
RZ: a Tool for Bringing
Constructive and Computable Mathematics

Closer to Programming Practice

Andrej Bauer1 and Christopher A. Stone2

1 Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
Andrej.Bauer@fmf.uni-lj.si

2 Computer Science Department, Harvey Mudd College, USA
stone@cs.hmc.edu

Abstract. Realizability theory can produce interfaces for the data struc-
ture corresponding to a mathematical theory. Our tool, called RZ, serves
as a bridge between constructive mathematics and programming by trans-
lating specifications in constructive logic into annotated interface code in
Objective Caml. The system supports a rich input language allowing de-
scriptions of complex mathematical structures. RZ does not extract code
from proofs, but allows any implementation method, from handwritten
code to code extracted from proofs by other tools.

Version of January 29, 2007.

1 Introduction

Given a description of a mathematical structure (constants, functions, relations,
and axioms), what should a computer implementation look like?

For simple cases, like groups, the answer is obvious. But for more interesting
structures, especially those arising in mathematical analysis, the answer is less
clear. How do we implement the real numbers (a Cauchy-complete Archimedean
ordered field)? Or choose the operations for a compact metric space or a space
of smooth functions? Significant research goes into finding satisfactory represen-
tations [1–4], and implementations of exact real arithmetic [5, 6] show that the
theory can be put into practice quite successfully.

Realizability theory can be used to produce a description of the data structure
(a code interface) directly corresponding to a mathematical specification. But
few programmers — even those with strong backgrounds in mathematics and
classical logic — are familiar with constructive logic or realizability.

We have therefore implemented a system, called RZ, to serve as a bridge
between the logical world and the programming world.3 RZ translates speci-
fications in constructive logic into standard interface code in a programming
language (currently Objective Caml [7], but other languages could be used).
3 RZ is publicly available for download at http://math.andrej.com/rz/, together

with an extended version of this paper.

The constructive part of the original specification turns into interface code,
listing types and values to be implemented. The rest becomes assertions about
these types and values. The assertions have no computational content, so their
constructive and classical meanings agree, and they can be understood by pro-
grammers and mathematicians accustomed to classical logic.

RZ was designed as a lightweight system supporting a rich input language.
Although transforming complete proofs into complete code is possible [8], we
have not implemented this. Other good systems, including Coq [9] and Min-
log [10], can extract programs from proofs. But they work best managing the
entire task, from specification to code generation. In contrast, interfaces gen-
erated by RZ can be implemented in any fashion as long as the assertions are
satisfied. Code can be written by hand, using imperative, concurrent, and other
language features rather than a “purely functional” subset. Or, the output can
serve as a basis for theorem-proving and code extraction using another system.

2 Typed realizability

RZ is based on typed realizability by John Longley [11]. This variant of realizabil-
ity corresponds most directly to programmers’ intuition about implementations.

We approach typed realizability and its relationship to real-world program-
ming by way of example. Suppose we are asked to design a data structure for
the set G of all finite simple directed graphs with vertices labeled by distinct
integers. A common representation is a pair of lists (`V , `A), where `V is the list
of vertex labels and `A is the adjacency list representing the arrows by pairing
the labels of each source and target. Thus we define the datatype of graphs as4

type graph = int list ∗ (int ∗ int) list

However, this is not a complete description of the representation, as there would
be representation invariants and conditions not expressed by the type, e.g., the
order in which vertices and arrows are listed is not important, each vertex and
arrow must be listed exactly once, and the source and target of each arrow must
appear in the list of vertices.

Thus, to implement the mathematical set G, we must not only decide on
the underlying datatype graph, but also determine what values of that type
represent which elements of G. As we shall see next, this can be expressed either
using a realizability relation or a partial equivalence relation (per).

2.1 Modest sets and pers

We now define typed realizability as it applies to OCaml. Other general-purpose
programming languages could be used instead.

4 We use OCaml notation in which t list classifies finite lists of elements of type t,
and t1 ∗ t2 classifies pairs containing a value of type t1 and and value of type t2.

2

Let Type be the collection of all (non-parametric) OCaml types. To each type
t ∈ Type we assign the set [[t]] of values of type t that behave functionally in the
sense of Longley [12]. Such values are represented by terminating expressions
that do not throw exceptions or return different results on different invocations.
They may use exceptions, store, and other computational effects, provided they
appear functional from the outside; a useful example using computational effects
is presented in Section 7.4. A functional value of function type may diverge as
soon as it is applied. The collection Type with the assignment of functional values
[[t]] to each t ∈ Type forms a typed partial combinatory algebra (TPCA).

Going back to our example, we see that an implementation of directed graphs
G specifies a datatype |G| = graph together with a realizability relation G
between G and [[graph]]. The meaning of (`V , `A) G G is “OCaml value (`V , `A)
represents/realizes/implements graph G”. Generalizing from this, we define a
modest set to be a triple A = (〈A〉, |A|,A) where 〈A〉 is the underlying set,
|A| ∈ Type is the underlying type, and A is a realizability relation between [[|A|]]
and 〈A〉, satisfying (1) totality: for every x ∈ 〈A〉 there is v ∈ [[|A|]] such that
v A x, and (2) modesty: if u A x and u A y then x = y. The support of
A is the set ‖A‖ = {v ∈ [[|A|]] | ∃x∈ 〈A〉 . v A x} of those values that realize
something. We define the relation ≈A on [[|A|]] by

u ≈A v ⇐⇒ ∃x∈ 〈A〉 . (u A x ∧ v A x) .

From totality and modesty of A it follows that ≈A is a per, i.e., symmetric
and transitive. Observe that ‖A‖ = {v ∈ [[|A|]] | v ≈A v}, whence ≈A restricted
to ‖A‖ is an equivalence relation. In fact, we may recover a modest set up to
isomorphism from |A| and ≈A by taking 〈A〉 to be the set of equivalence classes
of ≈A, and v A x to mean v ∈ x.

The two views of implementations, as modest sets (〈A〉, |A|,A), and as pers
(|A|,≈A), are equivalent.5 We concentrate on the view of modest sets as pers.
They are more convenient to use in RZ because they refer only to types and
values, as opposed to arbitrary sets. Nevertheless, it is useful to understand how
modest sets and pers arise from natural programming practice.

Pers form a category whose objects are pairs A = (|A|,≈A) where |A| ∈ Type
and ≈A is a per on [[|A|]]. A morphism A → B is represented by a function
v ∈ [[|A| → |B|]] such that, for all u, u′ ∈ ‖A‖, u ≈A u′ =⇒ v u ≈B v u′.
Two such functions v and v′ represent the same morphism if, for all u, u′ ∈ ‖A‖,
u ≈A u′ implies v u ≈B v′ u′.

The category of pers has a very rich structure, namely that of a regular locally
cartesian closed category [13]. This suffices for the interpretation of first-order
logic and (extensional) dependent types [14].

Not all pers are decidable, i.e., there may be no algorithm for deciding when
two values are equivalent. Examples include implementations of semigroups with
an undecidable word problem [15] and implementations of computable real num-
bers (which might be realized by infinite Cauchy sequences).
5 And there is a third view, as a partial surjection δA : ⊆[[|A|]] � 〈A〉, with δA(v) = x

when v A x. This is how realizability is presented in Type Two Effectivity [1].

3

Underlying types of realizers:

|>| = unit |⊥| = unit

x = y	= unit	φ ∧ ψ	=	φ	×	ψ				
φ⇒ ψ	=	φ	→	ψ		φ ∨ ψ	= ‘or0 of	φ0	+ ‘or1 of	φ1
∀x:A. φ	=	A	→	φ		∃x:A. φ	=	A	×	φ

Realizers:

() >
() x = y iff x = y
(t1, t2) φ ∧ ψ iff t1 φ and t2 ψ
t φ⇒ ψ iff for all u ∈ |φ|, if u φ then t u ψ
‘or0 t φ ∨ ψ iff t φ
‘or1 t φ ∨ ψ iff t ψ
t ∀x:A. φ(x) iff for all u ∈ |A|, if u A x then t u φ(x)
(t1, t2) ∃x:A. φ(x) iff t1 A x and t2 φ(x)

Fig. 1. Realizability interpretation of logic (outline)

2.2 Interpretation of logic

In the realizability interpretation of logic, each formula φ is assigned a set of real-
izers, which can be thought of as computations that witness the validity of φ. The
situation is somewhat similar, but not equivalent, to the propositions-as-types
translation of logic into type theory, where proofs of a proposition correspond to
terms of the corresponding type. More precisely, to each formula φ we assign an
underlying type |φ| of realizers, but unlike the propositions-as-types translation,
not all terms of type |φ| are necessarily valid realizers for φ, and some terms
that are realizers may not correspond to any proofs, for example, if they denote
partial functions or use computational effects.

It is customary to write t φ when t ∈ [[|φ|]] is a realizer for φ. The underlying
types and the realizability relation are defined inductively on the structure
of φ; an outline is shown in Figure 1. We say that a formula φ is valid if it has
at least one realizer.

In classical mathematics, a predicate on a set X may be viewed as a subset
of X or a (possibly non-computable) function X → bool, where bool = {⊥,>}
is the set of truth values. Accordingly, since in realizability propositions are
witnessed by realizers, a predicate φ on a per A = (|A|,≈A) is a (possibly non-
computable) function φ : [[|A|]] × [[|φ|]] → bool that is strict (if φ(u, v) then
u ∈ ‖A‖) and extensional (if φ(u1, v) and u1 ≈A u2 then φ(u2, v)).

Suppose we have implemented the real numbers R as a per R = (real,≈R),
and consider ∀a:R. ∀b:R. ∃x:R. x3 + ax + b = 0. By computing according to
Figure 1, we see that a realizer for this proposition is a value r of type real→
real → real × unit such that, if t realizes a ∈ R and u realizes b ∈ R, then
r t u = (v, w) with v realizing a real number x such that x3 + ax + b = 0, and w
is trivial. (This can be “thinned” to a realizer of type real→ real→ real that

4

does not bother to compute w.) In essence, the realizer r computes a root of the
cubic equation. Note that r is not extensional, i.e., different realizers t and u for
the same a and b may result in different roots. To put this in another way, r
realizes a multi-valued function6 rather than a per morphism. It is well known
in computable mathematics that certain operations, such as equation solving,
are only computable if we allow them to be multi-valued. They arise naturally
in RZ as translations of ∀∃ statements.

Some propositions, such as equality and negation, have “irrelevant” realizers
free of computational content. Sometimes only a part of a realizer is compu-
tationally irrelevant. Propositions that are free of computational content are
characterized as the ¬¬-stable propositions. A proposition φ is said to be ¬¬-
stable, or just stable for short, when ¬¬φ ⇒ φ is valid. On input, one can specify
whether abstract predicates have computational content. On output, extracted
realizers go through a thinning phase, which removes irrelevant realizers.

Many structures are naturally viewed as families of sets, or sets depending on
parameters, or dependent types as they are called in type theory. For example, the
n-dimensional Euclidean space Rn depends on the dimension n ∈ N, the Banach
space C([a, b]) of uniformly continuous real functions on the closed interval [a, b]
depends on a, b ∈ R such that a < b, etc. In general, a family of sets {Ai}i∈I is
an assignment of a set Ai to each i ∈ I from an index set I.

In the category of pers the appropriate notion is that of a uniform family.
A uniform family of pers {Ai}i∈I indexed by a per I is given by an underlying
type |A| and a family of pers (≈Ai)i∈[[|I|]] that is strict (if u ≈Ai v then i ∈ ‖I‖)
and extensional (if u ≈Ai v and i ≈I j then u ≈Aj v).

We can also form the sum Σi∈IAi or product Πi∈IAi of a uniform family,
allowing an interpretation of (extensional) dependent type theory.

3 Specifications as signatures with assertions

In programming we distinguish between implementation and specification of a
structure. In OCaml these two notions are expressed with modules and module
types, respectively. A module defines types and values, while a module type
simply lists the types, type definitions, and values provided by a module. For a
complete specification, a module type must also be annotated with assertions
which specify the required properties of declared types and values.

The output of RZ consists of module specifications, each of which consists of
a module type plus assertions about its components. More specifically, a typical
specification may contain value declarations, type declarations and definitions,
module declarations, specification definitions, proposition declarations, and as-
sertions. The language of specifications is summarized in Figure 3.

The least familiar construct is the obligation assurex:τ, p in e which means
“in term e, let x be any element of [[τ]] that satisfies p”. An obligation is equiv-
alent to a combination of Hilbert’s indefinite description operator and a local
6 The multi-valued nature of the realizer comes from the fact that it computes any

one of many values, not that it computes all of the many values.

5

Types
τ ::= T | M.T Type names

| unit | τ1 × τ2 Unit and cartesian product
| τ1 → τ2 Function type
| ‘l1 of τ1 + · · ·+ ‘ln of τn Disjoint sum
| α Polymorphic types

Terms
e ::= x | M.x Term names

| funx:τ1 → e | e1 e2 Functions and application
| () | (e1, . . . , en) | pn e Tuples and projection
| ‘l e | (match e with ‘l1 x1 → e1 | · · · |‘ln xn → en) Injection and projection from a sum
| assurex:τ, p in e | assure p in e Obligations
| letx=e1 in e2 Local definitions

Propositions (negative fragment)
p ::= P | M.P Atomic proposition

| > | ⊥ | ¬p1 | p1 ∧ p2 | p1 ⇒ p2 | p1 ⇔ p2 Predicate logic
| match e with ‘l1 x1 ⇒ p1 | · · · |‘ln pn ⇒ en Propositional case
| funx:τ → p | p e Propositional functions and application
| e1≈s e2 | e:‖s‖ Pers and support
| e1=e2 (Observational) term equality
| ∀x:τ. p | ∀x:‖s‖. p Term quantifiers

Basic modest sets
s ::= S | s e

Modules
m ::= M | m.M Model names

| m1m2 Application of parameterized model

Proposition Kinds
Π ::= bool Classifier for propositions

| τ → Π Classifier for a predicate/relation

Specification elements
θ ::= val x : τ Value declaration

| type T Type declaration
| type T = τ Type definition
| module m : Σ Module declaration
| module typeS = Σ Specification definition
| predicate P : Π Proposition declaration
| assertion A : p Assertion

Specifications (module types with assertions)
Σ ::= S | m.S Specification names

| sig θ1 . . . θn end Specification elements
| functor (m:Σ1) → Σ2 Parameterized specification

Fig. 2. The syntax of specifications (Simplified)

6

definition, letx=(εx:τ. p) in e, where εx:τ. p means “any x ∈ [[τ]] such that p”.
The alternative form assure p in e stands for assure :unit, p in e.

Obligations arise from the fact that well-formedness of the input language
is undecidable; see Section 4. In such cases the system computes a realizability
translation, but also produces obligations. The programmer must replace each
obligation with a value satisfying the obligation. If such values do not exist, the
specification is unimplementable.

4 The Input Language

The input to RZ consists of one or more theories. A RZ theory is a generalized
logical signature with associated axioms, similar to a Coq module signature.
Theories describe models, or implementations. A summary of the input language
appears in Figure 4.

The term language includes introduction and elimination constructs for the
set level. For product sets we have tuples and projections (π1 e, π2 e, . . .), and
for function spaces we have lambda abstractions and application. One can inject
a term into a tagged union, or do case analyses on the members of a union. We
can produce an equivalence class or pick a representative from a equivalence class
(as long as what we do with it does not depend on the choice of representative).
We can produce a set of realizers or choose a representative from a given set
of realizers (as long as what we do with it does not depend on the choice of
representative). We can inject a term into a subset (if it satisfies the appropriate
predicate), or project an element out of a subset. Finally, the term language also
allows local definitions of term variables, and definite descriptions (as long as
there is a unique element satisfying the predicate in question).

From the previous paragraph, it is clear that checking the well-formedness of
terms is not decidable. RZ checks what it can, but does not attempt serious the-
orem proving. Uncheckable constraints remain as obligations in the final output,
and should be verified by other means before the output can be used.

5 Translation

Having shown the input and output languages for RZ, we briefly sketch the
translation from one to the other. A theory is translated to a specification,
where the theory elements are translated as follows.

5.1 Translation of sets and terms

A set declaration Parameter s : Set is translated to

type s

predicate (≈s) : s → s → bool

assertion symmetric_s : ∀ x:s, y:s, x ≈s y -> y ≈s x

assertion transitive_s : ∀ x:s, y:s, z:s, x ≈s y ∧ y ≈s z → x ≈s z

predicate ‖s‖ : s → bool

assertion support_def_s : ∀ x:s, x : ‖s‖ ⇔ x ≈s x

7

Propositions
ϕ, ρ ::= p | M.p Predicate names

| > | ⊥ | ¬ϕ1 | ϕ1∧ϕ2 | ϕ1∨ϕ2 | ϕ1⇒ϕ2 Predicate logic
| match e with l1 x1⇒ϕ1 | · · · |ln xn⇒ϕn Propositional case
| λx:s. ϕ | ϕ e Predicates and application
| e1 = e2 Term equality
| ∀x:s. ϕ | ∃x:s. ϕ | ∃!x:s. ϕ Term quantifiers

Sets
s ::= α | M.α Set names

| 1 | [x:s1]× s2 Unit and (dependent) cartesian product
| 0 | l1:s1 + l2:s2 Void and disjoint union
| [x:s1]→s2 (Dependent) function space
| λx:s1. s2 | s e Dependent set and application
| s

‹
ρ Set quotient by an equivalence relation

| {x:s | ρ} Subset satisfying a predicate
| rz s Realizers of a set

Terms
e ::= x | M.x Term names

| λx:s1. e | e1 e2 Function and application
| (e1, . . . , e2) | πn e Tuple and projection
| l e | (match e0 with l1 x1⇒e1 | l2 x2⇒e2) Injection and projection from a union
| [e]ρ | let [x]ρ =e1 in e2 Equivalence class and picking a representative
| rz e | let rz x = e1 in e2 Realized value and picking a realizer
| e : s Type coercion (e.g., in and out of a subset)
| ι x:s. ϕ Definite description
| letx=e1 in e2 Local definition

Models
M ::= m | M.m Model names

| M1 M2 Application of parameterized model

Proposition Kinds
Π ::= Prop | Stable Classifiers for all propositions/stable propositions

| Equiv(s) Classifier for stable equivalences on s
| [x:s]→Π Classifier for a predicate/relation

Set Kinds
κ ::= Set Classifier for a proper set

| [x:s]→κ Classifier for a dependent set

Theory Elements
θ ::= Definition x := e. | Definition α := s. Give a name to a term or set

| Definition p := ϕ. | Definition T :=Θ. Give a name to a predicate or theory
| Parameter x : s. | Parameter α : κ. Require an element in the given set or kind
| Parameter p : Π. | Parameter m : Θ. Require a predicate or model of the given sort
| Axiom p : ϕ. Axiom that must hold

Theories
Θ ::= T Theory name

| thy θ1, . . . , θn end Theory of a model
| [m:Θ1]→Θ2 Theory of a uniform family of models
| λm:Θ1. Θ2 | Θ m Parameterized theory and application

Fig. 3. Input Syntax (Simplified)

8

This says that the programmer should define a type s and a per ≈s on [[s]].
Here ≈s is not an OCaml value of type s → s → bool, but an abstract relation
on the set [[s]]× [[s]]. The relation may be uncomputable.

The translation of the declaration of a dependent set Parameter t : s→ Set
uses uniform families (Section 2.2). The underlying type t is non-dependent, but
the per ≈t receives an additional parameter x : [[s]].

A value declaration Parameter x : s is translated to

val x : s

assertion x_support : x : ‖s‖

which requires the definition of a value x of type s which is in the support of s.
A value definition Definition x := e where e is an expression denoting an

element of s is translated to

val x : s

assertion x_def : x ≈s e

The assertion does not force x to be defined as e, only to be equivalent to it with
respect to ≈s. This is useful, as often the easiest way to define a value is not the
most efficient way to compute it.

Constructions of sets in the input language are translated to corresponding
constructions of modest sets. We comment on those that are least familiar.

Subsets. Given a predicate φ on a per A, the sub-per {x : A | φ} has underlying
type |A| × |φ| where (u1, v1) ≈{x:A|φ} (u2, v2) when u1 ≈A u2, v1 φ(u1) and
v2 φ(u2). The point is that a realizer for an element of {x : A | φ} carries
information about why the element belongs to the subset.

A type coercion e : t can convert an element of the subset s = {x : t | φ(x)} to
an element of t. At the level of realizers this is achieved by the first projection,
which keeps a realizer for the element but forgets the one for φ(e). The opposite
type coercion e′ : s takes an e′ ∈ t and converts it to an element of the subset.
This is only well-formed when φ(e′) is valid. Then, if u t e′ and v φ(e′), a
realizer for e′ : s is (u, v). However, since RZ cannot in general know a v which
validates φ(e′), it emits the pair (u, (assure v:|φ|, φ u v in v)).

Quotients. Even though we may form quotients of pers by arbitrary equivalence
relations, only quotients by ¬¬-stable relations behave as expected.7 A stable
equivalence relation on a per A is the same thing as a partial equivalence rela-
tion ρ on |A| which satisfies ρ(x, y) =⇒ x ≈A y. Then the quotient A/ρ is the
per with |A/ρ| = |A| and x ≈A/ρ y ⇐⇒ ρ(x, y).

Luckily, it seems that many equivalence relations occurring in computable
mathematics are stable, or can be made stable with a little bit of manipulation.
For example, the coincidence relation on Cauchy sequences is expressed by a
∀∃∀ formula, but if we restrict to the rapid Cauchy sequences, it becomes a
7 The trouble is that from equality of equivalence classes [x]ρ = [y]ρ we may conclude

only ¬¬ρ(x, y) rather than the expected ρ(x, y).

9

(negative) ∀ formula. It is interesting that most practical implementations of
real numbers follow this line of reasoning and represent real numbers in way
that avoids annotating every sequence with its rate of convergence.

Translation of an equivalence class [e]ρ is quite simple, since a realizer for e
also realizes its equivalence class [e]ρ. The elimination term let [x]ρ =ξ in e,
means “let x be any element of ρ-equivalence class ξ in e”. It is only well-formed
when e does not depend on the choice of x, but this is something RZ cannot
check. Therefore, if u realizes ξ, RZ uses u as a realizer for x and emits an
obligation saying that the choice of a realizer for x does not affect e.

The underlying set of realizers. Another construction on a per A is the under-
lying per of realizers rz A, defined by |rz A| = |A| and u ≈rz A vu ∈ ‖A‖∧ ⇐⇒
u = v, where by u = v we mean observational equality of values u and v. An
element r ∈ rz A realizes a unique element rz r ∈ A. The elimination term
let rz x = e1 in e2, which means “let x be any realizer for e1 in e2”, is only
well-formed if e2 does not depend on the choice of x. This is an uncheckable
condition, hence RZ emits a suitable obligation in the output, and uses for x the
same realizer as for e1.

The construction rz A validates the Presentation Axiom (see Section 7.3).
In the input language it gives us access to realizers, which is useful because
many constructions in computable mathematics, such as those in Type Two
Effectivity [1], are explicitly expressed in terms of realizers.

5.2 Translation of propositions

The driving force behind the translation of logic is a theorem [16, 4.4.10] that
says that under the realizability interpretation every formula φ is equivalent to
one that says, informally speaking, “there exists u ∈ |φ|, such that u realizes φ”.
Furthermore, the formula “u realizes φ” is computationally trivial. The trans-
lation of a predicate φ then consists of its underlying type |φ| and the relation
u φ, expressed as a negative formula.

Thus an axiom Axiom A : φ in the input is translated to

val u : |φ|
assertion A : u φ

which requires the programmer to validate φ by providing a realizer for it. When
φ is a compound statement RZ computes the meaning as described in Figure 1.

In RZ we avoid the explicit realizer notation u φ in order to make the out-
put easier to read. A basic predicate declaration Parameter p : s→Prop is trans-
lated to a type declaration type ty p and a predicate declaration predicate p :
s → ty p→ bool together with assertions that p is strict and extensional.

Frequently we know that a predicate is stable, which can be taken into ac-
count when computing its realizability interpretation. For this purpose the input
language has the subkind Stable of Prop. When RZ encounters a predicate which
is declared to be stable, such as p : s→Stable, it does not generate a declaration
of ty p and it does not give p an extra argument.

10

Another special kind in RZ input language is the kind Equiv(s) of stable
equivalence relations on a set s. When an equivalence relation is declared with
Parameter p : Equiv(s), RZ will output assertions stating that p is strict, ex-
tensional, reflexive, symmetric and transitive.

6 Implementation

The RZ implementation consists of several sequential passes.
After the initial parsing, a type reconstruction phase checks that the input is

well-typed (and checks for well-formedness to the extent that it is easily decid-
able), and if successful produces an annotated result with all variables explicitly
tagged with types. The type checking phase uses a system of dependent types,
with limited subtyping (implicit coercions) for sum types and subset types.

Next the realizability translation is performed as described in Section 5, pro-
ducing interface code. The flexibility of the full input language (e.g., n-ary sum
types and dependent product types) makes the translation code fairly involved,
and so it is performed in a “naive” fashion whenever possible. The immediate
result of the translation is not easily readable.

Thus, up to four more passes simplify the output before it is displayed to
the user. A thinning pass removes all references to trivial realizers produced
by stable formulas. An optimization pass applies an ad-hoc collection of basic
logical and term simplifications in order to make the output more readable. Some
redundancy may remain, but in practice the optimization pass helps significantly.

Finally, the user can specify two optional steps occur. RZ can perform a
phase-splitting pass [17]. This is an experimental implementation of an transfor-
mation that can replace a functor (a relatively heavyweight language construct)
by parameterized types and/or polymorphic values.

The other optional transformation is a hoisting pass which moves obligations
in the output to top-level positions. Obligations appear in the output inside
assertions, at the point where an uncheckable property was needed. Moving these
obligations to the top-level make it easier to see exactly what one is obliged
to verify, and can sometimes make them easier to read, at the cost of losing
information about why the obligation was required at all.

7 Examples

In this section we look at several examples which demonstrate various points
of RZ. Unfortunately, serious examples from computable mathematics take too
much space8 and will have to be presented separately. The main theme is that
constructively reasonable axioms yield computationally reasonable operations.

8 The most basic structure in analysis (the real numbers) alone requires several oper-
ations and a dozen or more axioms.

11

7.1 Decidable sets

A set S is said to be decidable when, for all x, y ∈ S, x = y or ¬(x = y). In
classical mathematics all sets are decidable, but RZ requires an axiom

Parameter s : Set.

Axiom eq: ∀ x y : s, x = y ∨ ¬ (x = y).

to produce a realizer for equality

val eq : s → s → [‘or0 | ‘or1]

assertion eq : ∀ (x:‖s‖, y:‖s‖),
(match eq x y with

‘or0 ⇒ x ≈s y

| ‘or1 ⇒ ¬ (x ≈s y))

We read this as follows: eq is a function which takes arguments x and y of type s
and returns ‘or0 or ‘or1. If it returns ‘or0, then x≈s y, and if it returns ‘or1,
then ¬(x≈s y). In other words eq is a decision procedure.

7.2 Inductive types

To demonstrate the use of dependent types we show how RZ handles general in-
ductive types, also known as W-types or general trees [18]. Recall that a W-type
is a set of well-founded trees, where the branching types of trees are described by
a family of sets B = {T (x)}x∈S . Each node in a tree has a branching type x ∈ S,
which determines that the successors of the node are labeled by the elements
of T (x). Figure 4 shows an RZ axiomatization of W-types. The theory Branching

Parameter W : [B : Branching] →
thy

Parameter w : Set.

Parameter tree : [x : B.s] → (B.t x → w) → w.

Axiom induction:

∀ M : thy Parameter p : w → Prop. end,

(∀ x : B.s, ∀ f : B.t x → w,

((∀ y : B.t x, M.p (f y)) → M.p (tree x f))) →
∀ t : w, M.p t.

end.

Fig. 4. General inductive types

describes that a branching type consists of a set s and a set t depending on s.
The theory W is parameterized by a branching type B. It specifies a set w of
well-founded trees and a tree-forming operation tree with a dependent type
Πx∈B.s(B.t(x) → w) → w. The inductive nature of w is expressed with the ax-
iom induction, which states that for every property M.p, if M.p is an inductive

12

property then every tree satisfies it. A property is said to be inductive if a tree
tree x f satisfies it whenever all its successors satisfy it.

In the translation dependencies at the level of types and terms disappear.
A branching type is determined by a pair of non-dependent types s and t but
the per ≈t depends on [[s]]. The theory W turns into a signature for a functor
receiving a branching type B and returning a type w, and an operation tree
of type B.s → (B.t → w) → w. One can use phase-splitting to translate axiom
induction into a specification of a polymorphic function

induction : (B.s→ (B.t→ w) → (B.t→ α) → α) → w→ α,

which is a form of recursion on well-founded trees. Instead of trying to explain
what induction is supposed to do, we show a surprisingly simple, hand-written
implementation of W-types in OCaml. The reader may enjoy figuring out how
it works:

module W (B : Branching) = struct

type w = Tree of B.s * (B.t -> w)

let tree x y = Tree (x, y)

let rec induction f (Tree (x, g)) =

f x g (fun y -> induction f (g y))

end

7.3 Axiom of choice

RZ can help explain why a generally accepted axiom is not constructively valid.
Consider the Axiom of Choice:

Parameter a b : Set.

Parameter r : a → b → Prop.

Axiom ac: (∀ x : a, ∃ y : b, r x y) →
(∃ c : a → b, ∀ x : a, r x (c x)).

The relevant part of the output is

val ac : (a → b * ty_r) → (a → b) * (a → ty_r)

assertion ac :

∀ f:a → b * ty_r,

(∀ (x:‖a‖), let (p,q) = f x in p : ‖b‖ ∧ r x p q) →
let (g,h) = ac f in

g : ‖a → b‖ ∧ (∀ (x:‖a‖), r x (g x) (h x))

This requires a function ac which accepts a function f and computes a pair of
functions (g, h). The input function f takes an x:‖a‖ and returns a pair (p, q)
such that q realizes the fact that r x p holds. The output functions g and h
taking x:‖a‖ as input must be such that h x realizes r x (g x). Crucially, the
requirement g:‖a → b‖ says that g must be extensional, i.e., map equivalent
realizers to equivalent realizers. We could define h as the first component of f,
but we cannot hope to implement g in general because the second component
of f is not assumed to be extensional.

13

The Intensional Axiom of Choice allows the choice function to depend on
the realizers:

Axiom iac: (∀ x : a, ∃ y : b, r x y) →
(∃ c : rz a → b, ∀ x : rz a, r (rz x) (c x)).

Now the output is

val iac : (a → b * ty_r) → (a → b) * (a → ty_r)

assertion iac :

∀ f:a → b * ty_r,

(∀ (x:‖a‖), let (p,q) = f x in p : ‖b‖ ∧ r x p q) →
let (g,h) = iac f in

(∀ x:a, x : ‖a‖ → g x : ‖b‖) ∧ (∀ (x:‖a‖), r x (g x) (h x))

which is exactly the same as before, except that the troublesome requirement
g:‖a → b‖ turned into ∀x:a. (x:‖a‖ ⇒ g x:‖b‖), which is weaker. We can imple-
ment iac in OCaml as

let iac f = (fun x -> fst (f x)), (fun x -> snd (f x))

The Intensional Axiom of Choice is in fact just an instance of the usual Axiom
of Choice applied to rz A and B. Combined with the fact that rz A covers A,
this establishes the validity of Presentation Axiom [19], which states that every
set is an image of one satisfying the axiom of choice.

7.4 Modulus of Continuity

As a last example we show how certain constructive principles require the use
of computational effects. To keep the example short, we presume that we are
already given the set of natural numbers nat with the usual structure.

A type 2 functional is a map f : (nat→ nat) → nat. It is said to be continu-
ous if the output of f(a) depends only on an initial segment of the sequence a. We
can express the (non-classical) axiom that all type 2 functionals are continuous
in RZ as follows:

Axiom continuity: ∀ f : (nat → nat) → nat, ∀ a : nat → nat,

∃ k, ∀ b : nat → nat, (∀ m, m ≤ k → a m = b m) → f a = f b.

The axiom says that for any f and a there exists k ∈ nat such that f(b) = f(a) as
soon as the sequences a and b agree on the first k terms. The axiom is translated
to the specification

val continuity : ((nat → nat) → nat) → (nat → nat) → nat

assertion continuity :

∀ (f:‖(nat → nat) → nat‖, a:‖nat → nat‖),
let p = continuity f a in p : ‖nat‖ ∧
(∀ (b:‖nat → nat‖),

(∀ (m:‖nat‖), m ≤ p → a m ≈nat b m) → f a ≈nat f b)

14

which says that continuity f a is a number p such that f(a) = f(b) whenever
a and b agree on the first p terms. In other words, continuity is a modulus of
continuity functional. It cannot be implemented in a purely functional language,9

but with the use of store we can implement it in OCaml as

let continuity f a =

let p = ref 0 in

let a’ n = (p := max !p n; a n) in

f a’ ; !p

To compute a modulus for f at a, the program creates a function a′ which is just
like a except that it stores in p the largest argument at which it has been called.
Then f a′ is computed, its value is discarded, and the value of p is returned. The
program works because f is assumed to be extensional and must therefore not
distinguish between extensionally equal sequences a and a′.

8 Related Work

8.1 Coq

Coq provides complete support for theorem-proving and creating trusted code.
A common pattern of use is to write code in Coq’s functional language (val-
ues whose types are Sets), to state and prove theorems that the code behaves
correctly (where the theorems are Coq values whose types are Props), and then
have Coq extract correct code. In such cases, RZ is complementary to Coq; it can
clarify the constructive content of mathematical structures and hence suggest an
appropriate division between Coq’s Set and Prop. (We hope RZ will soon be
able to produce output in Coq syntax.)

8.2 Other tools

Komagata and Schmidt [8] describe a system that uses a similar realizability
translation to ours. Like Coq, the system translates formal proofs to programs.
An interesting technical difference is that the algorithm they use, attributed to
John Hatcliff, does thinning as it goes along, rather than making a separate pass.

8.3 Other Models of Computability

Many formulations of computable mathematics are based on realizability mod-
els [13], even though they were not initially developed, (nor are they usually
presented) within the framework of realizability: Recursive Mathematics [21] is
based on the original realizability by Turing machines [22]; Type Two Effectiv-
ity [1] on function realizability [23] and relative function realizability [24], while
topological and domain representations [25, 26] are based on realizability over the
9 There are models of λ-calculus which validate the choice principle AC2,0, but this

contradicts the existence of a modulus of continuity functional, see [20, 9.6.10].

15

graph model Pω [27]. A common feature is that they use models of computation
which are well suited for the theoretical studies of computability.

Approaches based on simple programming languages augmented with datatypes
for real numbers [28, 29] and topological algebras [2], and machines augmented
with (suitably chosen subsets of) real numbers [30–32] are motivated by issues
ranging from purely theoretical concerns about computability and complexity
to practical questions in computational geometry. RZ attempts to improve prac-
ticality by using an actual real-world programming language, and by providing
an input language which is rich enough to allow descriptions of involved mathe-
matical structures that go well beyond the real numbers.

Finally, we hope that RZ and, hopefully, its forthcoming applications, give
plenty of evidence for the practical value of Constructive Mathematics [33].

References

1. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)
2. Tucker, J., Zucker, J.I.: Computable functions and semicomputable sets on many-

sorted algebras. In Abramsky, S., Gabbay, D., Maibaum, T., eds.: Handbook of
Logic in Computer Science, Volume 5, Oxford, Clarendon Press (1998)

3. Blanck, J.: Domain representability of metric spaces. Annals of Pure and Applied
Logic 83 (1997) 225–247

4. Edalat, A., Lieutier, A.: Domain of differentiable functions. In Blanck, J., Brattka,
V., Hertling, P., Weihrauch, K., eds.: Computability and Complexity in Analysis.
(2000) CCA2000 Workshop, Swansea, Wales, September 17–19, 2000.

5. Müller, N.: The iRRAM: Exact arithmetic in C++. In Blanck, J., Brattka,
V., Hertling, P., Weihrauch, K., eds.: Computability and Complexity in Analy-
sis. (2000) 319–350 CCA2000 Workshop, Swansea, Wales, September 17–19, 2000.

6. Lambov, B.: RealLib: an efficient implementation of exact real arithmetic. In
Grubba, T., Hertling, P., Tsuiki, H., Weihrauch, K., eds.: Computability and Com-
plexity in Analysis. (2005) 169–175 Proccedings, Second International Conference,
CCA 2005, Kyoto, Japan, August 25–29, 2005.

7. Leroy, X., Doligez, D., Garrigue, J., Rémy, D., Vouillon, J.: The Objective Caml
system, documentation and user’s manual - release 3.08. Technical report, INRIA
(July 2004)

8. Komagata, Y., Schmidt, D.A.: Implementation of intuitionistic type theory and
realizability theory. Technical Report TR-CS-95-4, Kansas State University (1995)

9. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Springer (2004)

10. Benl, H., Berger, U., Schwichtenberg, H., Seisenberger, M., Zuber, W.: Proof theory
at work: Program development in the Minlog system. In Bibel, W., Schmidt, P.H.,
eds.: Automated Deduction: A Basis for Applications. Volume II, Systems and
Implementation Techniques. Kluwer Academic Publishers, Dordrecht (1998)

11. Longley, J.: Matching typed and untyped realizability. Electr. Notes Theor. Com-
put. Sci. 23(1) (1999)

12. Longley, J.: When is a functional program not a functional program? In: Interna-
tional Conference on Functional Programming. (1999) 1–7

13. Bauer, A.: The Realizability Approach to Computable Analysis and Topology.
PhD thesis, Carnegie Mellon University (2000)

16

14. Jacobs, B.: Categorical Logic and Type Theory. Elsevier Science (1999)
15. Post, E.: Recursive unsolvability of a problem of thue. The Journal of Symbolic

Logic 12 (1947) 1–11
16. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, An Introduction,

Vol. 1. Number 121 in Studies in Logic and the Foundations of Mathematics.
North-Holland (1988)

17. Harper, R., Mitchell, J.C., Moggi, E.: Higher-order Modules and the Phase Distinc-
tion. In: Proceedings of the 17th ACM Symposium on Principles of Programming
Languages (POPL ’90). (1990) 341–354

18. Nordström, B., Petersson, K., Smith, J.M.: Programming in Martin-Löf’s Type
Theory. Oxford University Press (1990)

19. Barwise, J.: Admissible Sets and Structures. Springer-Verlag (1975)
20. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, An Introduction,

Vol. 2. Number 123 in Studies in Logic and the Foundations of Mathematics.
North-Holland (1988)

21. Ershov, Y.L., Goncharov, S.S., Nerode, A., Remmel, J.B., eds.: Handbook of
Recursive Mathematics. Elsevier, Amsterdam (1998)

22. Kleene, S.C.: On the interpretation of intuitionistic number theory. Journal of
Symbolic Logic 10 (1945) 109–124

23. Kleene, S.C., Vesley, R.E.: The Foundations of Intuitionistic Mathematics, es-
pecially in relation to recursive functions. North-Holland Publishing Company
(1965)

24. Birkedal, L.: Developing Theories of Types and Computability. PhD thesis, School
of Computer Science, Carnegie Mellon University (December 1999)

25. Blanck, J.: Computability on topological spaces by effective domain represen-
tations. PhD thesis, Uppsala University, Department of Mathematics, Uppsala,
Sweden (1997)

26. Bauer, A., Birkedal, L., Scott, D.S.: Equilogical spaces. Theoretical Computer
Science 1(315) (2004) 35–59

27. Scott, D.S.: Data types as lattices. SIAM Journal of Computing 5(3) (1976)
522–587

28. Escardó, M.H.: PCF extended with real numbers. PhD thesis, Department of
Computer Science, University of Edinburgh (December 1997)

29. Marcial-Romero, J.R., Escardó, M.H.: Semantics of a sequential language for exact
real-number computation. In: Proceedings of the 19th Annual IEEE Symposium
on Logic in Computer Science. (July 2004) 426–435

30. Borodin, A., Monro, J.I.: The computational complexity of algebraic and numeric
problems. Number 1 in Elsevier computer science library : Theory of computation
series. New York, London, Amsterdam : American Elsevier (1975)

31. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation.
Springer-Verlag, New York (1998)

32. Yap, C.K.: Theory of real computation according to EGC (2006) To appear in
LNCS Volume based on the Dagstuhl Seminar “Reliable Implementation of Real
Number Algorithms: Theory and Practice”, Jan 8-13, 2006.

33. Bishop, E., Bridges, D.: Constructive Analysis. Volume 279 of Grundlehren der
math. Wissenschaften. Springer-Verlag (1985)

17

