match
those of iRRAM and RealLib: computations on reals are performed in stages,
where each stage computes with dyadic intervals and is entirely independent of
previous stages. Era does not suffer from unacceptable memory consumption
because it does not store extremely large computation trees directly. Instead, a
possibly large computation such as a sum is stored as a closure which generates
the computation tree on demand.

A lesson for theoreticians. The interplay between theory and practice con-
tains an interesting lesson about how practitioners take advantage of validity of
extra-logical axioms. The first such example is Markov principle, which states
that under suitable circumstances missing information can be recovered. In our
case this applies to chains of intervals converging to a real: we need not store ex-
plicit information about the speed of convergence, because it may be recovered
by computing successive terms of a chain until they become sufficiently precise.
This is a welcome optimization that helps save both space and time. Note how-
ever that actually applying Markov principle and searching for good enough an
approximation is expensive and undesirable. So we avoid doing this, except at
the top level when a final result must be computed to a desired precision.

The second extra-logical axiom which practitioners essentially rely upon is a
continuity principle stating that, in a suitable sense, “all (computable) functions
are continuous”. Among other things this implies that a modulus-of-continuity
functional is computable. However, in practice such a functional is horribly
inefficient and should never be used. Instead we use the principle to our ad-
vantage by representing functions so that their continuity is explicitly exposed,
which then allows us to compute more efficiently. Specifically, we represent real
functions as mappings from dyadic intervals to dyadic intervals, which allows for
efficient computation by independent stages of approximation. The continuity
principle guarantees that any function of interest can be so represented.

The lesson for theoreticians to observe here is that Markov principle and
continuity principle are never used explicitly in a computation, but rather im-
plicitly in the choice of data structures. Thus Markov principle allows us to
remove information about the speed of convergence from the representation of a
real number, while the continuity principle allows us to augment the representa-
tion of a real function with information about its action on intervals. Therefore,
in order to aid practical implementations, we should develop constructive and
computable mathematics which avoids explicit uses of extra-logical axioms, but
does consider the possibility of them being true when mathematical structures
are defined and constructed.

RZ and Coq. RZ is similar to various tools for formalization of mathemat-
ics, most notably to the proof assistant Coq [6], which not only allows one
to axiomatize theories, but also to construct models and formally prove their

13

properties. Coq is able to extract trusted code from proofs, which gives us a
specification as well as its implementation. While this has turned out to be
a very successful technique in many respects, current code-extraction meth-
ods produce only purely functional code which does not compare favorably to
efficient hand-crafted code at all. The goal of RZ was to give programmers a
light-weight tool which would allow them to connect the theoretical models with
implementations, but would not force them to write proofs instead of programs.

In fact, one could use RZ to axiomatize theories and then proceed with
their implementation within Coq. In this case RZ can be seen as a tool which
automatically separates the computationally relevant and irrelevant parts of a
theory,10 something that is done by hand in Coq. Another possibility would be
to manually write code and then use a proof assistant such as Coq, to prove
that the code actually satisfies the RZ specification.

Future directions. The current Era implementation is only an initial pro-
totype which we intend to extend and improve. The Objective Caml module
system allows us to easily experiment with various libraries for big integers and
interval arithmetic, as well as to mix floating point computations with exact
ones. These are all possibilities we wish to explore.

The realizability model on which RZ is based allows us to use computational
effects in the implementation (which we do, for example to cache the current
approximation of a real), but it does not allow effects to be exposed at the level
of logic. Thus we cannot reasonably axiomatize an operation which changes a
real number in-place. We would like to extend the input language in such a way
that it would allow us to express exceptions, mutable values, and possibly other
effects.

Lastly, we observe that practical implementations lag behind theoretical
developments in constructive and computable mathematics, as they usually deal
just with numbers and functions on them. In the future we would like to see
data structures for manifolds, Hilbert spaces, vector analysis, etc. Hopefully,
tools like like RZ will help manage the complexity of the task.

References

[1] GNU Multiple Precision Arithmetic Library. http://gmplib.org/.

[2] Andrej Bauer. The Realizability Approach to Computable Analysis and
Topology. PhD thesis, Carnegie Mellon University, 2000.

[3] Andrej Bauer. Realizability as the connection between constructive and
computable mathematics. Available at http://math.andrej.com, 2005.
Tutorial lecture at Computability and Complexity in Analysis 2005, Kyoto,
Japan.

[4] Andrej Bauer and Christopher Stone. RZ. http://math.andrej.com/rz/.

[5] Andrej Bauer and Christopher Stone. RZ: a tool for bringing constructive
and computable mathematics closer to programming practice. In Com-
putability in Europe 2007, June 2007.

10These are the kinds Set and Prop in Coq, respectively

14

[6] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Pro-
gram Development. Springer, 2004.

[7] Vasco Brattka, Matthias Schröder, Klaus Weihrauch, and Ning Zhong.
Computability and complexity in analysis. Informatik Berichte 302, Fer-
nUniversität in Hagen, Hagen, August 2003. Proccedings, International
Conference, CCA 2003, Cincinnati, USA, August 28–30, 2003.

[8] Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zimmer-
mann. The MPFR Library. INRIA. http://www.mpfr.org/.

[9] Branimir Lambov. The RealLib Project. BRICS, University of Aarhus.
http://www.brics.dk/ barnie/RealLib/.

[10] Branimir Lambov. RealLib: An efficient implementation of exact real arith-
metic. Mathematical Structures in Computer Science, 17(1):81–98, 2007.

[11] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme
Vouillon. The Objective Caml system, documentation and user’s manual -
release 3.08. Technical report, INRIA, July 2004.

[12] John Longley. Matching typed and untyped realizability. Electr. Notes
Theor. Comput. Sci., 23(1), 1999.

[13] Ramon Moore. Interval Analysis. Automatic Computation. Prentice Hall,
1966.

[14] Norbert Müller. iRRAM – Exact arithmetic in C++. Universität Trier.
http://www.informatik.uni-trier.de/iRRAM/.

[15] Norbert Th. Müller. Towards a real Real RAM: a prototype using C++.
In Ker-I Ko, Norbert Müller, and Klaus Weihrauch, editors, Computability
and Complexity in Analysis, pages 59–66. Universität Trier, 1996. Second
CCA Workshop, Trier, August 22–23, 1996.

[16] E. Post. Recursive unsolvability of a problem of Thue. The Journal of
Symbolic Logic, 12:1–11, 1947.

[17] Michel Quercia. Numerix: Big Integer Library, version 0.22. INRIA.
http://pauillac.inria.fr/~quercia/.

[18] D.S. Scott. Lattice theory, datatypes and semantics. In Formal semantics
of programming languages, pages 66–106. Prentice-Hall, 1972.

[19] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics, An
Introduction, Vol. 1. Number 121 in Studies in Logic and the Foundations
of Mathematics. North-Holland, 1988.

[20] Klaus Weihrauch. Computable Analysis. Springer, Berlin, 2000.

[21] Chee K. Yap. Theory of real computation according to EGC, 2006. To
appear in LNCS Volume based on the Dagstuhl Seminar “Reliable Imple-
mentation of Real Number Algorithms: Theory and Practice”, Jan 8-13,
2006.

15

A Rings and Fields

Definition CommutativeGroup :=

thy

Parameter s : Set.

Parameter zero : s.

Parameter add : s → s → s.

Parameter neg : s → s.

Definition sub (x y : s) := add x (neg y).

Implicit Type x y z : s.

Axiom add_associative: ∀ x y z, add x (add y z) = add (add x y) z.

Axiom add_commutative: ∀ x y, add x y = add y x.

Axiom zero_neutral: ∀ x, add x zero = x.

Axiom neg_inverse: ∀ x, add x (neg x) = zero.

end.

Definition CommutativeRingWithUnit :=

thy

include CommutativeGroup.

Implicit Type x y z : s.

Parameter one : s.

Parameter mul : s → s → s.

Axiom nontrivial: ¬ (zero = one).

Axiom mul_associative: ∀ x y z, mul (mul x y) z = mul x (mul y z).

Axiom mul_commutative: ∀ x y, mul x y = mul y x.

Axiom one_neutral: ∀ x, mul one x = x.

Axiom distributive: ∀ x y z, mul x (add y z) = add (mul x y) (mul x z).

Definition nonzero := { x | ¬ (x = zero) }.
end.

Definition OrderedRing :=

thy

include CommutativeRingWithUnit.

Implicit Type x y z : s.

Parameter max : s → s → s.

Definition min x y := neg (max (neg x) (neg y)).

Axiom max_idempotent: ∀ x, max x x = x.

Axiom max_commutative: ∀ x y, max x y = max y x.

Axiom max_associative: ∀ x y z, max x (max y z) = max (max x y) z.

Definition leq x y := (max x y = y).

Definition lt x y := ¬ (leq y x).

Definition positive := { x | lt zero x }.
Axiom max_add: ∀ x y z, add (max x y) z = max (add x z) (add y z).

Axiom max_mul: ∀ x y z, leq zero z → mul (max x y) z = max (mul x z) (mul y z).

Axiom max_zero_one : max zero one = one.

Definition abs x := max x (neg x).

Definition dist x y := abs (sub x y).

end.

Definition DecidableOrderedRing :=

thy

include OrderedRing.

Implicit Type x y : s.

Axiom cmp: ∀ x y, [‘less : lt x y] ∨ [‘equal : x = y] ∨ [‘greater : lt y x].

Axiom sgn: ∀ x, [‘negative : lt x zero] ∨ [‘zero : x = zero] ∨ [‘positive : lt zero x].

Axiom eq: ∀ x y, [‘True : x = y] ∨ [‘False : ¬ (x = y)].

Axiom neq: ∀ x y, [‘False : x = y] ∨ [‘True : ¬ (x = y)].

end.

Definition OrderedField :=

thy

include OrderedRing.

16

Parameter inv : nonzero → nonzero.

Axiom inv_inverse: ∀ x : nonzero, mul x (inv x) = one.

Definition div (x : s) (y : nonzero) := mul x (inv y).

end.

B Integers and Dyadic Rationals

Definition Integer :=

thy

include DecidableOrderedRing.

Definition nat := { x : s | leq zero x }.
Implicit Type x y z : s.

Implicit Type k n : nat.

Definition succ n := (add one n) : nat.

Definition two := succ (succ zero).

Axiom induction :

∀ M : thy Parameter p : nat → Prop. end,

M.p zero → (∀ k, M.p k → M.p (succ k)) → ∀ k, M.p k.

Definition quotient x (y : nonzero) :=

the z, let t = sub x (mul z y) in leq zero t ∧ lt t (abs y).

Parameter pow2 : nat → nat.

Axiom pow2_is_power_of_two:

pow2 zero = one ∧ ∀ k, pow2 (succ k) = mul two (pow2 k).

Definition shift_right x (k : nat) := quotient x (pow2 k).

Definition shift_left x (k : nat) := mul x (pow2 k).

Axiom magnitude:

∀ x : nonzero, ∃ k : nat,

leq (pow2 k) (abs x) ∧ lt (abs x) (pow2 (succ k)).

end.

Definition Dyadic (I : Integer) :=

thy

include DecidableOrderedRing.

Definition two := add one one.

Implicit Type x y z w : s.

Implicit Type k : I.nat.

Parameter of_integer: I.s → s.

Axiom of_integer_hom:

of_integer I.zero = zero ∧ of_integer I.one = one ∧
∀ m n : I.s, (of_integer (I.add m n) = add (of_integer m) (of_integer n)).

Parameter pow2: I.s → s.

Axiom pow2_is_power_of_two:

pow2 I.zero = one ∧ pow2 I.one = two ∧
∀ m n : I.s, pow2 (I.add m n) = mul (pow2 m) (pow2 n).

Definition half := the x, mul x two = one.

Definition halve x := mul x half.

Axiom magnitude:

∀ x : nonzero, ∃ k : I.s,

leq (pow2 k) (abs x) ∧ lt (abs x) (pow2 (I.add I.one k)).

Definition up k x := add x (pow2 (I.neg k)).

Definition down k x := sub x (pow2 (I.neg k)).

Definition approx_down k x y := leq x y ∧ leq y (up k x).

Definition approx_up k x y := leq (down k x) y ∧ leq y x.

Axiom add_approx_down: ∀ k x y, ∃ z, approx_down k z (add x y).

Axiom add_approx_up: ∀ k x y, ∃ z, approx_up k z (add x y).

Axiom sub_approx_down: ∀ k x y, ∃ z, approx_down k z (sub x y).

Axiom sub_approx_up: ∀ k x y, ∃ z, approx_up k z (sub x y).

Axiom mul_approx_down: ∀ k x y, ∃ z, approx_down k z (mul x y).

Axiom mul_approx_up: ∀ k x y, ∃ z, approx_up k z (mul x y).

Axiom div_approx_down:

∀ k x, ∀ y : positive, ∃ z, leq (mul y z) x ∧ leq x (mul y (up k z)).

17

Axiom div_approx_up:

∀ k x, ∀ y : positive, ∃ z, leq (mul y (down k z)) x ∧ leq x (mul y z).

end.

C Posets

Definition Poset (I : Integer) :=

thy

Parameter s : Set.

Implicit Type x y z : s.

Parameter below : s → s → Stable.

Axiom below_reflexive : ∀ x, below x x.

Axiom below_transitive : ∀ x y z, below x y ∧ below y z → below x z.

Axiom below_antisymmetric : ∀ x y, below x y ∧ below y x → x = y.

Definition maximal := { x | ∀ y, below x y → x = y }.
Definition chain := { a : I.nat → s | ∀ k : I.nat, below (a k) (a (I.succ k)) }.
Definition upper_bound (a : I.nat → s) x := ∀ k : I.nat, below (a k) x.

Definition supremum (a : chain) (x : s) :=

(upper_bound a x) ∧ (∀ y, upper_bound a y → below x y).

Definition is_monotone (f : s → s) := ∀ x y, below x y → below (f x) (f y).

Definition is_continuous (f : s → s) :=

is_monotone f ∧
∀ x, ∀ a : chain, supremum a x → supremum (fun k : I.nat ⇒ f (a k)) (f x).

Definition monotone := { f : s → s | is_monotone f }.
Definition continuous := { f : s → s | is_continuous f }.
Definition monotone2 :=

{ f : s → s → s | ∀ x, is_monotone (f x) ∧ is_monotone (fun y ⇒ f y x) }.
Definition continuous2 :=

{ f : s → s → s | ∀ x, is_continuous (f x) ∧ is_continuous (fun y ⇒ f y x) }.
end.

Definition DecidableCusl (I : Integer):=

thy

include Poset I.

Implicit Type x y z : s.

Parameter undefined : s.

Axiom undefined_is_least: ∀ x, below undefined x.

Axiom cmp_below :

∀ x y,

[‘below : below x y] ∨ [‘above : below y x] ∨
[‘incomparable : ¬ (below x y ∨ below y x)].

Definition inconsistent x y := ∀ z, ¬ (below x z ∧ below y z).

Definition consistent x y := ¬ (inconsistent x y).

Axiom join :

∀ x y, consistent x y → ∃ z,

below x z ∧ below y z ∧ (∀ w : s, below x w ∧ below y w → below z w).

end.

Definition CompletePoset (I : Integer):=

thy

include Poset I.

Axiom sup : ∀ a : chain, ∃ x : s, supremum a x.

end.

Definition ChainCompletion

(I : Integer)

(P : Poset I) :=

thy

include CompletePoset I.

Parameter incl : P.s → s.

Definition incl_chain (a : P.chain) := (fun n : I.nat ⇒ incl (a n)) : chain.

18

Axiom incl_injective : ∀ x y : P.s, incl x = incl y → x = y.

Axiom incl_monotone : ∀ x y : P.s, P.below x y → below (incl x) (incl y).

Axiom incl_continuous:

∀ x : P.s, ∀ a : P.chain, P.supremum a x → supremum (incl_chain a) (incl x).

Axiom stage : ∀ x : s, ∃ a : P.chain, supremum (incl_chain a) x.

Definition extend (f : P.continuous) :=

the g : continuous, ∀ x : P.s, incl (f x) = g (incl x).

Definition extend2 (f : P.continuous2) :=

the g : continuous2, ∀ x y : P.s, incl (f x y) = g (incl x) (incl y).

Axiom make : ∀ a : P.chain, ∃ x : s, supremum (incl_chain a) x.

end.

Definition PartialBoolean (I : Number.Integer) :=

thy

include CompletePoset I.

Parameter undefined tt ff : s.

Axiom below_is_flat : ∀ x y : s, below x y ↔ (¬ (x = undefined) → x = y).

Axiom decide : ∀ x : s, ¬ (x = undefined) → [‘tt : x = tt] ∨ [‘ff : x = ff].

end.

D Dyadic and Real Intervals

Definition DyadicInterval

(I : Integer)

(D : Dyadic I) :=

thy

include DecidableCusl I.

Definition interval := { x : s | ¬ (x = undefined) }.
Implicit Type x y z : s.

Implicit Type u v t : D.s.

Parameter make : [l : D.s] → { u : D.s | D.lt l u } → interval.

Parameter lower upper : interval → D.s.

Axiom endpoints: ∀ u v, D.lt u v → lower (make u v) = u ∧ upper (make u v) = v.

Definition ball (c : D.s) (r : D.positive) := make (D.sub c r) (D.add c r).

Definition center (x : interval) := D.halve (D.add (upper x) (lower x)).

Definition radius (x : interval) := D.halve (D.sub (upper x) (lower x)).

Definition elem u x := ¬ (x = undefined) → D.leq (lower x) u ∧ D.leq u (upper x).

Axiom below_is_superset:

∀ x y, below x y ↔ (∀ u : D.s, elem u y → elem u x).

Parameter normalize : interval → interval.

Axiom tolerance :

∃ t : D.positive, ∀ x : interval,

below (normalize x) x ∧ D.leq (radius (normalize x)) (D.mul t (radius x)).

Definition below_approx x y := ¬ (x = undefined) → below (normalize x) y.

Definition contains_image z (f : D.s → D.s → D.s) x y :=

∀ u v : D.s, elem u x ∧ elem v y → elem (f u v) z.

Definition image_approx z (f : D.s → D.s → D.s) x y :=

contains_image z f x y ∧
(∀ z’ : s, contains_image z’ f x y → below_approx z’ z).

Axiom add : ∀ x y, ∃ z, image_approx z D.add x y.

Axiom sub : ∀ x y, ∃ z, image_approx z D.sub x y.

Axiom mul : ∀ x y, ∃ z, image_approx z D.mul x y.

Axiom neg : ∀ x, ∃ y, ∀ u, (elem u x ↔ elem (D.neg u) y).

Axiom min : ∀ x y, ∃ z, image_approx z D.min x y.

Axiom max : ∀ x y, ∃ z, image_approx z D.max x y.

Definition scale (u : D.nonzero) (x : interval) :=

let v = D.mul u (lower x) in let w = D.mul u (upper x) in

make (D.min v w) (D.max v w).

Definition contains_div z x y :=

¬ (z = undefined) →
∀ u, ∀ v : D.nonzero, elem u x ∧ elem v y → elem u (scale v z).

19

Axiom div :

∀ x y, ∃ z,

contains_div z x y ∧ (∀ z’ : s, contains_div z’ x y → below_approx z’ z).

Definition less x y := D.lt (upper x) (lower y).

Axiom cmp_less :

∀ x y, [‘less : less x y] ∨ [‘greater : less y x] ∨
[‘incomparable : ¬ (less x y) ∧ ¬ (less y x)].

end.

Definition RealInterval

(I : Integer)

(D : Dyadic I)

(ID : DyadicInterval I D) := ChainCompletion I ID.

E Real Numbers

Definition Real

(I : Integer)

(D : Dyadic I)

(ID : DyadicInterval I D)

(IR : RealInterval I D ID) :=

thy

include OrderedField.

Implicit Type x y z : s.

Implicit Type k m n : I.nat.

Parameter of_interval : IR.maximal → s.

Parameter to_interval : s → IR.maximal.

Axiom reals_maximal:

(∀ x, of_interval (to_interval x) = x) ∧ ∀ u : IR.s, to_interval (of_interval u) = u.

Axiom stage : ∀ x, ∃ a : ID.chain, IR.supremum (IR.incl_chain a) (to_interval x).

Definition continuous (f : s → s) :=

∃ g : ID.continuous, ∀ x, to_interval (f x) = IR.extend g (to_interval x).

Definition continuous2 (f : s → s → s) :=

∃ g : ID.continuous2, ∀ x y,

to_interval (f x y) = IR.extend2 g (to_interval x) (to_interval y).

Axiom add_interval : continuous2 add.

Axiom neg_interval : continuous neg.

Axiom sub_interval : continuous2 sub.

Axiom mul_interval : continuous2 mul.

Axiom min_interval : continuous2 min.

Axiom max_interval : continuous2 max.

Axiom abs_interval : continuous abs.

Axiom dist_interval: continuous2 dist.

Axiom div_interval :

∃ g : ID.continuous2, ∀ x, ∀ y : nonzero,

to_interval (div x y) = IR.extend2 g (to_interval x) (to_interval y).

Axiom inv_interval :

∃ g : ID.continuous, ∀ y : nonzero, to_interval (inv y) = IR.extend g (to_interval y).

Parameter of_integer:

∃ f : I.s → s,

f I.zero = zero ∧ f I.one = one ∧ ∀ x y : I.s, f (I.add x y) = add (f x) (f y).

Parameter of_dyadic : D.s → s.

Axiom of_dyadic_hom:

of_dyadic D.zero = zero ∧ of_dyadic D.one = one ∧
(∀ x y : D.s, of_dyadic (D.add x y) = add (of_dyadic x) (of_dyadic y)) ∧
(∀ x y : D.s, of_dyadic (D.mul x y) = mul (of_dyadic x) (of_dyadic y)) ∧
(∀ x y : D.s, of_dyadic (D.max x y) = max (of_dyadic x) (of_dyadic y)).

Definition infimum (a : I.nat → s) x :=

(∀ k, leq x (a k)) ∧ (∀ y, (∀ k, leq y (a k)) → leq y x).

Definition is_cauchy (a : I.nat → s) :=

∃ r : I.nat → s,

20

(∀ k, leq (r (I.succ k)) (r k)) ∧ (infimum r zero) ∧
(∀ k m, I.leq k m → leq (dist (a k) (a m)) (r k)).

Axiom lim :

∀ a : I.nat → s, is_cauchy a →
∃ x, ∀ k, infimum (fun m ⇒ dist (a (I.add k m)) x) zero.

Axiom less :

∀ x y, ∃ b : B.s, (lt x y ↔ b = B.tt) ∧ (lt y x ↔ b = B.ff).

Axiom approx :

∀ x, ∀ k, ∃ d : D.s, leq (dist x (of_dyadic d)) (of_dyadic (D.pow2 (I.neg k))).

end.

21

