RZ: a Tool for Bringing
Constructive and Computable Mathematics
Closer to Programming Practice

Andrej Bauer! and Christopher A. Stone?

! Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
Andrej.Bauer@fmf.uni-1j.si
2 Computer Science Department, Harvey Mudd College, USA
stone@cs.hmc.edu

Abstract. Realizability theory is not only a fundamental tool in logic
and computability, but also has direct application to the design and im-
plementation of programs: it can produce interfaces for the data structure
corresponding to a mathematical theory. Our tool, called RZ, serves as
a bridge between the worlds of constructive mathematics and program-
ming. By using the realizability interpretation of constructive mathe-
matics, RZ translates specifications in constructive logic into annotated
interface code in Objective Caml. The system supports a rich input lan-
guage allowing descriptions of complex mathematical structures. RZ does
not extract code from proofs, but allows any implementation method,
from handwritten code to code extracted from proofs by other tools.

Version of January 29, 2007.

1 Introduction

Given a description of a mathematical structure (constants, functions, relations,
and axioms), what should a computer implementation look like?

For simple cases, the answer is obvious. A group would have a type whose
values represent group elements, as well as a binary operation that is associative,
a constant neutral element, and a unary inverse operator.

But for more interesting structures, especially those arising in mathematical
analysis, the answer is less clear. How do we implement the real numbers (a
Cauchy-complete Archimedean ordered field)? Or choose the operations for a
compact metric space or a space of smooth functions? Significant research goes
into finding satisfactory representations [1-4], and implementations of exact real
arithmetic [5, 6] show that the theory can be put into practice quite successfully.

The theory of realizability provides guidance in development of computable
mathematics. Our work shows that realizability is not only a fundamental tool
in logic and computability, but also has direct application to the design and
implementation of programs: it can produce a description of the data structure
(a code interface) directly corresponding to a mathematical specification.

However, doing this by hand quickly grows tedious. Worse, different but log-
ically equivalent sets of axioms correspond to different, although interdefinable,
interfaces for code; one might then want to compare several variations, since
some interfaces will be more useful than others in practice. And few program-
mers — even those with strong backgrounds in mathematics and classical logic
— are familiar with constructive logic or realizability. Programmers are used to
language constructs describing interfaces (e.g., C++ header files, ML signatures,
or Java interfaces) and logical assertions (e.g., preconditions and postconditions).

We have therefore implemented a system, called RZ, to serve as a bridge
between the logical world and the programming world.?> RZ translates speci-
fications in constructive logic into standard interface code in a programming
language (currently Objective Caml [7], but other languages could be used).

The constructive part of the original specification turns into interface code,
listing types and values to be implemented. The rest becomes assertions about
these types and values. The assertions have no computational content, so their
constructive and classical meanings agree, and they can be understood by pro-
grammers and mathematicians accustomed to classical logic.

RZ was designed as a lightweight system supporting a rich input language. Al-
though transforming complete proofs into complete code is possible [8], we have
not implemented this. Other good systems, including Coq [9] and Minlog [10],
can extract programs from proofs. But they work best managing the entire task,
from specification to code generation. In contrast, interfaces generated by RZ can
be implemented in any fashion as long as the assertions are satisfied. Code can
be written by hand, using imperative, concurrent, and other language features
rather than a “purely functional” subset. At the other extreme, the output of RZ
can be viewed as a possible input to a program extraction tool, where the the dis-
tinction between computational and non-computational parts (in Coq these are
Set and Prop, respectively) has been automatically determined; a corresponding
implementation would then be provided through theorem-proving and program
extraction.

The paper is organized as follows. In Section 2 we present a version of real-
izability which is most suitable for our purposes. Sections 4 and 3 describe the
input and the output language of RZ, while in Section 5 we explain how RZ
translates from one to the other. Various implementation issues are discussed
in Section 6, and examples of RZ at work are shown in Section 7. We conclude
with remarks on related work in Section 8.

2 Typed realizability

RZ is based on typed realizability by John Longley [11]. This variant of realizabil-
ity corresponds most directly to programmers’ intuition about implementations.

We approach typed realizability and its relationship to real-world program-
ming by way of example. Suppose we are asked to design a data structure for

3 RZ is publicly available for download at http://math.andrej.com/rz/, together
with an abridged version of this paper.

the set G of all finite simple* directed graphs with vertices labeled by distinct
integers. An exemplar directed graph G is shown in Figure 1. A common repre-

<

Fig. 1. A finite directed graph G

sentation is a pair of lists (£y,£4), where £y is the list of vertex labels and £ 4 is
the adjacency list representing the arrows by pairing the labels of each source and
target. In our example, ¢y = [1;2;3;4] and €4 = [(1,2);(2,2);(2,3);(3,2); (3;1)].
Thus we define the datatype of graphs as®

type graph = int list * (intxint) list

However, this is not a complete description of the representation, as there would
be representation invariants and conditions not expressed by the type, e.g.,

1. The order in which vertices and arrows are listed is not important; for ex-
ample, [1;2; 3;4] and [4; 1;2; 3] represent the same vertices.

2. Each vertex and arrow must be listed exactly once.

3. The source and target of each arrow must appear in the list of vertices.

Thus, to implement the mathematical set G, we must not only decide on
the underlying datatype graph, but also determine what values of that type
represent which elements of G. As we shall see next, this can be expressed either
using a realizability relation or a partial equivalence relation (per).

2.1 Modest sets and pers

We now define typed realizability as it applies to OCaml. Other general-purpose
programming languages could be used instead, as long as they provide the usual
ground types, product and function types.5

Let Type be the collection of all (non-parametric) OCaml types. To each type
t € Type we assign the set [t] of values of type ¢ that behave functionally in the
sense of Longley [12]. Such values are represented by terminating expressions

4 At most one arrow between any two vertices.

5 We use OCaml notation in which ¢ 1ist classifies finite lists of elements of type t,
and t1 * t2 classifies pairs containing a value of type ¢; and and value of type ts.

5 Tt is also convenient to work with a language that supports sum types, as this allows
a more natural representation of disjoint unions.

that do not throw exceptions or return different results on different invocations.
They may use exceptions, store, and other computational effects, provided they
appear functional from the outside; a useful example using computational effects
is presented in Section 7.6. A functional value of function type may diverge as
soon as it is applied. The collection Type with the assignment of functional values
[t] to each t € Type forms a typed partial combinatory algebra (TPCA), which
provides a theoretical basis for the definition of a realizability model that suits
our needs.

Going back to our example, we see that an implementation of directed graphs
G specifies a datatype |G| = graph together with a realizability relation g be-
tween G and [graph]. The meaning of (¢y,24) IFg G is “OCaml value (£y,44)
represents/realizes/implements graph G”. There are two natural conditions that
IFg ought to satisfy: (1) for every G € G there should be at least one real-
izer (0y,L4) representing it, and (2) if (¢, £4) represents both G and G’ then
G = G'." If (by,L4) and (¢},) represent the same graph (e.g., because £y
is a permutation of ¢{,, and similarly for £, and ¢/;) we say that they are
equivalent and write (by,€4) ~g (¢i,,¢)). The relation =g is a partial equiv-
alence relation (symmetric and transitive, but not reflexive) because not every
(yv,L4) € [graph] represents a graph.

A general definition is in order. A modest set is a triple A = ((A), |A],IFa)
where (A) is the underlying set, |A| € Type is the underlying type, and |4 is a
realizability relation between [|A|] and (A), satisfying

1. totality: for every x € (A) there is v € [|A|] such that v IF4 z, and
2. modesty: if ulF4 x and u -4 y then x = y.

The support of A is the set ||Al| = {v € [|A|]] | 3z € (A) .v Ik 4 x} of those values
that realize something. We define the relation ~4 on [|A[] by

umav <= Jre(A). (ulFgxAvikgx) .

From totality and modesty of I-4 it follows that ~4 is a per, i.e., symmetric
and transitive. Observe that ||A|| = {v € [|A4]] | v &4 v}, whence =4 restricted
to ||A|| is an equivalence relation. In fact, we may recover a modest set up to
isomorphism from |A| and =4 by taking (A) to be the set of equivalence classes
of ~4, and v IF4 2 to mean v € .

The two views of implementations, as modest sets ((A4), |A|,IF4), and as pers
(|A|,~4), are equivalent.® We concentrate on the view of modest sets as pers.
They are more convenient to use in RZ because they refer only to types and
values, as opposed to arbitrary sets. Nevertheless, it is useful to understand how
modest sets and pers arise from natural programming practice.

" The latter condition is called modesty and is not strictly necessary for the develop-
ment of the theory, though programmers would naturally expect it to hold.

8 And there is a third view, as a partial surjection 64 : C[|A|] — (A), with 6a(v) =z
when v IF4 z. This is how realizability is presented in Type Two Effectivity [1].

Modest sets form a category whose objects are modest sets and morphisms
are the realized functions. A realized function f: A — B is a function f : (4) —
(B) for which there exists v € [|A| — |B|] such that, for all z € (A) and u € | 4],

ulbgaz = vulkp f(x). (1)

This condition is just a mathematical expression of the usual idea that v is an
implementation of f if it does to realizers what f does to the elements they
represent.

The equivalent category of pers has as objects pairs A = (|A|,~4) where
|A| € Type and ~4 is a per on [|A4]]. A morphism A — B is represented by a
function v € [|A| — |B]] such that, for all u,u’ € ||A]],

umagu = vumpgvu . (2)

Values v and v’ that both satisfy (2) represent the same morphism if, for all
u,u’ € ||A||, u =4 v implies v u =g v .

The category of pers has a very rich structure. For example, we may form a
cartesian product A x B of pers A and B by

|Ax B| = [A] «|B],

(u1,v1) Raxp (u2,v2) <= u1 =a ug A1 = va.

The projections 71 : A X B — A and 7y : A x B — B are realized by fst and
snd, respectively.

The morphisms between pers A and B again form a per B4, also written as
A — B, called the exponential of A and B, with

|B4| =|A] — |B|,
| BA|| = {ve[ld] = |B|]] |Vu, v €[|A]] . (uma v = vu=pvu)}
URpaAv <= u,v € ||A| AVwE|A|.uwrpvw.

The evaluation map e : B4AxA — B is realized by OCaml application, fun (u,v) —
wv. If a function f : C' x A — B is realized by v, then its transpose f : C — B4,
f(2)(z) = f(z,2), is realized by fun z & — v (2,). This shows that the category
of pers is cartesian closed. In Section 5.1 we review other canonical constructions
on modest sets.

As an example we consider the cyclic group on seven elements (Z7,0, —, +).
To implement the group, we must give a representation of Z; as a per Z =
(|Z|,~z), and provide realizers for the neutral element 0, negation —, and ad-
dition +.

One possibility is to choose int as the underlying type |Z], and to let || Z]| be
only the integers 0 through 6. Then negation and addition must work modulo 7
(i.e., must return an integer in the range 0—6 when given integers in this range).
The neutral element would be the integer constant 0, and the equivalence ~z
would be integer equality.

Alternatively, we could take int as the underlying type |Z|, but let ||Z||
include all integers. In this case, negation and addition could be simply integer
addition and negation®. Here the neutral element could be implemented as any
integer multiple of 7, and the equivalence =~z would be equivalence-modulo-7.

Both of these pers happen to be decidable, i.e., it can be algorithmically
decided whether two values represent the same element of Z7, by code for integer
equality and code for integer equivalence-modulo-7 respectively.

Not all pers are decidable. Examples include implementations of semigroups
with an undecidable word problem [13], implementations of computable sets of
integers (which might be realized by membership functions of type int — bool),
and implementations of computable real numbers (which might be realized by
infinite Cauchy sequences). There is no presupposition that pers are computable
(implementable). We can require decidable equivalence by adding a suitable
axiom; see Section 7.1.

2.2 Interpretation of logic

In the realizability interpretation of logic, each formula ¢ is assigned a set of real-
izers, which can be thought of as computations that witness the validity of ¢. The
situation is somewhat similar, but not equivalent, to the propositions-as-types
translation of logic into type theory, where proofs of a proposition correspond to
terms of the corresponding type. More precisely, to each formula ¢ we assign an
underlying type |¢| of realizers, but unlike the propositions-as-types translation,
not all terms of type |¢| are necessarily valid realizers for ¢, and some terms
that are realizers may not correspond to any proofs, for example, if they denote
partial functions or use computational effects.

It is customary to write ¢ |- ¢ when ¢ € [|¢|] is a realizer for ¢. The underlying
types and the realizability relation IF are defined inductively on the structure
of ¢; an outline is shown in Figure 2. We say that a formula ¢ is valid if it has
at least one realizer.

In classical mathematics, a predicate on a set X may be viewed as a subset
of X or a (possibly non-computable) function X — bool, where bool = {L, T}
is the set of truth values. Accordingly, since in realizability propositions are
witnessed by realizers, a predicate ¢ on a modest set A may be viewed as a subset
of (4) x [|¢|], or a (possibly non-computable) function (A) x [|¢|]] — {L, T}. In
terms of pers, which is what RZ uses, a predicate ¢ on a per A = (|A|,~4) is a
(possibly non-computable) function ¢ : [|A|] x [|¢|] — bool that is

— strict: if ¢(u,v) then u € || 4], and
— extensional: if ¢(u1,v) and uy &4 us then @(uz,v).

We illustrate how the realizability interpretation extracts the computational
content of a proposition. To make an interesting example, suppose we have imple-
mented the real numbers R as a per R = (real, ~g), and consider the statement

9 Taking care to prevent integer overflow.

Underlying types of realizers:

|T] = unit |L] = unit
[z =yl =unit oA =1l x [
0= =lol =[] [¢VY] = orgof|do| + ‘oriof 1]
Vo:A. ¢ = [A] = [o] [Bz:A. | = [A] x ||
Realizers:
OFT
OFz=y iff z=y
(t1,t2) IFd A Y iff 4 IF ¢ and ta -9
th-o¢ =7 iff for all u € ||, if wl- ¢ then tu -
‘orot IF ¢V iff tIF ¢
‘or1t1F oV iff ¢tk
tI-Va:A. ¢(x) iff for all w € |A|, if ulFa « then tulF ¢(z)

(t1,t2) IF Jz:A. p(x) T t1 k4 x and t2 I @(x)

Fig. 2. Realizability interpretation of logic (outline)

that every cubic 23 + az + b has a root,
Ya:R. Vb:R. 3z:R. 2* +ax + b = 0. (3)

By computing according to Figure 2, we see that a realizer for this proposition
is a value r of type real — real — real X unit such that, if ¢ realizes a € R
and u realizes b € R, then rtu = (v, w) with v realizing a real number x such
that 23 + ax + b = 0, and w is trivial. (This can be “thinned” to a realizer of
type real — real — real that does not bother to compute w.) In essence, the
realizer v computes a root of the cubic equation. Note that r is not extensional,
i.e., different realizers ¢ and u for the same a and b may result in different roots.
To put this in another way, = realizes a multi-valued function'® rather than a per
morphism. It is well known in computable mathematics that certain operations,
such as equation solving, are only computable if we allow them to be multi-
valued. They arise naturally in RZ as translations of V3 statements.

There are propositions whose realizers are “irrelevant” or free of computa-
tional content. For example, realizers for T and equality have type unit. Another
example is a negation —¢, which is defined to be the same as ¢ = L, whose re-
alizers have type |¢p| — unit. Such realizers do not compute anything useful,
and we may as well throw them away. Sometimes only a part of a realizer is
computationally irrelevant, as we saw in the last example. Propositions that are
free of computational content are characterized as the ——-stable propositions. A
proposition ¢ is said to be ——-stable, or just stable for short, when ——¢ = ¢
is valid. Any negative proposition, i.e., one built from T, 1, = A, = and V is

10 The multi-valued nature of the realizer comes from the fact that it computes any
one of many values, not that it computes all of the many values.

stable, but there may be other propositions that are stable and are not written
in the negative form.

It would be unproductive to bother the programmer with requirements for
useless code. On input, one can specify whether abstract predicates have com-
putational content. On output, extracted realizers go through a thinning phase,
which removes irrelevant realizers.

2.3 Uniform families of modest sets

Many structures are naturally viewed as families of sets, or sets depending on
parameters, or dependent types as they are called in type theory. For example, the
n-dimensional Euclidean space R™ depends on the dimension n € N, the Banach
space C([a, b]) of uniformly continuous real functions on the closed interval [a, b]
depends on a,b € R such that a < b, etc. In general, a family of sets {A;}icr is
an assignment of a set A; to each ¢ € I from an indez set I.

In the category of modest sets the appropriate notion is that of a uniform
family {A,;};er, which is an assignment of a modest set 4; = ((4;),|A4],IF4,) to
each i € (I), where I is an index modest set [14, 6.3]. The uniformity comes from
the requirement that all the A;’s share the same underlying type |A;| = |A|. It is
a desirable restriction from the implementation point of view, because it removes
dependencies at the level of types. Note also that there is no dependency on the
realizers, only on the elements of the underlying set.

We may express uniform families in terms of pers, too. A uniform family of
pers {A;}icr indexed by a per I is given by an underlying type |A| and a family
of pers (zAL)ZG[HIH] that is

— strict: if u x4, v then i € ||I||, and
— eatensional: if u x4, v and i ~; j then u ~y4; v.

We may form the sum X;crA; of a uniform family {A;},c; as

| ZierAil =] x |4]

(i1,u1) 3, A, (i2,u2) = i1 iz Aup Ra, U2
and the product Il;c;A; as

(it As| = [I] — |A|
[TierAill = {v e [I| = A} | Vi,j€[l]]. (i 1 j = vima, v))}
URT A,V = v € |[ILictAi|| AV, je[[I|].(irrj] = uima, vj).

These constructions allow us to interpret (extensional) dependent type theory
in the category of modest sets.

As an example of a uniform family we consider the cyclic group (Z,,0, —, +)
of order n. To keep things simple, we assume that n ranges over natural numbers
that can be represented by type int (i.e., |N| = int), and that & is equality.
The uniform family {Z,},ecn is then like the cyclic group of order 7, with 7

module type Ab =
sig
type t
val zero : t
val neg : t > t
val add : t * t > t
end

Fig. 3. The module type Ab.

replaced by n. Ignoring overflow, the underlying type would be |Z,,| = int. Any
of the implementations suggested for Z; would work here, with 7 replaced by
the parameter n; in one case we would have v =z, v <= wu = v and in the
other u =z, v <= wmodn = v modn. Negation would be specified as a
constant of dependent type Il,enZ, — Z,. Its realizer neg would then have
type |N| — |Z,| — |Zy], i.e.,, int — int — int, so that neg(n) would be a
realizer for negation on Z,. The realizer for addition would similarly take an
extra argument n.

3 Specifications as signatures with assertions

In programming we distinguish between implementation and specification of
a structure. In OCaml these two notions are expressed with modules and module
types, respectively.!! A module defines types and values, while a module type
simply lists the types, type definitions, and values provided by a module. For a
complete specification, a module type must also be annotated with assertions
which specify the required properties of declared types and values. For example,
if we look at the definition of module type Ab in Figure 3, we might guess
that Ab is a signature for an Abelian group. However, Ab by itself requires an
implementation satisfy only the signature of an Abelian group, but does not
guarantee it behaves as an Abelian group. A complete description would contain
the following further assertions:

1. there is a per ~ on [t],

2. zero € ||t]|.

3. for all u,v € [t], if u ~; v then neg u ~ neg v,

4. for all uy,us,v1,v9 € [t], if u; & v1 and ug A2 vy then add (ug,us) ~2
add (v, vs),

5. for all u € ||t||, add (zero,u) ~y u,

6. for all u € ||t||, add (u,neg u) ~ zero,

7. for all u,v,w € [|t], add (add (u,v),w) ~ add (u, add (v, w)),

8. for all u,v € ||t]], add (u,v) ~ add(v,u).

11 Tn object-oriented languages implementations and specifications are expressed with
classes and interfaces, while in Haskell they correspond to modules and declarations.

Types

Tu=T|MT
\unit|71 X To
| 11— 72
\‘llof71+~-~+‘lnof7n
|

Terms

ex=z| Mx

| funz:imi — e | e1e2

[O 1 (exs- o en) [Pne

| ‘le | (matchewith‘lyzy — e | - |'lnzn — €n)

| assure z:7, pine | assurepine
| let z=e; ines

Propositions (negative fragment)
pu=P| M.P
| TIL[=p1|prAp2|pr=p2|p1&p2
| match e with‘lhz1 = p1| - [lnpn = €n
| funz:T — p | pe
| exmsen | eils|
‘ €1=€2
| Vaur.p | Va:||s]|. p

Basic modest sets

su=S8]se
Modules
m =M | m.M
\ml mao

Proposition Kinds

IT ::= bool
| 7 — IT
Specification elements
0:=valx:T
| type T
| type T =17

| module m : X

| module type S = X
| predicate P : IT

| assertion A : p

Specifications (module types with assertions)

Yu=5|m.S
| sig 6 ...0, end
| functor (m:X) — X

Type names

Unit and cartesian product
Function type

Disjoint sum

Polymorphic types

Term names

Functions and application

Tuples and projection

Injection and projection from a sum
Obligations

Local definitions

Atomic proposition

Predicate logic

Propositional case

Propositional functions and application
Pers and support

(Observational) term equality

Term quantifiers

Model names
Application of parameterized model

Classifier for propositions
Classifier for a predicate/relation

Value declaration
Type declaration

Type definition
Module declaration
Specification definition
Proposition declaration
Assertion

Specification names
Specification elements
Parameterized specification

Fig. 4. The syntax of specifications (Simplified)

10

Assertions 2—4 state that zero, neg, and add realize a constant, a unary, and
a binary operation, respectively, while assertions 5-8 correspond to axioms for
Abelian groups.

The output of RZ consists of module specifications, each of which consists of
a module type plus assertions about its components. More specifically, a specifi-
cation may contain value declarations, type declarations and definitions, module
declarations, specification definitions, proposition declarations, and assertions.
The language of specifications is summarized in Figure 3.

A specification can describe an OCaml structure (a collection of definitions
for types and values) or an OCaml functor (a parameterized module, i.e., a
function mapping modules to modules). The latter would be appropriate, for
example, when describing a uniform implementation of the real numbers that
works given any implementation of natural numbers.

Assertions within module specifications (which appear as code comments) are
expressed in the negative fragment of first-order logic, which contains constants
for truth and falsehood, negation, conjunction, implication, equivalence, and
universal quantification (but no disjunction or existential). For convenience we
also introduce the propositional case

match e with‘lyzy = p1 |-+ |'ln T = Pn

which is read “if e is of the form ‘I; x; then p; holds (i = 1,...,n)”, with the
understanding that the expression is false if e does not match any case. This can
be expressed with the negative formula

(Vaer.e=lLaxy=p) A AVap.e = Uy xp = p) A
((Ver.e £ DG a)) AN AVep. e #£ Ly xy)).

The negative fragment is the part of first-order logic that has no computational
content in the realizability interpretation. Consequently, the classical and con-
structive interpretations of assertions agree. This is quite desirable, since RZ
acts as a bridge between constructive mathematics and real-world programmers,
which typically are not familiar with constructive logic.

RZ ever produces only a small subset of OCaml types (the unit type, prod-
ucts, function types, polymorphic variant types, and parameter types). Corre-
spondingly, the language of terms produced is fairly simple (tuples, functions,
polymorphic variants, and local definitions). However, the programmer is free to
implement a specification using any types and terms that exist in OCaml.

A special kind of term is an obligation assurex:7, pine which means “in
term e, let x be any element of [7] that satisfies p”. An obligation is equivalent
to a combination of Hilbert’s indefinite description operator and a local defini-
tion, let x=(ex:7.p) ine, where ex:7. p means “any x € [7] such that p”. The
alternative form assurepine stands for assure unit, pine.

Obligations arise from the fact that well-formedness of the input language
is undecidable; see Section 4. In such cases the system computes a realizability
translation, but also produces obligations to be checked. The programmer must

11

replace each obligation with a value satisfying the obligation (i.e., demonstrate
that the obligation can be satisfied). If such values do not exist, the specification
is unimplementable.

4 The Input Language

The input to RZ consists of one or more theories. A RZ theory is a generalized
logical signature with associated axioms, similar to a Coq module signature.
Theories describe models, or implementations. A summary of the input language
appears in Figure 4.

The simplest theory @ is a list of theory elements 01 ...0,. A theory element
may specify that a certain set, set element, proposition or predicate, or model
must exist (using the Parameter keyword). It may also provide a definition of
a set, term, proposition, predicate, or theory (using the Definition keyword).
Finally, a theory element can be a named axiom (using the Axiom keyword).

We allow model parameters in theories; typical examples in mathematics in-
clude the theory of a vector space parameterized by a field of scalars, or the
theory of the real numbers parameterized by a model of the natural numbers.
Following Sannella, Sokolowski, and Tarlecki'? [15] RZ supports two forms of
parameterization. A theory of a parameterized implementation [m:0;]—6, de-
scribes a uniform family of models (i.e., a single implementation; a functor in
OCaml) that maps every model m satisfying ©; to a model of ;. In contrast, a
theory Am:01. Oy maps models to theories; if T' is such a theory, then T'(M7) and
T(My) are theories whose implementations might be completely unrelated.!3

Propositions and predicates appearing in theories may use full first-order
constructive logic, not just the negative fragment. The grammar for logical inputs
is shown in Figure 4. Most of this should be familiar, including the use of lambda
abstraction to define predicates.

The language of sets is rich, going well beyond the type systems of typical
programming languages. In addition to any base sets postulated in a theory, one
can construct dependent cartesian products and dependent function spaces. We
also supports disjoint unions (with labeled tags), quotient spaces (a set modulo
a stable equivalence relation), subsets (elements of a set satisfying a predicate).
RZ even permits explicit references to sets of realizers.

The term language includes introduction and elimination constructs for the
set level. For product sets we have tuples and projections (7 e, moe, ...), and
for function spaces we have lambda abstractions and application. One can inject
a term into a tagged union, or do case analyses on the members of a union. We
can produce an equivalence class or pick a representative from a equivalence class
(as long as what we do with it does not depend on the choice of representative).
We can produce a set of realizers or choose a representative from a given set
of realizers (as long as what we do with it does not depend on the choice of

representative). We can inject a term into a subset (if it satisfies the appropriate
12 «parameterized (program specification) # (parameterized program) specification”

13 Further, in some cases T'(M;) might be implementable while T'(Mz) is not.

12

Propositions
e, pu=p|Mp
| T I L[=e1 | e1Apz | p1Ves | p1=p2

| matchewithly z1=p1 |« |ln Tn=0n
| Az:s. p | pe
| e1 =e2

| Va:s. ¢ | Fzis. ¢ | Alais. ¢

Sets
su=a | Ma
| 1] [x:81] X s2
| O] l1:s1 + 282
| [x:51]—s2

| Az:s1. s2 | se

| Az:si. e er ez
| (e1,...,e2) | e
| le | (matchegwithly z1=>€1 |l2 z2=>€2)
| [e], | let [z], =€1 im e
|rze| let rzx =e; in e
|e:s
| ta:s. ¢
| let x=e; iney

Models

s=m | M.m

| My Mo

Proposition Kinds

IT ::= Prop | Stable

| Equiv(s)

| [z:8]—IT
Set Kinds
K ::= Set

| [x:5]—K

Theory Elements

0 ::= Definition z :=e. | Definition a:=s.
| Definition p:=¢. | Definition T :=O.

| Parameter x : s. | Parameter « : k.
| Parameter p: II. | Parameter m : O.
| Axiom p : .

Theories

8 e—

| thy 61,...,60, end
| [m:@l]—>92
| Aom:©1. O3 | ©@ m

Predicate names
Predicate logic
Propositional case
Predicates and application
Term equality

Term quantifiers

Set names

Unit and (dependent) cartesian product
Void and disjoint union

(Dependent) function space

Dependent set and application

Set quotient by an equivalence relation
Subset satisfying a predicate

Realizers of a set

Term names

Function and application

Tuple and projection

Injection and projection from a union
Equivalence class and picking a representative
Realized value and picking a realizer

Type coercion (e.g., in and out of a subset)
Definite description

Local definition

Model names
Application of parameterized model

Classifiers for all propositions/stable propositions

Classifier for stable equivalences on s
Classifier for a predicate/relation

Classifier for a proper set
Classifier for a dependent set

Give a name to a term or set

Give a name to a predicate or theory

Require an element in the given set or kind
Require a predicate or model of the given sort
Axiom that must hold

Theory name

Theory of a model

Theory of a uniform family of models
Parameterized theory and application

Fig. 5. Input Syntax (Simplified)

13

predicate), or project an element out of a subset. Finally, the term language also
allows local definitions of term variables, and definite descriptions (as long as
there is a unique element satisfying the predicate in question).

From the previous paragraph, it is clear that checking the well-formedness of
terms is not decidable. RZ checks what it can, but does not attempt serious the-
orem proving. Uncheckable constraints remain as obligations in the final output,
and should be verified by other means before the output can be used.

5 Translation

Having shown the input and output languages for RZ, we now explain how the
translation from one to the other works. A theory is translated to a specification,
where the theory elements are translated as follows.

5.1 Translation of sets and terms

A set declaration Parameter s : Set is translated to

type s

predicate (=) : s — s — bool

assertion symmetric_s : V x:!s, y:s, X Ry >y R X

assertion transitive_s : V x:s, y:s, 2:8, X "Rs YAy Rs 2 — X R 2
predicate |[|s|| : s — bool

assertion support_def_s : V x:s, x : [s|| & x =~ x

This says that the programmer should define a type s and a per =, on [s].
Here =, is not an OCaml value of type s — s — bool, but an abstract relation
on the set [s] x [s]. The relation may be uncomputable.

The translation of the declaration of a dependent set Parameter t : s — Set
follows the interpretation of dependent sets as uniform families (Section 2.3):

type t
predicate ~; : s — t — t — bool
assertion strict_t : V x:s, y:t, z:t, ¥y R x 2 — x @ |s]

assertion extensional_t :

V x:s, y:s, zit, wit, X R"g § — 2 Ry x W — 2 Ry y W
assertion symmetric_t : V x:s, y:t, z:t, ¥ Rt x 2 — Z g x ¥
assertion transitive_t :

V x:is, yit, zit, wit, Y R x 2 AN 2 Ry x W — § Rg x W
predicate ||t|| : s — t — bool
assertion support_def_t : V x:s, y:t, y : [t x| <=y =Rex ¥

The underlying output type t is still non-dependent, but the per is parameterized
by s.
A value declaration Parameter x : s is translated to

val x : s
assertion x_support : x : |[|s|

14

which requires the definition of a value x of type s which is in the support of s.
When s is not a basic set, RZ computes the interpretation of the underlying
type and support.

A value definition Definition x := e where e is an expression denoting an
element of s is translated to

val x : s
assertion x_def : x =5 €

The assertion does not force x to be defined as e, only to be equivalent to it with
respect to /5. This is useful, as often the easiest way to define a value is not the
most efficient way to compute it.

Constructions of sets in the input language are translated to corresponding
constructions of modest sets. In Section 2.1 we saw how products, exponentials
and their dependent versions are formed. We briefly review the remaining con-
structions of modest sets. We only consider those constructions of terms that
are not entirely straightforward.

Disjoint union. A disjoint union of modest sets [1:A + [5:B is the modest set
whose underlying type is the sum of underlying types,

|l12A -+ lQZB| = ‘ll of |A| -+ ‘lg of ‘_B|7
and the per is the disjoint union of pers ~ 4 and ~p, so that we have

‘ll USR], :A+1s:B ‘ll VS U U,

oum Atiy:Blav &= umg,v.

Subsets. The construction of subsets may look surprising at first, but it makes
sense computationally. Given a predicate ¢ on a per A, the sub-per {z : A | ¢}
has underlying type |A| x |¢| where (u1,v1) ~fz.a1¢) (u2,v2) When uy =4 ug,
v1 Ik ¢(u1) and ve I ¢(ug). The point is that a realizer for an element of
{z : A| ¢} carries information about why the element belongs to the subset.

A type coercion e : t can convert an element of the subset s = {x : ¢ | ¢(z)} to
an element of ¢. At the level of realizers this is achieved by the first projection,
which keeps a realizer for the element but forgets the one for ¢(e). The opposite
type coercion e’ :s takes an €’ € ¢t and converts it to an element of the subset.
This is only well-formed when ¢(¢’) is valid. Then, if u Ik, ¢’ and v I ¢(€’), a
realizer for ¢’ :s is (u,v). However, since RZ cannot in general know a v which
validates ¢(e’), it emits the pair (u, (assurev:|d|, puvinwv)).

Quotients. The category of modest sets has coequalizers, hence a quotient mod-
est set A/p may be constructed for an any equivalence relation p on A. However,
because equality does not carry any computational content, equality of equiv-
alence classes [z], = [y], implies only =—p(x,y), not the usual p(z,y). As this
may cause confusion and mistakes, it is better to permit only quotients by stable
equivalence relations, which behave as expected.

15

A stable equivalence relation on a per A is the same thing as a partial equiv-
alence relation p on |A| which satisfies p(z,y) = z =4 y. Then the quotient
A/p is the per with |A/p| = |A| and x =4/, y <= p(,y).

Luckily, it seems that many equivalence relations occurring in computable
mathematics are stable, or can be made stable with a little bit of manipulation.
For example, Cauchy sequences (a,)nen and (b,)nen represent the same real
number when

VieN.3jeN.Vm,n > j.|am — b, <27°. (4)

This defines an equivalence relation on the set of Cauchy sequences which does
not seem to be stable; intuitively a realizer for this equivalence would be a com-
putation telling us at what point in the sequence the terms will be within 27 of
each other. However, if we restrict attention just to the rapid Cauchy sequences,
i.e., those satisfying Vi € N. |a; 41 — a;| < 27% then the equivalence relation be-
comes

VieN. |ai 7b1| < 27i+37

which is a negative formula; the above realizer is rendered unnecessary. It is
interesting that most practical implementations of real numbers follow this line
of reasoning and represent real numbers in way that avoids annotating every
sequence with its rate of convergence.

Translation of an equivalence class [e], is quite simple, since a realizer for e
also realizes its equivalence class [e],. The elimination term let [z],=¢ in e,
means “let x be any element of p-equivalence class € in €”. It is only well-formed
when e does not depend on the choice of x, but this is something RZ cannot
check. Therefore, if u realizes £, RZ uses u as a realizer for z and emits an
obligation saying that the choice of a realizer for x does not affect e.

The underlying set of realizers. Another construction on a per A is the under-
lying per of realizers rz A, defined by

rz Al = |4]
URp AU <= U € |A|Au=mu,

where by ©u = v we mean observational equality of values u and v. An ele-
ment r € rz A realizes a unique element rz r € A. The elimination term
let rz ¢ = e; in e, which means “let x be any realizer for e; in ey”, is only
well-formed if es does not depend on the choice of x. This is an uncheckable
condition, hence RZ emits a suitable obligation in the output, and uses for x the
same realizer as for e;.

The construction rz A validates the Presentation Axiom (see Section 7.5).
In the input language it gives us access to realizers, which is useful because
many constructions in computable mathematics, such as those in Type Two
Effectivity [1], are explicitly expressed in terms of realizers.

16

Definite description. Russell’s definite description operator ¢ z:s. ¢(x) denotes
the unique element of {x:s | ¢(x)}. In case such an x does not exist, or if there
are several, the term is not well formed. The RZ translation essentially just asks
the programmer to provide suitable realizers for x and for ¢(x), and to check
uniqueness,

assure z:s, b:|@], (z:||s|| A pxb AV :5.Ve:| Pl (' ¢ = x s 2')) in (D).

This is the best RZ can do, since in general it can check neither that = exists,
nor that it is unique.

5.2 Translation of propositions

The driving force behind the translation of logic is a theorem [16, 4.4.10] that
says that under the realizability interpretation every formula ¢ is equivalent to
one that says, informally speaking, “there exists u € |¢|, such that u realizes ¢”.
Furthermore, the formula “u realizes ¢” is computationally trivial. The trans-
lation of a predicate ¢ then consists of its underlying type |¢| and the relation
u l- ¢, expressed as a negative formula.

Thus an axiom Axiom A : ¢ in the input is translated to

val u : |¢|
assertion A : u lF ¢

which requires the programmer to validate ¢ by providing a realizer for it. When
¢ is a compound statement RZ computes the meaning of u I+ ¢ as described in
Figure 2.

In RZ we avoid the explicit realizer notation u I ¢ in order to make the
output easier to read. A basic predicate declaration Parameter p : s—Prop is
translated to

type ty_p
predicate p : s — ty_p — bool
assertion strict_p : V x:s, a:ty_p, pxa — x : |s

assertion extensional_p :
V x:s, y:s, a:ity_.p, x "y D pxa—pya

We see that the predicate p has gained an additional argument of type ty_p
(which the programmer is supposed to define in an implementation), and we
write px a instead of a IF px. The two assertions require that p be strict and
extensional with respect to =;.

Frequently we know that a predicate is stable, which can be taken into ac-
count when computing its realizability interpretation. For this purpose the input
language has the subkind Stable of Prop. When RZ encounters a predicate which
is declared to be stable, such as p : s—Stable, it does not generate a declaration
of ty_p and it does not give p an extra argument.

Another special kind in RZ input language is the kind Equiv(s) of stable
equivalence relations on a set s. When an equivalence relation is declared with
Parameter p : Equiv(s), RZ will output assertions stating that p is strict, ex-
tensional, reflexive, symmetric and transitive.

17

6 Implementation

The RZ implementation consists of several sequential passes.

After the initial parsing, a type reconstruction phase checks that the input is
well-typed (and checks for well-formedness to the extent that it is easily decid-
able), and if successful produces an annotated result with all variables explicitly
tagged with types. The type checking phase uses a system of dependent types,
with limited subtyping (implicit coercions) for sum types and subset types. The
details are fairly standard, so are omitted here. One non-obvious consequence
of the realizability translation, however, is that the subset types with provably-
equal predicates, e.g., {z:a | p1(z) A p2(z)} and {x:a | p2(x) A p1(x)} are iso-
morphic but not equal in general. An explicit coercion is required to go from
one type to the other, because subset values will be pairs containing realizers
for p1(z) A pa(x) and pa(x) A p1(x), and these realizers have potentially different
types |p1 ()] * |pa(2)] and |ps ()] * |1 (2)] respectively.

Next the realizability translation is performed as described in Section 5, pro-
ducing interface code. The flexibility of the full input language (e.g., n-ary sum
types and dependent product types) makes the translation code fairly involved,
and so it is performed in a “naive” fashion whenever possible. The immediate
result of the translation is not easily readable.

Thus, up to four more passes simplify the output before it is displayed to
the user. A thinning pass removes all references to trivial realizers produced
by stable formulas. For example, direct translation of the free axiom in the
output for Kuratowski-finite sets, see Figure 7 and Section 7.3, yields a value
specification for free of type

(A.a — 8.s) — (fin — S.s) * (unit * (A.a — unit) * (fin — fin — unit))

where unit is the unit (terminal) type classifying the trivial realizer. Thinning
replaces this by the isomorphic type

(A.a— S.s) —» fin — S.s

and appropriately modifies references to free in the assertions to account for
this change in type.

An optimization pass applies an ad-hoc collection of basic logical and term
simplifications in order to make the output more readable. Logical simplifications
include applications of truth table rules (T A ¢ becomes), detection of syntac-
tically identical premises and conclusions (1 = 1 A¢s becomes @1 = ¢9), and
optimization of other common patterns we have seen arise (Vz:s. (z = e) = p(z)
becomes p(e)). Some redundancy may remain, but in practice the optimization
pass helps significantly.

Finally, the user can specify two optional steps occur. RZ can perform a
phase-splitting pass [17]. This is an experimental implementation of an transfor-
mation that can replace a functor (a relatively heavyweight language construct)
by parameterized types and/or polymorphic values. The idea is that although
functors map modules containing types and terms to other modules containing

18

types and terms, constraints on the programming language ensure that output
types depend only on input types (and not input terms). Thus, we can split
each functor into a mapping from input types to output types, and then a sepa-
rate (polymorphic) term mapping input types and terms to an output term. See
Section 7.3 for an example.

The other optional transformation is a hoisting pass which moves obligations
in the output to top-level positions. Obligations appear in the output inside
assertions, at the point where an uncheckable property was needed. Moving these
obligations to the top-level make it easier to see exactly what one is obliged
to verify, and can sometimes make them easier to read, at the cost of losing
information about why the obligation was required at all. See Section 7.2 for an
example of hoisting.

7 Examples

In this section we look at several examples which demonstrate various points
of RZ. Unfortunately, serious examples from computable mathematics take too
much space'* and will have to be presented separately. The main theme is that
constructively reasonable axioms yield computationally reasonable operations.

7.1 Decidable sets

A set S is said to be decidable when, for all z,y € S, z = y or =(z = y). In
classical mathematics all sets are decidable, because decidability of equality is
just an instance of the law of excluded middle. But RZ requires an axiom

Parameter s : Set.
Axiom eq: Vxy : s, x=yV 2 (x=y).

to produce a realizer for equality

val eq : s — s — [‘or0 | ‘ori]
assertion eq : V (x:[s||, y:|s|D,
(match eq x y with
‘or0 = x =5 y
| ‘orl = = (x =5 y))

We read this as follows: eq is a function which takes arguments x and y of
type s and returns ‘orO or ‘oril. If it returns ‘or0, then x~; y, and if it returns
‘orl, then —(x~;y). In other words eq is a decision procedure which tells when
values x and y represent the same element of the modest set.

14 The most basic structure in analysis (the real numbers) alone requires several oper-
ations and a dozen or more axioms.

19

7.2 Examples with obligations

In this section we show how RZ produces obligations, is sometimes able to op-
timize them away, and show the effect of hoisting.

Consider how we might define division of real numbers. Assuming the set of
real numbers real, a constant zero, and multiplication operation * have already
been declared and axiomatized, we might write:

Definition nonZeroReal := {x : real | = (x = zero)}.
Parameter inv : nonZeroReal — real.

Axiom inverse : V x : real, — (x = zero) -> x * (inv Xx) = one.
Definition (/) (x : real) (y : nonZeroReal) := x * (inv y).

We have defined the set of non-zero reals nonZeroReal and the inverse oper-
ation inv on it. Division x/y is defined as x x inv y. This does not mean that
the programmer must necessarily implement division this way, only that the
implementation of x/y must be equivalent to x * inv y.

In the axiom inverse, RZ encounters the subexpression inv x. Because x
is quantified as an element of real rather than nonZeroReal, the typechecking
phase inserts a coercion that makes the expression well-typed. Translation sees
inv(x : nonZeroReal) instead of inv x and translates this to

inv (assure u:unit, — (X Rea1 zero) in (x, u))

If this were the final output, the programmer would have to verify that x is not
zero, and provide a trivial realizer for it. However, in this case the thinning phase
first removes the trivial realizer,

inv (assure — (X Rrea1 z€ro) in x)

and then the optimizer determines that the obligation is not needed because the
whole expressions appears under the hypothesis that z is not zero. So in the end
the programmer sees

assertion inverse :
V (x:|lreal]), — (X ®rea1 zero) — (x * inv X) Aea1 one

Assuming further that a strict linear order < on real has been axiomatized, we
might proceed by relating it to inv:

Axiom inv_positive: V x : real, zero < x — zero < inv x.

Once again inv x appears in the input, but this time the optimizer is unable to
remove the obligation, so the output is

assertion inv_positive: V (x:||real|]),
zero < x — zero < inv (assure (not (X Rrea1 zero)) in x)

Local obligations can sometimes be hard to read, but if we activate the hoisting
phase (see Section 6), the obligation can be moved to the top level. As this is
done, the hypotheses under which the obligation appears are collected, and we
get

20

assertion inv_positive:
assure (V (x:||reall]), =zero < x — mnot (X Ryea1 zero))
in V (x:||reall]), =zero < x — zero < inv x

Now it is easier to understand what must be checked, namely that positive reals
are not zero—an easy consequence of irreflexivity of <, but not something that
RZ optimizer is aware of.

Lastly, we could define the golden ratio as the positive solution of 2 = 41,

the x : real, (zero < x A xX*x = X + one)

Not surprisingly, RZ cannot determine that there is a unique such z, so it outputs
an obligation:

assure x:real,
(x : |lreal|| A zero < x A x * x =real= x + one A
(V (x7:||lreall]), zero < x’ A X’ * X’ Riyeal X’ + ONE — X Rreal X’))
in x

7.3 Finite sets

There are many characterizations of finite sets, but the one that works best
constructively is due to Kuratowski, who identified the finite subsets of A as the
least family K (A) of subsets of A that contains the empty set and is closed under
unions with singletons. This characterization relies on powersets, which are not
available in RZ. But the gist of it, namely that K(A) is an initial structure a
suitable sort, can be expressed as follows.

Recall that a V-semilattice is a set S with a constant 0 € .S and an associative,
commutative, and idempotent operation “join” V on S such that 0 is the neutral
element for V, see Figure 6 for RZ axiomatization of semilattices. The Kuratowski
finite sets K (A) are the free semilattice generated by a set A, where V is union
and 0 is the empty set. This is formalized in RZ as shown in Figure 7. The
theory K is parametrized by a model A which contains a set a. In the first line we

Definition Semilattice :=
thy
Parameter s : Set.
Parameter zero : s.
Parameter join : s — s — s.
Implicit Type x y z : s.
Axiom commutative: V x y, join x y = join y x.
Axiom associative: V x y z, join (join x y) z = join x (join y =z).

Axiom idempotent: V x, join x x = x.
Axiom neutral: vV x, join x zero = x.
end.

Fig. 6. The theory of a semilattice

21

Definition K (A : thy
Parameter a : Set.
end) :=
thy
include Semilattice.
Parameter singleton : A.a — s.

Definition fin := s.
Definition emptyset := zero.
Definition union := join.

Axiom free :
V S : Semilattice, V f : A.a — S.s,
I g : fin — S.s,
g emptyset = S.zero A
(Vx : A.a, £ x = g (singleton x)) A
(Vuv : fin, g (union u v) = S.join (g w) (g v)).
end.

Fig. 7. Kuratowski finite sets

include the theory of semilattices. Then we postulate an operation singleton
which injects the generators into the semilattice. The three definitions are just
a convenience, so that we can refer to the parts of K(A) by their natural names,
e.g., emptyset instead of zero. The axiom free expresses the fact that K(A)
is the free semilattice on A.a: for every semilattice S and a map f : A.a — S.s
from the generators to the underlying set of S, there exists a unique semilattice
homomorphism g : fin — S.s such that f(x) = g(singleton x).

The output for Semilattice and K specifies values of suitable types for each
declared constant and operation. All axioms but the last one are equations and
have straightforward translations in terms of underlying pers. The output for the
axiom free is shown in Figure 8. Because the axiom quantifies over all models S
of the theory Semilattice its translation is a functor Free which accepts an
implementation of a semilattice .S and yields a realizer free validating the axiom.
The computational meaning of free is a combination map and fold operation,
taking a map £ : A.a — S.s and a finite set v = {z1,...,2,}, and return
f(x1) V-V £(x,), where V is the join operation on the semilattice S.

Applying phase-splitting to this axiom yields the even simpler specification

val free:a — (@ wa — a) = (Aa— a) — fin — «

(with an appropriate assertion) which replaces the module parameter S by two
extra term arguments term (corresponding to the module components S.zero
and S.join) and a type argument « for the type of lattice elements (corre-
sponding to the module input S.s). This is even more recognizable as a folding
operation over the set.

It is important to note that, in contrast to fold operators found in typical
functional languages, free is only expected to work for suitable join arguments

22

module Free : functor (S : Semilattice) —
sig
val free : (A.a — S.s) — fin — S.s
assertion free :
V (f:][A.a — S.s|]), let g = free f in
g : |[fin — S.s|| A g emptyset ~ss S.zero A
(V (x:||A.a]]), £ x ~ss g (singleton x)) A
(V (u:||fin||, v:||[fin|]), g (union u v) ~ss S.join (g uw) (g v)) A
(V h:fin — S.s, h : [[fin — S.s|| A h emptyset ~ss S.zero A
(V (x:||A.al]), £ x =ss h (singleton x)) A
(V (u:|fin||, v:||[fin|]), b (union u v) =ss S.join (h w) (h v)) —
V x:fin, y:fin, X ®Rsin y — € X Rss h y)
end

Fig. 8. Output of axiom free.

(e.g., idempotent and order independent). These sets are not the typical finite-
set data structure: there is no membership predicate, nor is there a way to
compute the size of a set. There is no assumption that equality is decidable
for set elements; this permits finite sets of exact real numbers, for example.
Decidable equality is required both for membership and for detecting whether
the same element has been added twice to the same set!®.

Some operations are nevertheless computable. Using free one can determine
whether a finite set is empty. In the case of a set of exact real numbers, we
cannot compute their sum, but we could compute maximum or minimum.

More common set implementations (e.g., the Set module in the OCaml stan-
dard library) implement sets over values with decidable total order; these could
also be formalized in RZ.

7.4 Inductive types

To demonstrate the use of dependent types we show how RZ handles general in-
ductive types, also known as W-types or general trees [18]. Recall that a W-type
is a set of well-founded trees, where the branching types of trees are described by
a family of sets B = {T'(z)}.cs. Each node in a tree has a branching type x € S,
which determines that the successors of the node are labeled by the elements
of T(x). For example, to get non-empty binary trees whose leaves are labeled by
natural numbers, define

S = {cons} U {leaf(n) | n € N}
T(cons) = {left,right}
T(leaf(n)) = 0.

15 The natural implementation would thus be an unordered collection of elements,
possibly with duplicates.

23

Then a node of type cons has two successors, indexed by constants left and
right, while a node of type leaf(n) does not have any successors.
Figure 9 shows an RZ axiomatization of W-types. The theory Branching

Parameter W : [B : Branching] —
thy
Parameter w : Set.
Parameter tree : [x : B.s] — (B.t x — w) — w.
Axiom induction:
V' M : thy Parameter p : w — Prop. end,
(Vx :B.s, Vf:B.tzx—w,
(WVy:B.tzx, M.p (f yJ) — M.p (tree x £))) —
Vt:w, Mpt.
end.

Fig. 9. General inductive types

describes that a branching type consists of a set s and a set t depending on s.
The theory W is parameterized by a branching type B. It specifies a set w of
well-founded trees and a tree-forming operation tree with a dependent type
Iyep.s(B.t(x) — w) — w. Given a branching type x and a map £ : B.t(x) — w,
tree x £ is the tree whose root has branching type x and whose successor labeled
by ¢ € B.t(x) is the tree £(£). The inductive nature of w is expressed with the
axiom induction, which states that for every property M.p, if M.p is an inductive
property then every tree satisfies it. A property is said to be inductive if a tree
tree x f satisfies it whenever all its successors satisfy it.

In the translation, see Appendix A for a complete output, dependencies at
the level of types and terms disappear. A branching type is determined by a pair
of non-dependent types s and t but the per ~; depends on [s]. The theory W
turns into a signature for a functor receiving a branching type B and returning a
type w, and an operation tree of type B.s — (B.t — w) — w. One can use phase-
splitting to translate axiom induction into a specification of a polymorphic
function

induction: (B.s - Bt —w) —» (Bt — a) - a) - w— a,

which is a form of recursion on well-founded trees. Instead of trying to explain
what induction is supposed to do, we show a surprisingly simple, hand-written
implementation of W-types in OCaml. The reader may enjoy figuring out how
it works:

module W (B : Branching) = struct
type w = Tree of B.s * (B.t -> w)
let tree x y = Tree (x, y)
let rec induction f (Tree (x, g)) =
f x g (fun y -> induction f (g y))
end

24

7.5 Axiom of choice

RZ can help explain why a generally accepted axiom is not constructively valid.
Consider the Axiom of Choice:

Parameter a b : Set.

Parameter r : a — b — Prop.

Axiom ac: (W x : a, I3y : b, rxy) —
(3dc:a—Db,Vx:a, rx (c x)).

The relevant part of the output is

val ac : (a — b * ty_r) — (a — b) * (a — ty_r)
assertion ac :
V f:a — b * ty_r,
vV (x:]|la|), let (p,@) =fxinp : |b|] AT xpq —
let (g,h) = ac f in
g :lla—=0pl AW &, rx (gx) (hx)

This requires a function ac which accepts a function £ and computes a pair of
functions (g,h). The input function f takes an x:||a|| and returns a pair (p,q)
such that q realizes the fact that r x p holds. The output functions g and h
taking x:||al| as input must be such that h x realizes r x (g x). Crucially, the
requirement g:|la — b| says that g must be extensional, i.e., map equivalent
realizers to equivalent realizers. We could define h as the first component of f,
but we cannot hope to implement g in general because the second component
of £ is not assumed to be extensional.

The Intensional Axiom of Choice allows the choice function to depend on
the realizers:

Axiom iac: (W x :a, 3y : Db, rxy) —
(dc:rza—Db, Vx:rza,r (rz x) (c x)).

Now the output is

val iac : (@ — b * ty_r) — (a — b) * (a — ty_r)
assertion iac :
V f:a — b * ty_r,
vV (x:]|la|), let (p,@) =fxinp : |b| AT xpq —
let (g,h) = iac £ in
V x:a, x : |la]l = gx : |pD AV ial), rx (gx) (hx)

which is exactly the same as before, except that the troublesome requirement
g:|la — bl turned into Vx:a. (x:||a|| = g x:||b||), which is weaker. We can imple-
ment iac in OCaml as

let iac £ = (fun x -> fst (f x)), (fun x -> snd (f x))

The Intensional Axiom of Choice is in fact just an instance of the usual Axiom
of Choice applied to rz A and B. Combined with the fact that rz A covers A,
this establishes the validity of Presentation Aziom [19], which states that every
set is an image of one satisfying the axiom of choice.

25

7.6 Modulus of Continuity

As a last example we show how certain constructive principles require the use
of computational effects. To keep the example short, we presume that we are
already given the set of natural numbers nat with the usual structure.

A type 2 functional is a map f : (nat — nat) — nat. It is said to be continu-
ous if the output of f(a) depends only on an initial segment of the sequence a. We
can express the (non-classical) axiom that all type 2 functionals are continuous
in RZ as follows:

Axiom continuity: V f : (nat — nat) — nat, V a : nat — nat,
Jdk, Vb :nat > nat, Wm, m <k -am=bm — fa=fhb.

The axiom says that for any f and a there exists k € nat such that £(b) = f(a) as
soon as the sequences a and b agree on the first k terms. The axiom is translated
to the specification

val continuity : ((nat — nat) — nat) — (nat — nat) — nat
assertion continuity :
V (f:|[(nat — nat) — nat||, a:|nat — nat|)),
let p = continuity f a in p : |nat| A
(V (b:|jnat — nat|]),
(V (m:|nat]]), m < p — am Rpax bm) — £ a Rpay £ b)

which says that continuity f a is a number p such that f(a) = £(b) whenever a
and b agree on the first p terms. In other words, continuity is a modulus of con-
tinuity functional. It cannot be implemented in a purely functional language,'6
but with the use of store we can implement it in OCaml as

let continuity f a =
let p = ref 0 in
let @’ n = (p := max !p n; an) in
fa ; !'p

To compute a modulus for £ at a, the program creates a function a’ which is just
like a except that it stores in p the largest argument at which it has been called.
Then £ a’ is computed, its value is discarded, and the value of p is returned. The
program works because f is assumed to be extensional and must therefore not
distinguish between extensionally equal sequences a and a’.

8 Related Work

8.1 Coq

Coq provides complete support for theorem-proving and creating trusted code.
A common pattern of use is to write code in Coq’s functional language (val-
ues whose types are Sets), to state and prove theorems that the code behaves

16 There are models of A-calculus which validate the choice principle AC% o, but this
contradicts the existence of a modulus of continuity functional, see [20, 9.6.10].

26

correctly (where the theorems are Coq values whose types are Props), and then
have Coq extract correct code. In such cases, RZ is complementary to Coq; it can
clarify the constructive content of mathematical structures and hence suggest an
appropriate division between Coq’s Set and Prop. (We hope RZ will soon be
able to produce output in Coq syntax.)

In general, RZ is a smaller and more lightweight system and thus more flexi-
ble where it applies. It is not always practical or necessary to do theorem proving
in order to provide an implementation; interfaces generated by RZ can be im-
plemented in any manner. And, RZ provides a way to talk with programmers
about constructive mathematics without bringing in full theorem proving.

8.2 Other tools

Komagata and Schmidt [8] describe a system that uses a similar realizability
translation to ours. Like Coq, the system translates formal proofs to programs.
An interesting technical difference is that the algorithm they use, attributed to
John Hatcliff, does thinning as it goes along, rather than making a separate pass.
For example, the translation of the conjunction-introduction rule has four cases,
depending on whether the left and/or right propositions being proved are almost
negative, in which case the trivial contribution can be immediately discarded.

8.3 Other Models of Computability

Many formulations of computable mathematics are based on realizability mod-
els [21], even though they were not initially developed, (nor are they usually
presented) within the framework of realizability: Recursive Mathematics [22] is
based on the original realizability by Turing machines [23]; Type Two Effectiv-
ity [1] on function realizability [24] and relative function realizability [25], while
topological and domain representations [26, 27] are based on realizability over the
graph model Pw [28]. A common feature is that they use models of computation
which are well suited for the theoretical studies of computability.

Other approaches are based on simple programming languages augmented
with datatypes for real numbers [29,30] and topological algebras [2], or ma-
chine models augmented with (suitably chosen subsets of) real numbers such
as Real RAM [31], the Blum-Smale-Shub model [32], and the Exact Geometric
Computation model [33]. The motivation behind these ranges from purely the-
oretical concerns about computability and complexity to practical issues in the
design of programming languages and algorithms in computational geometry.
R7Z attempts to improve practicality by using an actual real-world programming
language, and by providing an input language which is rich enough to allow
descriptions of involved mathematical structures that go well beyond the real
numbers.

Finally, we hope that RZ and, hopefully, its forthcoming applications, give
plenty of evidence for the practical value of Constructive Mathematics [34].

27

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)

Tucker, J., Zucker, J.I.: Computable functions and semicomputable sets on many-
sorted algebras. In Abramsky, S., Gabbay, D., Maibaum, T., eds.: Handbook of
Logic in Computer Science, Volume 5, Oxford, Clarendon Press (1998)

Blanck, J.: Domain representability of metric spaces. Annals of Pure and Applied
Logic 83 (1997) 225-247

Edalat, A., Lieutier, A.: Domain of differentiable functions. In Blanck, J., Brattka,
V., Hertling, P., Weihrauch, K., eds.: Computability and Complexity in Analysis.
(2000) CCA2000 Workshop, Swansea, Wales, September 17-19, 2000.

Miiller, N.: The iRRAM: Exact arithmetic in C++. In Blanck, J., Brattka,
V., Hertling, P., Weihrauch, K., eds.: Computability and Complexity in Analy-
sis. (2000) 319-350 CCA2000 Workshop, Swansea, Wales, September 17-19, 2000.
Lambov, B.: RealLib: an efficient implementation of exact real arithmetic. In
Grubba, T., Hertling, P., Tsuiki, H., Weihrauch, K., eds.: Computability and Com-
plexity in Analysis. (2005) 169-175 Proccedings, Second International Conference,
CCA 2005, Kyoto, Japan, August 25-29, 2005.

Leroy, X., Doligez, D., Garrigue, J., Rémy, D., Vouillon, J.: The Objective Caml
system, documentation and user’s manual - release 3.08. Technical report, INRTA
(July 2004)

. Komagata, Y., Schmidt, D.A.: Implementation of intuitionistic type theory and

realizability theory. Technical Report TR-CS-95-4, Kansas State University (1995)
Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Springer (2004)

Benl, H., Berger, U., Schwichtenberg, H., Seisenberger, M., Zuber, W.: Proof theory
at work: Program development in the Minlog system. In Bibel, W., Schmidt, P.H.,
eds.: Automated Deduction: A Basis for Applications. Volume II, Systems and
Implementation Techniques. Kluwer Academic Publishers, Dordrecht (1998)
Longley, J.: Matching typed and untyped realizability. Electr. Notes Theor. Com-
put. Sci. 23(1) (1999)

Longley, J.: When is a functional program not a functional program? In: Interna-
tional Conference on Functional Programming. (1999) 1-7

Post, E.: Recursive unsolvability of a problem of thue. The Journal of Symbolic
Logic 12 (1947) 1-11

Jacobs, B.: Categorical Logic and Type Theory. Elsevier Science (1999)
Sannella, D., Sokolowski, S., Tarlecki, A.: Toward formal development of programs
from algebraic specifications: parameterisation revisited. Acta Informatica 29(9)
(1992) 689-736

Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, An Introduction,
Vol. 1. Number 121 in Studies in Logic and the Foundations of Mathematics.
North-Holland (1988)

Harper, R., Mitchell, J.C., Moggi, E.: Higher-order Modules and the Phase Distinc-
tion. In: Proceedings of the 17th ACM Symposium on Principles of Programming
Languages (POPL ’90). (1990) 341-354

Nordstrom, B., Petersson, K., Smith, J.M.: Programming in Martin-Lo6f’s Type
Theory. Oxford University Press (1990)

Barwise, J.: Admissible Sets and Structures. Springer-Verlag (1975)

Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, An Introduction,
Vol. 2. Number 123 in Studies in Logic and the Foundations of Mathematics.
North-Holland (1988)

28

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Bauer, A.: The Realizability Approach to Computable Analysis and Topology.
PhD thesis, Carnegie Mellon University (2000)

Ershov, Y.L., Goncharov, S.S., Nerode, A., Remmel, J.B., eds.: Handbook of
Recursive Mathematics. Elsevier, Amsterdam (1998)

Kleene, S.C.: On the interpretation of intuitionistic number theory. Journal of
Symbolic Logic 10 (1945) 109-124

Kleene, S.C., Vesley, R.E.: The Foundations of Intuitionistic Mathematics, es-
pecially in relation to recursive functions. North-Holland Publishing Company
(1965)

Birkedal, L.: Developing Theories of Types and Computability. PhD thesis, School
of Computer Science, Carnegie Mellon University (December 1999)

Blanck, J.: Computability on topological spaces by effective domain represen-
tations. PhD thesis, Uppsala University, Department of Mathematics, Uppsala,
Sweden (1997)

Bauer, A., Birkedal, L., Scott, D.S.: Equilogical spaces. Theoretical Computer
Science 1(315) (2004) 35-59

Scott, D.S.: Data types as lattices. SIAM Journal of Computing 5(3) (1976)
522-587

Escardé, M.H.: PCF extended with real numbers. PhD thesis, Department of
Computer Science, University of Edinburgh (December 1997)

Marcial-Romero, J.R., Escardé, M.H.: Semantics of a sequential language for exact
real-number computation. In: Proceedings of the 19th Annual IEEE Symposium
on Logic in Computer Science. (July 2004) 426-435

Borodin, A., Monro, J.I.: The computational complexity of algebraic and numeric
problems. Number 1 in Elsevier computer science library : Theory of computation
series. New York, London, Amsterdam : American Elsevier (1975)

Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation.
Springer-Verlag, New York (1998)

Yap, C.K.: Theory of real computation according to EGC (2006) To appear in
LNCS Volume based on the Dagstuhl Seminar “Reliable Implementation of Real
Number Algorithms: Theory and Practice”, Jan 8-13, 2006.

Bishop, E., Bridges, D.: Constructive Analysis. Volume 279 of Grundlehren der
math. Wissenschaften. Springer-Verlag (1985)

A A complete example

To give at least one complete example, we include here an unabridged output
for the theory of inductive types shown in Figure 9.

module type Branching =

sig
type s

(*x predicate (=s=) : s -> s -> bool *)
(** assertion symmetric_s : forall x:s, y:s, X =s=y -> y =s= X

assertion transitive_s :

forall x:s, y:s, z:s, x =s=y /\y=s=2z ->x =s=2

*)

29

(** predicate |[|s|| : s -> bool *)

(** assertion total_def_s : forall x:s, x : |ls|| <> x =8= x
*)

(** branching types *)

type t

(** predicate (=t=) : s -> t -> t -> bool *)
(** assertion strict_t : forall x:s, y:t, z:t, y =(t x)=2 -> x : |Isl|

assertion extensional_t
forall x:s, y:s, z:t, wit, x=s=y >z=(x)=w >z =(t y)=w

assertion symmetric_t
forall x:s, y:t, z:t, y=(t x)=2z >z =(x)=y

assertion transitive_t
forall x:s, y:t, z:t, w:t, y =(t x)=12z /\ z =(t x)=w ->

y =(t x)=w
*)
(** predicate |[tl|| : s -> t -> bool *)
(**x assertion total_def_t
forall x:s, y:t, y : |t xI| <>y =(t x)=y
*)

(**x branch labels *)
end

module W : functor (B : Branching) ->
sig

type w

(*x predicate (=w=) : w -> w -> bool *)

(**x assertion symmetric_w :
forall x:w, y:w, X =w=y ->y =w= X

assertion transitive_w :
forall x:w, y:w, z:w, X =w=7y /\y=w=2 -> x =u= 2z

*)

(x* predicate ||wl| : w -> bool *)

(** assertion total_def_w : forall x:w, x : |lwl|l <=> x =w= x
*)

val tree : B.s -=> (B.t > w) > w
(*x* assertion tree_support
forall x:B.s, y:B.s, x =B.s=y ->

30

forall £:B.t -> w, g:B.t > w,
(forall z:B.t, t:B.t, z =(B.t x)=t > f z =wu=g t) —>
tree x f =w= tree y g

*)

val induction : (B.s -> (B.t -> w) -> (B.t -> ’ty_p) -> ’ty_p) -> w -> ’ty_p
(** assertion ’ty_p [p:w -> ’ty_p -> booll] induction :
(forall x:w, a:’ty_p, pxa->x: |[|lwll) —>
(forall x:w, y:w, a:’ty_p, X =w=y ->pxa->pya) —>
forall f:B.s -> (B.t -> w) -> (B.t -> ’ty_p) -> ’ty_p,
(forall (x:|IB.sll),
forall £f’:B.t -> w,
(forall y:B.t, z:B.t, y =(B.t x)=2z ->
£’y =w= £’ 2z) >
forall g:B.t -> ’ty_p,
(forall y:B.t, y : |IB.t xI| ->p (£’ y) (g y)) —>
p (tree x £) (f x £ g)) —>
forall (t:|lwll), p t (induction f t)
*)

end

31

