
König’s Lemma and Kleene Tree

Andrej Bauer

May 3, 2006

Abstract

I present a basic result about Cantor space in the context of com-
putability theory: the computable Cantor space is computably non-compact.
This is in sharp contrast with the classical theorem that Cantor space is
compact. The note is written for mathematicians with classical training
in topology and analysis. I assume nothing from computability theory,
except the basic intuition about how computers work by executing in-
structions given by a finite program.

1 Trees

We first review some basic definitions and facts about binary trees. Let 2 =
{0, 1} be the two-point discrete space. We let 2∗ be the set of finite binary
sequences,

2∗ = {a1a2 . . . an | n ≥ 0, ai ∈ 2} .

We denote finite sequences with letters a, b, c, . . . The empty sequence is denoted
by ε. If a = a1 . . . an is a finite sequence, |a| = n is its length. We say that a is
a prefix of b and write a v b, when |a| ≤ |b| and ak = bk for 1 ≤ k ≤ |a|. The
prefix relation v is a partial order on 2∗.

Let 2ω be the set of infinite binary sequences, which we denote with Greek
letters α, β, γ, . . . A finite sequence a ∈ 2∗ is a prefix of α ∈ 2ω, written a v α,
when ak = αk for all 1 ≤ k ≤ |a|. The n-th prefix of α is the finite sequence
α1 . . . αn.

10

11100100

001 101 110011010 100 111

000

ε

Figure 1: The full infinite binary tree

1

10

0100

001 011000

ε

Figure 2: The tree T = {ε, 0, 1, 00, 01, 000, 001, 011}

We may picture 2∗ as the full (infinite binary) tree shown in Figure 1. Each
node in the tree corresponds a finite binary sequence and vice versa. In general,
a (binary) tree is a non-empty prefix-closed subset of 2∗. A subset T ⊆ 2∗

is said to be prefix-closed if b ∈ T and a v b implies a ∈ T . The leaves
of a tree T are the maximal elements in the v order. For example, the set
T = {ε, 0, 1, 00, 01, 000, 001, 011} is a tree whose picture is shown in Figure 2.
The leaves of T are 000, 001, 011, and 1. Note that a tree may be finite or
infinite.

A path is a tree in which every node has at most one successor with respect
to prefix order. A path may be finite or infinite, and is equal to the set of all
prefixes of a unique (finite or infinite) sequence. Often we do not distinguish
between a sequence and the path of its prefixes.

2 König’s Lemma

It is well known that Cantor space, which is 2ω with the product topology,
is compact. Interestingly, compactness can be proved without the Axiom of
Choice,1 and is equivalent2 to a statement about binary trees, known as Weak
König’s Lemma. We focus on the lemma rather than on the Heine-Borel prop-
erty of Cantor space because in computability theory it is easier to handle binary
trees than general open covers.

Lemma 2.1 (König) An infinite binary tree contains an infinite path.

Proof. Suppose T is an infinite tree. For a ∈ 2∗ define

Ta = {b ∈ T | a v b} .

The set Ta is that part of T which lies above the node a. We construct an
infinite sequence α by induction in such a way that for every n the set Tα1...αn

is infinite.
When n = 0 we have Tε = T which takes care of the base case. For the

induction step, suppose the first n ≥ 0 terms of α have been constructed so
1In contrast, the general Tychonoff theorem is equivalent to the Axiom of Choice.
2We need to be careful what we mean by ”equivalence”, see discussion at the end of the

section.

2

that Tα1...αn
is infinite. Because Tα1...αn

= Tα1...αn0 ∪ Tα1...αn1, at least one of
Tα1...αn0 or Tα1...αn1 must be infinite. Thus if we define

αn+1 =

{
0 if Tα1...αn0 is infinite,
1 otherwise,

it will be the case that Tα1...αn+1 is infinite. To complete the proof, observe that
the prefixes of α form an infinite path in T .

Let us prove that Weak König’s Lemma implies compactness of Cantor space.
For a ∈ 2∗ the set

Ba = {α ∈ 2ω | a v α}

is open and closed. The family {Ba}a∈2∗ forms a basis for the topology of 2ω.
Suppose {Vi}i∈I is an open cover of 2ω. Then

T = {ε} ∪ {a ∈ 2∗ | ∀i ∈ I .Ba 6⊆ Vi}

is a tree. Furthermore, T does not have an infinite path. To see this, consider
any α ∈ 2ω. There exists i ∈ I such that α ∈ Vi and because Ba’s form a basis,
there exists n ∈ N such that α ∈ Bα1...αn ⊆ Vi. But then α1 . . . αn 6∈ T . By
Weak König’s Lemma T is a finite tree, therefore there exists m ∈ N such that
|a| < m for all a ∈ T . For every b ∈ 2∗ of length m there exists ib ∈ I such that
Bb ⊆ Vib

. The family {Vib
| b ∈ 2∗, |b| = m} is finite and covers 2ω:

2ω =
⋃

|b|=m

Bb ⊆
⋃

|b|=m

Vib
.

It is not hard to see that the converse holds: Weak König’s Lemma can be
derived from compactness of 2ω. We leave this as an exercise.

Side remark. We have not been precise about what set of axioms we used.
Normally, this is not an important issue, as most mathematicians take for
granted one of the standard axiomatizations of set theory, e.g., Zermelo-Fraenkel
Set Theory. However, since both Weak König’s Lemma and compactness of
Cantor space are provable in Zermelo-Fraenkel set theory, we need to be precise
about what it means for these two statements to be equivalent, lest we conclude
that they are so simply because they are both true!

The proofs done in this section can be performed in a weaker set theory,
such as Zermelo set theory3 without the Axiom of Choice.4 It turns out that
the optimal setting for showing that Weak König’s Lemma and compactness
of 2ω follow from each other is a much weaker system called RCA0, which
is a subsystem of Peano arithmetic. We do not go into further details here,
the interested reader is referred to [Sim98]. The point we are making is that we
cannot meaningfully talk about equivalence of two statements if our background
theory proves them both.

3The main difference between Zermelo-Fraenkel and Zermelo set theory is that the latter
does not have the Axiom of Replacement.

4We used choice for a finite family in this section (can you spot it?), but that one is provable
from other axioms of set theory.

3

3 Kleene Tree

3.1 Computable functions

For background reading on computability I recommend [Odi89]. We assume
some informal knowledge of how general-purpose computers work:

• A computer is a machine which executes basic instructions, such as “add
1 to the number stored in location 42”.

• Instructions are executed one at a time in an orderly fashion.5

• Only finitely many instructions are executed in a finite amount of time.

• The behavior of a computer is determined by a program, which is a finite
sequence of instructions.

• A computer may store input, output and intermediate data onto a tape,
disk, memory or other storage device. It is assumed that the amount
of storage is potentially infinite, i.e., we do not worry about computer
running out of free storage.

An important observation is that there are only countably many programs,
because there are finitely many basic instructions and a program is a finite
sequence of basic instructions. Therefore, we may enumerate all programs P0,
P1, P2, . . . systematically. In fact, there is a program which enumerates them
all: such a program simply enumerates all finite sequences of basic instructions.
It is beside the point that some programs do not compute anything useful, or
that certain sequences of instructions do not make much sense.

We consider a program P that receives as input a natural number n. When P
is executed, three things may happen:

• After a finite number of steps, P computes a result m, which is a natural
number.

• After a finite number of steps, P blocks and does not produce an output.

• P runs forever without producing an output.

In the first case we say that P terminates on input n and write P (n)↓. In
the other two cases P is said to diverge, which we write as P (n)↑. Thus every
program computes a partial function N ⇀ N.

Definition 3.1 A computable function is a partial function N ⇀ N which is
computed by some program.

We denote by ϕn the computable function which is computed by the n-th
program Pn. Every computable function appears in the enumeration ϕ1, ϕ2,
ϕ3, . . . , possibly more than once because many different programs may compute
the same function.6 We use the notation ϕn(m)↓ and ϕn(m)↑ to indicate that
ϕn(m) is defined and undefined, respectively.

5Parallel computers may execute many instructions at once. This does not essentially
increase their computing power, only efficiency.

6In fact, it can be shown that every computable function must appear infinitely often under
mild and reasonable conditions on ϕ.

4

The enumeration ϕ is computable in the sense that there is a program U ,
called the universal machine, which accepts as input numbers n and m such
that:

• if ϕn(m) = k then U(n, m) terminates with output k,

• if ϕn(m)↑ then U(n, m) diverges.

The main idea for U is to compute the instructions of Pn and then simulate
what Pn would do on input m.

A total function is a partial function which is defined for all arguments.
There are only countably many total computable functions, but in contrast
with the partial computable functions they cannot be enumerated computably.

Theorem 3.2 There is no computable enumeration of total computable func-
tions.

Proof. Cantor’s diagonal argument may be employed here. Let θ1, θ2, . . .
be any computable sequence of total computable functions. Then the function
f(n) = θn(n) + 1 is total and computable but does not appear in the sequence.
Indeed, f 6= θk because f(k) 6= θk(k).

One may wonder why we could not use a similar argument to define a partial
computable function which is different from every other partial computable func-
tion in a given sequence. However, given a computable sequence θ1, θ2, θ3, . . . of
partial computable functions the function f(n) = θn(n) + 1 is not guaranteed
to be different from θ(n) because we could have θn(n)↑ and so f(n) and θn(n)
would both be undefined. One might also try with

g(n) =

{
θn(n) + 1 if θn(n)↓,
0 if θn(n)↑,

which is a function different from every θ1, θ2, . . . Unfortunately, g is not com-
putable in general, as we cannot determine in finite time whether a given com-
putation terminates or not.

Yet, there is a good idea hidden in the above attempts. A slightly differ-
ent diagonalization procedure gives us a computable partial function which is
different from every total computable function.

Theorem 3.3 There exists a computable partial function d : N ⇀ N such that
whenever f : N → N is a total computable function, there exits n ∈ N for which
d(n)↓ and f(n) 6= d(n).

Proof. Define d by

d(n) =


0 if ϕn(n)↓ and ϕn(n) 6= 0,
1 if ϕn(n)↓ and ϕn(n) = 0,
undefined if ϕn(n)↑.

To compute d(n), first compute ϕn(n). If and when ϕn(n) gives a result k, see
whether k = 0. If it does, return 1, otherwise return 0. This shows that d is
computable. If f is total there exists n such that f = ϕn. Because f is total
ϕn(n) is defined, therefore d(n) is defined and d(n) 6= ϕn(n) = f(n).

5

3.2 Computable trees

We have defined computability for functions on natural numbers. Because
infinite binary sequences are those functions on natural numbers which map
into {0, 1}, this gives as a notion of computable binary sequence. We denote the
set of all computable binary sequences by #(2ω). Similarly, we let

#Ba = Ba ∩#(2ω)

be the computable part of the basic open set Ba. The family {#Ba}a∈2∗ forms
a countable basis for the topology of #(2ω).

We define a computable set S ⊆ N as one that has a computable character-
istic function χS : N → 2, which is defined by

χS(n) =

{
1 if n ∈ S,
0 if n 6∈ S.

In the general case we may transfer computability from functions on natural
numbers to other sets and structures by means of Gödel encodings. Suppose
we want to speak about computability on a set S. We find a representation
of elements of S by natural numbers, which is partial surjection q : N ⇀ S.
When q(n) = x we say that n represents or encodes element x. If we have two
representations q : N ⇀ S and q′ : N ⇀ T , we say that a function f : S → T is
computable if there exists a computable function g : N ⇀ N such that whenever
q(n) = x then q′(g(n)) = f(x).7

The idea of representations is in fact quite familiar to every programmer.
After all, in a digital computer every piece of data is encoded as a sequence of
0’s and 1’s. We have chosen to encode data in terms of numbers rather than
binary sequences, but that is a minor detail.

Finite binary sequences are easily encoded as natural numbers. For example,
we may encode the sequence a1 . . . an with the number 2n3a15a2 · · · pan

n+1, where
pi is the i-th prime number. Actually, it is better not to worry about encodings
of finite binary sequences too much, since digital computers work the other way
around: they encode numbers as finite binary sequences.

Since a tree is just a subset of 2∗ we know what it means for it to be
computable.

Definition 3.4 A tree T is computable if the map

a 7→

{
1 if a ∈ T ,
0 if a 6∈ T

is computable.

Suppose T is an infinite computable tree. Then we may computably enumer-
ate its leaves without repetition as follows. There is a computable enumeration
of all elements of 2∗, for example

0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, . . .

For each element of this sequence we test whether it belongs to T , and remove
those which do not.

7Which functions S → T are computable depends on the choice of representations q and q′.
Thus it is important that we define reasonable representations.

6

3.3 Construction of Kleene tree

Let us now show that in the computable world König’s Lemma fails quite badly.

Theorem 3.5 (Kleene [Kle52]) There exists an infinite computable tree with-
out a computable infinite path.

Proof. Let D be a program which computes function d from Theorem 3.3.
Note that the function d maps into {0, 1}. Given an input n, we may execute
D(n) step by step. In principle, we do not know how long it will take to compute
D(n), or whether the computation will ever stop. But we may always abort the
computation if it takes too long. So we define the k-th approximation to D to
be the program

D(k)(n) =

{
D(n) if D(n) terminates in ≤ k steps,
abort otherwise .

The function D(k) is computable and total, even if D is partial.
The idea for Kleene tree is to put in it those binary sequences “that could be

the sequence d”. Since no infinite binary sequence can actually be equal to d,
the tree will not contain any infinite paths. More precisely, let Kleene tree be

K = {a ∈ 2∗ | ∀1 ≤ k ≤ |a| . (D(|a|)(k) 6= abort =⇒ d(k) = ak)} .

We see that we put a1 . . . an in K when n computational steps are not sufficient
to detect a difference between the prefix d(0), d(1), . . . , d(n) and a1, a2, . . . , an.
In other words, “a could be a prefix of d”.

It is easy to see that K is a computable tree. Obviously ε ∈ K and K is
prefix-closed. The set K is computable: to compute whether a ∈ K we compute
for each k = 1, . . . , |a| whether D(|a|)(k) outputs abort. If it does not, it outputs
a 0 or a 1 which we then compare with ak.

The tree K is infinite because it contains sequences of every length. Given
any n ≥ 1, the sequence a1 . . . an with

ak =

{
d(k) if D(n)(k) 6= abort,
0 otherwise,

obviously is an element of K.
Finally, we show that every infinite computable sequence α ∈ #(2ω) has a

prefix which is not an element of K. Because α is computable there exists j ∈ N
such that α = ϕj . By Theorem 3.3 we have d(j)↓ and αj 6= d(j). Therefore
D(j) terminates within some number of steps, say m. But then α1 . . . αm 6∈ K
because D(m)(j) = d(j) 6= αj .

It is easy to see that #(2ω), viewed as a subspace of 2ω is not compact
because it is not a closed subspace: consider any α ∈ 2ω which is not computable
and observe that it is the limit of a (non-computable) sequence (βn)n∈N with
βn = α1 . . . αn000 · · · . But this observation is not very illuminating from the
point of view of computability theory. In computable analysis it is useful to
know that #(2ω) fails to be compact in a computable way, i.e., that there exists
a computable open cover such that for every finite subcover we can compute
a point in #(2ω) which is not covered by the subcover. This we can do using
Kleene tree.

7

Theorem 3.6 There is a computable sequence p : N → 2∗ such that #(2ω) is
covered by

⋃
n∈N #Bp(n) but every finite subcover of {#Bp(n)}n∈N fails to cover

all of #(2ω). Moreover, there exists a computable map f : N → #(2ω) such that
the finite subcover #Bp(1), . . . ,#Bp(n) does not contain f(n).

Proof. Let p be an enumeration of the leaves of Kleene tree K. Because
every α ∈ #(2ω) exits K,

⋃
n∈N #Bp(n) covers all of #(2ω).

Let f(n) be the binary sequence which starts with p(n + 1) and continues
with all 0’s after that:

f(n)k =

{
p(n + 1)k if k ≤ |p(n + 1)|,
0 otherwise

Clearly, f(n) is a computable binary sequence. Since p enumerates the leaves
of K without repetition, it must be the case that p(k) 6v f(n) for all k ≤ n,
otherwise we would have p(k) v p(n + 1) or p(n + 1) v p(k), both of which are
impossible because p enumerates the leaves of a tree without repetition. This
shows that f(n) 6∈ #Bp(1) ∪ · · · ∪#Bp(n).

References

[Kle52] S.C. Kleene. Recursive functions and intuitionistic mathematics. In
L.M. Graves, E. Hille, P.A. Smith, and O. Zariski, editors, Proceedings
of the International Congress of Mathemaiticans, August 1950. Cam-
bridge, Mass., pages 679–685, 1952.

[Odi89] P. Odifreddi. Classical Recursion Theory, volume 125 of Studies in logic
and the foundations of mathematics. North-Holland, 1989.

[Sim98] S.G. Simpson. Subsystems of Second Order Arithmetic. Springer-
Verlag, 1998. ISBN 3-540-64882-8.

8

