Specifications via Realizability

Andrej Bauer Department of Mathematics and Physics University of Ljubljana, Slovenia

> Christopher A. Stone Computer Science Department Harvey Mudd College, USA

CLASE (@ ETAPS), Edinburgh UK, April 2005

Motivation & Background

Computable and constructive mathematics deals with computable aspects of mathematics. We can extract programs from constructive proofs. This is often done in an ad-hoc manner:

Motivation & Background

Computable and constructive mathematics deals with computable aspects of mathematics. We can extract programs from constructive proofs. This is often done in an ad-hoc manner:

The following would be better:

Motivation & Background

Computable and constructive mathematics deals with computable aspects of mathematics. We can extract programs from constructive proofs. This is often done in an ad-hoc manner:

The following would be better:

We are going to speak about tool #1 only.

Motivation & Background cont.

Why do we even need a tool for translation of theorems to specifications?

1. We want to express theorems directly in *full first-order logic* rather than a specification language.

Motivation & Background cont.

Why do we even need a tool for translation of theorems to specifications?

- 1. We want to express theorems directly in *full first-order logic* rather than a specification language.
- 2. It turns out that theorems and constructions of computable mathematics get *too complicated* for manual translation.

Try writing down a specification for the solution operator of ordinary linear differential equations on smooth manifolds.

Motivation & Background cont.

Why do we even need a tool for translation of theorems to specifications?

- 1. We want to express theorems directly in *full first-order logic* rather than a specification language.
- 2. It turns out that theorems and constructions of computable mathematics get *too complicated* for manual translation.

Try writing down a specifi cation for the solution operator of ordinary linear differential equations on smooth manifolds.

Why didn't you extract programs from proofs?

- 1. We might have if we already had tool #1.
- 2. It is often easier to write a program than a formalized proof.
- 3. We are hoping others have done it already.

Overview

- 1. Theories & specifications
- 2. Realizability translation
- 3. Concluding remarks

Theories

We axiomatize mathematical structures in (constructive) first-order logic with (predicative) set theory.

- logic: $\land \Longrightarrow \lor \exists \forall \top \bot =$.
- sets: $A \times B$, $A \to B$, A + B, $\{x : A \mid \phi(x)\}$, $A / \neg \neg \rho$.

This language is close to what is used in practice, except for missing dependent types.

A theory is a list of sets, predicates/relations, constants and axioms.

Example

theory DenseLinearOrder =
thy
set s
relation (<) : s * s
implicit x, y, z : s
axiom transitive x y z = $(x < y and y < z) => x < z$
axiom assymetric $x y = not (x < y and y < x)$
axiom linear x y z = $(x < y) => (x < z \text{ or } z < y)$
axiom dense x y $= x < y =>$ some z.(x < z and z < y)
end

Capabilities not shown in previous example

• A theory may be *parameterized* by a model of another theory. E.g., the theory of vector spaces *over* a field *F*.

Capabilities *not* shown in previous example

- A theory may be *parameterized* by a model of another theory. E.g., the theory of vector spaces *over* a field *F*.
- An axiom may express a *universal property* by quantifying over all structures of a given kind.

Finite lists over a set A are the *initial algebra* for the functor $X \mapsto A + X$.

Capabilities *not* shown in previous example

- A theory may be *parameterized* by a model of another theory. E.g., the theory of vector spaces *over* a field *F*.
- An axiom may express a *universal property* by quantifying over all structures of a given kind.

Finite lists over a set A are the *initial algebra* for the functor $X \mapsto A + X$.

Thus our system allows theories and axioms to be parameterized by models of theories.

Specifi cations

- Specifications are ML signatures with assertions.
- Assertions are *negative* formulas:

$$\bot \quad \top \quad = \quad \land \quad \Longrightarrow \quad \forall$$

Specifi cations

- Specifications are ML signatures with assertions.
- Assertions are *negative* formulas:

$$\bot \quad \top \quad = \quad \land \quad \Longrightarrow \quad \forall$$

• The classical and constructive meanings of negative formulas coincide. Benefit: programmers who are not familiar with constructive logic will understand such specifications.

Specifi cations

- Specifications are ML signatures with assertions.
- Assertions are *negative* formulas:

$$\bot \quad \top \quad = \quad \land \quad \Longrightarrow \quad \forall$$

- The classical and constructive meanings of negative formulas coincide. Benefit: programmers who are not familiar with constructive logic will understand such specifications.
- Parameterized specifications are signatures for ML functors with assertions.

Overview

- ✓ Theories & specifications
- Realizability translation
- 3. Concluding remarks

- We translate theories to specifications using the *realizability interpretation*, originally defined by S.C. Kleene.
- A common alternative is the *Curry-Howard isomorphism*, a.k.a. "propositions-as-types".

- We translate theories to specifications using the *realizability interpretation*, originally defined by S.C. Kleene.
- A common alternative is the *Curry-Howard isomorphism*, a.k.a. "propositions-as-types".

These two are similar but *not* equivalent and in fact the Curry-Howard isomorphism is less suitable for our needs:

- We translate theories to specifications using the *realizability interpretation*, originally defined by S.C. Kleene.
- A common alternative is the *Curry-Howard isomorphism*, a.k.a. "propositions-as-types".

These two are similar but *not* equivalent and in fact the Curry-Howard isomorphism is less suitable for our needs:

• Not every programming language is "just λ -calculus".

Certain algorithms in computable analysis *require* programming features like exceptions, timeouts, and decompilation.

- We translate theories to specifications using the *realizability interpretation*, originally defined by S.C. Kleene.
- A common alternative is the *Curry-Howard isomorphism*, a.k.a. "propositions-as-types".

These two are similar but *not* equivalent and in fact the Curry-Howard isomorphism is less suitable for our needs:

- Not every programming language is "just λ-calculus".
 Certain algorithms in computable analysis *require* programming features like exceptions, timeouts, and decompilation.
- In computable mathematics *partial* functions are unavoidable.
 One *cannot* make every function total by some trivial trick such as prescribing a default value outside of domain of definition.

Realizability interpretation

- 1. A set A is interpreted by an underlying type of realizers |A| together with a partial equality predicate $=_A$ on |A|.
 - $t =_A s$ means "t and s realize (represent) the same element of A".
 - Also write $t \Vdash_A x$ to mean 't realizes $x \in A$ ''.
 - Propositions-as-types: set = type.

Realizability interpretation

- 1. A set A is interpreted by an underlying type of realizers |A| together with a partial equality predicate $=_A$ on |A|.
 - $t =_A s$ means "t and s realize (represent) the same element of A".
 - Also write $t \Vdash_A x$ to mean "t realizes $x \in A$ ".
 - Propositions-as-types: set = type.
- 2. To every predicate ϕ we assign a type $|\phi|$ and specify when a term of type $|\phi|$ *realizes* ϕ .
 - We write $t \Vdash \phi$ when t realizes ϕ .
 - Some terms of type |φ| may not be valid realizers, e.g., because they diverge.
 - Propositions-as-types: proof = program.

Realizability interpretation cont.

Consider a subset $S = \{x : A \mid \phi(x)\}$: $|S| = |A| \times |\phi|$ $(t_1, t_2) \Vdash_S \iota_S(x)$ iff $t_1 \Vdash_A x$ and $t_2 \Vdash \phi(x)$

Implication:

$$\begin{split} |\phi \implies \psi| &= |\phi| \rightarrow |\psi| \\ t \Vdash \phi \implies \psi \quad \text{iff} \quad \text{for all } u \in |\phi|, \text{ if } u \Vdash \phi \text{ then } t \, u \Vdash \psi \end{split}$$

Existential quantifi er:

$$|\exists x \in A. \phi(x)| = |\phi| \times |\psi|$$

(t₁, t₂) $\Vdash \exists x \in A.\phi(x)$ iff $t_1 \Vdash_A x$ and $t_2 \Vdash \phi(x)$

The translation procedure

Sets are translated to the corresponding datatypes.

For translation of propositions, we use:

Theorem:

In realizability interpretation, every ϕ is equivalent to $\exists r \in |\phi|$. $\phi'(r)$, where $\phi'(r)$ is a negative formula.

Intuitive meaning:

r is the *computational content* of ϕ and $\phi'(r)$ says "r realizes ϕ ".

The translation procedure

Sets are translated to the corresponding datatypes.

For translation of propositions, we use:

Theorem:

In realizability interpretation, every ϕ is equivalent to $\exists r \in |\phi|$. $\phi'(r)$, where $\phi'(r)$ is a negative formula.

Intuitive meaning:

r is the *computational content* of ϕ and $\phi'(r)$ says "r realizes ϕ ".

A theorem ϕ is translated to the specification

```
valr: |\phi|
(* Assertion \phi'(r) *)
```

Overview

- ✓ Theories & signatures
- ✓ Realizability translation
- Concluding remarks

Related Work

• Realizability:

Kleene, Troelstra, Hyland, van Oosten, Longley, ...

• Constructive and computable mathematics:

Bishop & Bridges, Markov, Pour El & Richard, Ko, Weihrauch, Schröder, Hertling, Brattka, Scott, Edalat, ...

- Extraction of signatures and programs:
 - Schwichtenberg, Hayashi, Constable, Coquand, Huet, ...
 - Poernomo, Crossley & Wirsing 2002 (extraction of SML structures and programs)
 - Cruz-Filipe & Spitters (extraction from Fundamental theorem of algebra)

Contributions

We provide a tool, RZ, for automated translation of mathematical theories to specifications.

- RZ should hopefully prove useful in bringing constructive mathematics closer to programmers.
- RZ should hopefully be a good source of interesting specifications.
- RZ demonstrates how the realizability interpretation can be used as an alternative to the Curry-Howard isomorphism.

Future Work

• Experiment with non-trivial theories.

Real numbers, differentiable functions, Banach and Hilbert spaces, (weak) set theories, ...

• Implement dependent types.

Note: under realizability interpretation the dependent types translate to *simple* types, so we do not need a programming language with dependent types.

• Hook up RZ with a program extraction tool.