Specifications via Realizability

Andre) Bauer
Department of Mathematics and Physics
University of Ljubljana, Slovenia

Christopher A. Stone

Computer Science Department
Harvey Mudd College, USA

CLASE (@ ETAPS), Edinburgh UK, April 2005

Motivation & Background

Computable and constructive mathematics deals with computable aspects of
mathematics. We can extract programs from constructive proofs. This is
often done in an ad-hoc manner:

2117

Motivation & Background

Computable and constructive mathematics deals with computable aspects of
mathematics. We can extract programs from constructive proofs. This is
often done in an ad-hoc manner:

grad student
theorem & proof program ‘

The following would be better:

2117

Motivation & Background

Computable and constructive mathematics deals with computable aspects of
mathematics. We can extract programs from constructive proofs. This is

often done in an ad-hoc manner:

theorem & proof

grad student

program ‘

The following would be better:

tool #1

theorem

proof

tool #2

specification ‘

We are going to speak about tool #1 only.

program ‘

2117

Motivation & Background cont.

Why do we even need a tool for translation of theorems to specifications?

1. We want to express theorems directly in full first-order logic rather than
a specification language.

3/17

Motivation & Background cont.

Why do we even need a tool for translation of theorems to specifications?

1. We want to express theorems directly in full first-order logic rather than
a specification language.

2. It turns out that theorems and constructions of computable mathematics
get too complicated for manual translation.

Try writing down a specification for the solution operator of ordinary
linear differential equations on smooth manifolds.

3/17

Motivation & Background cont.

Why do we even need a tool for translation of theorems to specifications?

1. We want to express theorems directly in full first-order logic rather than
a specification language.

2. It turns out that theorems and constructions of computable mathematics
get too complicated for manual translation.

Try writing down a specification for the solution operator of ordinary
linear differential equations on smooth manifolds.

Why didn’t you extract programs from proofs?
1. We might have if we already had tool #1.
2. It is often easier to write a program than a formalized proof.

3. We are hoping others have done it already.

3/17

Overview

1. Theories & specifications
2. Realizability translation

3. Concluding remarks

4/17

Theories
We axiomatize mathematical structures in (constructive) first-order logic
with (predicative) set theory.
e logic: A=V IV T L=
o sets: Ax B,A— B, A+ B, {:E A ‘ ¢(x)}, A/==p.

This language is close to what is used in practice, except for missing
dependent types.

A theory Is a list of sets, predicates/relations, constants and axioms.

5/17

Example

t heory DenselLi near Order =
t hy
set s
relation (<) : s * s
inplicit X, y, z . s

axiomtransitive x y z = (x <y andy < 2z) =>Xx < Z

axi om assynetric x vy not (x <y and y < Xx)

(X <y) =>(x <z or z <Yy)

axiomlinear x y z

axi om dense x vy =X <y =>sone z.(x <z and z <Yy)
end

6/17

Capabilities not shown in previous example

e A theory may be parameterized by a model of another theory.

E.g., the theory of vector spaces over a field F..

7117

Capabilities not shown in previous example

e A theory may be parameterized by a model of another theory.
E.g., the theory of vector spaces over a field F..
e An axiom may express a universal property by quantifying over all
structures of a given kind.

Finite lists over a set A are the initial algebra for the functor
X — A+ X.

7117

Capabilities not shown in previous example

e A theory may be parameterized by a model of another theory.
E.g., the theory of vector spaces over a field F..
e An axiom may express a universal property by quantifying over all
structures of a given Kkind.
Finite lists over a set A are the initial algebra for the functor
X— A+ X.

Thus our system allows theories and axioms to be parameterized by models
of theories.

7117

Specifi cations

e Specifications are ML signatures with assertions.

e Assertions are negative formulas:

<. T = AN = VY

8/17

Specifi cations

e Specifications are ML signatures with assertions.

e Assertions are negative formulas:

<. T = AN = VY

e The classical and constructive meanings of negative formulas coincide.

Benefit: programmers who are not familiar with constructive logic will
understand such specifications.

8/17

Specifi cations

Specifications are ML signatures with assertions.

Assertions are negative formulas:

<. T = AN = VY

The classical and constructive meanings of negative formulas coincide.

Benefit: programmers who are not familiar with constructive logic will
understand such specifications.

Parameterized specifications are signatures for ML functors with
assertions.

8/17

Overview

[1 Theories & specifications
[1 Realizability translation

3. Concluding remarks

9/17

Realizability translation

e \We translate theories to specifications using the realizability
Interpretation, originally defined by S.C. Kleene.

e A common alternative is the Curry-Howard isomorphism, a.k.a.
“propositions-as-types”.

10/17

Realizability translation

e \We translate theories to specifications using the realizability
Interpretation, originally defined by S.C. Kleene.

e A common alternative is the Curry-Howard isomorphism, a.k.a.
“propositions-as-types”.

These two are similar but not equivalent and in fact the Curry-Howard
Isomorphism is less suitable for our needs:

10/17

Realizability translation

e \We translate theories to specifications using the realizability
Interpretation, originally defined by S.C. Kleene.

e A common alternative is the Curry-Howard isomorphism, a.k.a.
“propositions-as-types”.

These two are similar but not equivalent and in fact the Curry-Howard
Isomorphism is less suitable for our needs:

e Not every programming language is “just A-calculus”.

Certain algorithms in computable analysis require programming
features like exceptions, timeouts, and decompilation.

10/17

Realizability translation

e \We translate theories to specifications using the realizability
Interpretation, originally defined by S.C. Kleene.

e A common alternative is the Curry-Howard isomorphism, a.k.a.
“propositions-as-types”.
These two are similar but not equivalent and in fact the Curry-Howard
Isomorphism is less suitable for our needs:
e Not every programming language is “just A-calculus”.
Certain algorithms in computable analysis require programming
features like exceptions, timeouts, and decompilation.
e In computable mathematics partial functions are unavoidable.

One cannot make every function total by some trivial trick such as

prescribing a default value outside of domain of definition.
10/17

Realizability interpretation

1. Aset A is interpreted by an underlying type of realizers | A| together
with a partial equality predicate =4 on |A].

e t =, smeans “t and s realize (represent) the same element of A”.
e Alsowrite ¢t IF4 x to mean “t realizesx € A”.

e Propositions-as-types: set = type.

11/17

Realizability interpretation

1. Aset A is interpreted by an underlying type of realizers | A| together
with a partial equality predicate =4 on |A].

e t =, smeans “t and s realize (represent) the same element of A”.
e Alsowrite ¢t IF4 x to mean “t realizesx € A”.
e Propositions-as-types: set = type.

2. To every predicate ¢ we assign a type |¢| and specify when a term of
type |¢| realizes ¢.

o We write t IF ¢ when ¢ realizes ¢.

e Some terms of type |¢| may not be valid realizers, e.g., because they
diverge.

e Propositions-as-types: proof = program.

11/17

Realizability interpretation cont.

Consider asubset S = {z : A | ¢(x)}:

S| = A] x ||
(tl,tg) “_S Ls(m) Iff t1lFa x and to I gb(ac)

Implication:

o = Y| = 0| — ||
tlF¢ = o iff forallu € |¢|, iful- pthentwu -

Existential quantifier:

F3z € A ¢(x)| = |@] x [
(t1,t2) IF dz € A.p(x) iff 114 xandte IF ¢(x)

12/17

The trandation procedure

Sets are translated to the corresponding datatypes.
For translation of propositions, we use:

Theorem:

In realizability interpretation, every ¢ is equivalent to 3r € |¢|. ¢’ (r),
where ¢'(r) is a negative formula.

Intuitive meaning:
r is the computational content of ¢ and ¢’ (r) says “r realizes ¢”.

13/17

The trandation procedure

Sets are translated to the corresponding datatypes.
For translation of propositions, we use:

Theorem:

In realizability interpretation, every ¢ is equivalent to 3r € |¢|. ¢’ (r),
where ¢'(r) is a negative formula.

Intuitive meaning:
r is the computational content of ¢ and ¢’ (r) says “r realizes ¢”.

A theorem ¢ Is translated to the specification

valr: |@|
(* Assertion ¢'(r) *)

13/17

Overview

[1 Theories & signatures
(] Realizability translation

[1 Concluding remarks

14/17

Related Work

e Realizability:

Kleene, Troelstra, Hyland, van Oosten, Longley, . ..

e Constructive and computable mathematics:
Bishop & Bridges, Markov, Pour El & Richard, Ko, Weihrauch,
Schroder, Hertling, Brattka, Scott, Edalat, . ..
e EXxtraction of signatures and programs:
— Schwichtenberg, Hayashi, Constable, Coquand, Huet, ...

— Poernomo, Crossley & Wirsing 2002 (extraction of SML structures and
programs)

— Cruz-Filipe & Spitters (extraction from Fundamental theorem of algebra)

15/17

Contributions

We provide a tool, RZ, for automated translation of mathematical theories to
specifications.

e RZ should hopefully prove useful in bringing constructive mathematics
closer to programmers.

e RZ should hopefully be a good source of interesting specifications.

e RZ demonstrates how the realizability interpretation can be used as an
alternative to the Curry-Howard isomorphism.

16/17

Future Work

e EXxperiment with non-trivial theories.

Real numbers, differentiable functions, Banach and Hilbert spaces,
(weak) set theories, ...

e Implement dependent types.

Note: under realizability interpretation the dependent types translate to
simple types, so we do not need a programming language with
dependent types.

e Hook up RZ with a program extraction tool.

17/17

