First Steps in Synthetic Computability

Andrej Bauer

Department of Mathematics and Physics University of Ljubljana Slovenia

MATHLOGAPS, Fischbachau, September 2005

How cool is computability theory?

- ► Way cool:
 - surprising theorems
 - clever programs
 - clever proofs
- ▶ Way horrible, it contains expressions like

$$\varphi_{p(r(i,\varphi_{q(i)}(\hat{g}(n,i,m)+1),m),\varphi_{q(i)}(\hat{g}(n,i,m)-1))}(a-\hat{g}(n,i,m))$$

- Can we do computability theory as "ordinary" math?
 - use axiomatic method
 - argue conceptually and abstractly
 - use customary mathematical notions

Related Work

- Friedman [1971], axiomatizes coding and universal functions
- Moschovakis [1971] & Fenstad [1974], axiomatize computations and subcomputations
- ▶ Hyland [1982], effective topos
- Richman [1984], an axiom for effective enumerability of partial functions
- We shall follow Richman [1984] in style, and borrow ideas from Rosolini [1986], Berger [1983], and Spreen [1998].

Computability without Turing Machines

- Use ordinary set theory: no Turing Machines, or other special notions.
- ▶ Add a couple of axioms about sets of numbers.
- ► The underlying logic is *intuitionistic*: this is a theorem, not a political conviction.
- Interpretation in the effective topos translates our theory back to classical recursion theory.

Basic setup

- Intuitionistic logic: generally, no Law of Excluded Middle or Proof by Contradiction.
- ▶ As in Bishop-style constructive mathematics, we do not accept the full Axiom of Choice, but only Number Choice (and Dependent Choice).
- Basic sets:

$$\emptyset$$
, $1 = \{*\}$, $\mathbb{N} = \{0, 1, 2, \ldots\}$

► Set operations:

$$A \times B$$
, $A + B$, $B^A = A \rightarrow B$, $\{x \in A \mid p(x)\}$, $\mathcal{P}A$

- ▶ We say that *A* is
 - ▶ *non-empty* if $\neg \forall x \in A . \bot$,
 - ▶ inhabited if $\exists x \in A . \top$.

Some interesting sets

▶ The set of truth values:

$$\Omega = \mathcal{P} \mathbf{1}$$
 truth $\top = \mathbf{1}, \; \; \text{falsehood} \; \bot = \emptyset$

▶ The set of *decidable* truth values:

$$2 = \{0, 1\} = \{ p \in \Omega \mid p \vee \neg p \} ,$$

where we write $1 = \top$ and $0 = \bot$.

▶ The set of *classical* truth values:

$$\Omega_{\neg\neg} = \{ p \in \Omega \mid \neg \neg p = p \} .$$

▶ $2 \subseteq \Omega_{\neg\neg} \subseteq \Omega$.

Decidable and classical sets

- ▶ A subset $S \subseteq A$ is equivalently given by its characteristic map $\chi_S : A \to \Omega$, $\chi_S(x) = (x \in S)$.
- ▶ A subset $S \subseteq A$ is *decidable* if $\chi_S : A \rightarrow \mathbf{2}$, equivalently

$$\forall x \in A . (x \in S \lor x \notin S)$$
.

▶ A subset $S \subseteq A$ is *classical* if $\chi_S : A \to \Omega_{\neg \neg}$, equivalently

$$\forall x \in A . (\neg (x \notin S) \implies x \in S) .$$

The generic convergent sequence

▶ A useful set is the *generic convergent sequence*:

$$\mathbb{N}^+ = \{ a \in \mathbf{2}^{\mathbb{N}} \mid \forall k \in \mathbb{N} . a_k \leq a_{k+1} \} .$$

- ▶ We have $\mathbb{N} \subseteq \mathbb{N}^+$ via $n \mapsto \lambda k$. $(k \le n)$.
- ▶ But there is also $\infty = \lambda k$. 0.
- $ightharpoonup \mathbb{N}^+$ can be thought of as the one-point compactification of \mathbb{N} .

Enumerable & finite sets

- ▶ *A* is *finite* if there exist $n \in \mathbb{N}$ and an onto map $e : \{1, ..., n\} \rightarrow A$, called a *listing* of A. An element may be listed more than once.
- ▶ *A* is *enumerable* (*countable*) if there exists an onto map $e : \mathbb{N} \rightarrow 1 + A$, called an *enumeration* of *A*. For inhabited *A* we may take $e : \mathbb{N} \rightarrow A$.
- ▶ *A* is *infinite* if there exists an injective $a : \mathbb{N} \rightarrow A$.

Lawvere → Cantor

Theorem (Lawvere)

If $e: A \to B^A$ *is onto then* B *has the fixed point property.*

Proof.

Given
$$f : B \to B$$
, there is $x \in A$ such that $e(x) = \lambda y : A \cdot f(e(y)(y))$. Then $e(x)(x) = f(e(x)(x))$.

Corollary (Cantor)

There is no onto map $e : A \rightarrow \mathcal{P}A$.

Proof.

$$\mathcal{P}A = \Omega^A$$
 and $\neg : \Omega \to \Omega$ does not have a fixed point.

Non-enumerability of Cantor and Baire space

Corollary $2^{\mathbb{N}}$ and $\mathbb{N}^{\mathbb{N}}$ are not enumerable. Proof. 2 and \mathbb{N} do not have the fixed-point property.

We have proved our first synthetic theorem: there are no effective enumerations of recursive sets and total recursive functions.

Projection Theorem

Recall: the *projection* of $S \subseteq A \times B$ is the set

$$\{x \in A \mid \exists y \in B . \langle x, y \rangle \in S\}$$
.

Theorem (Projection)

A subset of $\mathbb N$ is enumerable iff it is the projection of a decidable subset of $\mathbb N \times \mathbb N$.

Proof.

If *A* is enumerated by $e : \mathbb{N} \to 1 + A$ then *A* is the projection of the *graph* of *e*.

If *A* is the projection of $B \subseteq \mathbb{N} \times \mathbb{N}$, define $e : \mathbb{N} \times \mathbb{N} \to 1 + A$ by

$$e\langle m,n \rangle = \text{if } \langle m,n \rangle \in B \text{ then } m \text{ else } \star$$
 . \square

Semidecidable sets

▶ A *semidecidable truth value* $p \in \Omega$ is one of the form, for some $d : \mathbb{N} \to \mathbf{2}$,

$$p = \exists n \in \mathbb{N} . d(n) .$$

▶ The set of semidecidable truth values:

$$\Sigma = \{ p \in \Omega \mid \exists d \in \mathbf{2}^{\mathbb{N}} . p = \exists n \in \mathbb{N} . d(n) \} .$$

This is Rosolini's dominance.

- ▶ $2 \subseteq \Sigma \subseteq \Omega$.
- ▶ A subset $S \subseteq \mathbb{N}$ is *semidecidable* if $\chi_S : A \to \Sigma$.

Σ as a quotient of \mathbb{N}^+

- ▶ Σ is a quotient of $2^{\mathbb{N}}$ via taking countable joins: $d \in 2^{\mathbb{N}}$ is mapped to $\exists n \in \mathbb{N} . d(n)$.
- ▶ Σ is a quotient of \mathbb{N}^+ via the map $q: \mathbb{N}^+ \to \Sigma$, defined by $q(t) = (t < \infty)$.
- ▶ If q(t) = s we say that t is a *time at which s becomes true*. Beware, t is not uniquely determined!

Semidecidable subsets

Theorem

The enumerable subsets of $\mathbb N$ are precisely the semidecidable subsets of $\mathbb N$.

Proof.

By Projection Theorem, an enumerable $A \subseteq \mathbb{N}$ is the projection of a decidable $B \subseteq \mathbb{N} \times \mathbb{N}$. Then $n \in A$ iff $\exists m \in \mathbb{N} . \langle n, m \rangle \in B$. Conversely, if $A \in \Sigma^{\mathbb{N}}$, by Number Choice there is $d : \mathbb{N} \times \mathbb{N} \to \mathbf{2}$ such that $n \in A$ iff $\exists m \in \mathbb{N} . d(m, n)$.

The enumerable subsets of \mathbb{N} :

$$\mathcal{E} = \Sigma^{\mathbb{N}}$$
 .

The Topological View

- \triangleright Σ is the *Sierpinski space*.
- $ightharpoonup \Sigma$ is closed under finite meets, enumerable joins, and finite meets distribute over enumerable joins.
- ightharpoonup A *σ-frame* is a lattice with enumerable joins that distribute over finite meets.
- ▶ The topology of A is Σ^A .

Partial functions

- ▶ A partial function $f : A \rightarrow B$ is a function $f : A' \rightarrow B$ defined on a subset $A' \subseteq A$, called the *domain* of f.
- ▶ Equivalently, it is a function $f : A \rightarrow \widetilde{B}$, where

$$\widetilde{B} = \{ s \in \mathcal{P}B \mid \forall x, y \in B : (x \in s \land y \in s \implies x = y) \}.$$

- ▶ The singleton map $\{-\}: B \to \widetilde{B}$ embeds B in B.
- ▶ For $s \in \widetilde{B}$, write $s \downarrow$ when s is inhabited.
- ▶ Which partial functions $\mathbb{N} \to \widetilde{\mathbb{N}}$ have enumerable graphs?

Σ-partial functions

Proposition

 $f: \mathbb{N} \to \widetilde{\mathbb{N}}$ has an enumerable graph iff $f(n) \downarrow \in \Sigma$ for all $n \in \mathbb{N}$.

Define the *lifting* operation

$$A_{\perp} = \{ s \in \widetilde{A} \mid s \downarrow \in \Sigma \} .$$

For $f: A \to B$ define $f_{\perp}: A_{\perp} \to B_{\perp}$ to be

$$f_{\perp}(s) = \{f(x) \mid x \in s\} .$$

A Σ-partial function is a function $f : A \rightarrow B_{\perp}$.

Domains of Σ -partial functions

Proposition

A subset is semidecidable iff it is the domain of a Σ -partial function.

Proof.

A semidecidable subset $S \in \Sigma^A$ is the domain of its characteristic map $\chi_S : A \to \Sigma = \mathbf{1}_{\perp}$.

If $f: A \to B_{\perp}$ is Σ -partial then its domain is the set $\{x \in A \mid f(x)\downarrow\}$, which is obviously semidecidable.

The Single-Value Theorem

A *selection* for $R \subseteq A \times B$ is a partial map $f : A \longrightarrow B$ such that, for every $x \in A$,

$$\exists y \in B . R(x,y) \implies f(x) \downarrow \land R(x,f(x)) .$$

This is like a choice function, expect it only chooses when there is something to choose from.

Theorem (Single Value)

Every open relation $R \in \Sigma^{\mathbb{N} \times \mathbb{N}}$ has a Σ -partial selection.

Axiom of Enumerability

Axiom (Enumerability)

There are enumerably many enumerable sets of numbers.

Let $W : \mathbb{N} \to \mathcal{E}$ be an enumeration.

Proposition

 Σ and $\mathcal E$ have the fixed-point property.

Proof.

By Lawvere, $W : \mathbb{N} \twoheadrightarrow \mathcal{E} = \Sigma^{\mathbb{N}} \cong \Sigma^{\mathbb{N} \times \mathbb{N}} \cong \mathcal{E}^{\mathbb{N}}$.

The Law of Excluded Middle Fails

The Law of Excluded Middle says $2 = \Omega$.

Corollary

The Law of Excluded Middle is false.

Proof.

Among the sets $2 \subseteq \Sigma \subseteq \Omega$ only the middle one has the fixed-point property, so $2 \neq \Sigma \neq \Omega$.

Enumerability of $\mathbb{N} \to \mathbb{N}_{\perp}$

Proposition

 $\mathbb{N} \to \mathbb{N}_{\perp}$ is enumerable.

Proof.

Let $V: \mathbb{N} \to \Sigma^{\mathbb{N} \times \mathbb{N}}$ be an enumeration. By Single-Value Theorem and Number Choice, there is $\varphi: \mathbb{N} \to (\mathbb{N} \to \mathbb{N}_{\perp})$ such that φ_n is a selection of V_n . The map φ is onto, as every $f: \mathbb{N} \to \mathbb{N}_{\perp}$ is the only selection of its graph.

Corollary (Church's Thesis)

 $\mathbb{N}^{\mathbb{N}}$ is subcountable (because $\mathbb{N}^{\mathbb{N}} \subseteq \mathbb{N}^{\mathbb{N}}_{\perp}$).

In other words, $\forall f \in \mathbb{N}^{\mathbb{N}} . \exists n \in \mathbb{N} . f = \varphi_n$.

Focal sets

▶ A *focal set* is a set *A* together with a map $\epsilon_A : A_{\perp} \to A$ such that $\epsilon_A(\{x\}) = x$ for all $x \in A$:

The *focus* of *A* is $\bot_A = \epsilon_A(\bot)$.

▶ A lifted set A_{\perp} is always focal (because lifting is a monad whose unit is $\{-\}$).

Enumerable focal sets

- ▶ Enumerable focal sets, known as *Eršov complete sets*, have good properties.
- ▶ A *flat domain* A_{\perp} is focal. It is enumerable if A is decidable and enumerable.
- ▶ If *A* is enumerable and focal then so is $A^{\mathbb{N}}$:

$$\mathbb{N} \stackrel{\varphi}{\longrightarrow} \mathbb{N}_{\perp}^{\mathbb{N}} \stackrel{e_{\perp}^{\mathbb{N}}}{\longrightarrow} A_{\perp}^{\mathbb{N}} \stackrel{\epsilon_{A}^{\mathbb{N}}}{\longrightarrow} A^{\mathbb{N}}$$

Some enumerable focal sets are

$$\Sigma^{\mathbb{N}}, \quad \mathbf{2}^{\mathbb{N}}_{\perp}, \quad \mathbb{N}^{\mathbb{N}}_{\perp}.$$

Topological Exterior and Creative Sets

- ► The *exterior* of an open set is the largest open set disjoint from it.
- ▶ An open set $U \in \Sigma^A$ is *creative* if it is without exterior: every $V \in \Sigma^A$ disjoint from U can be enlarged and still be disjoint from U.

Theorem

There exists a creative subset of \mathbb{N} *.*

Proof.

The familiar $K = \{n \in \mathbb{N} \mid n \in W_n\}$ is creative. Given any $V \in \mathcal{E}$ with $V = W_k$ and $K \cap V = \emptyset$, we have $k \notin V$, so $V' = V \cup \{k\}$ is larger and still disjoint from K.

Immune and Simple Sets

- ▶ A set is *immune* if it is neither finite nor infinite.
- ▶ A set is *simple* if it is open and its complement is immune.

Theorem

There exists a closed subset of $\mathbb N$ *which is neither finite nor infinite.*

Proof.

```
Following Post, consider P = \{ \langle m, n \rangle \in \mathbb{N} \times \mathbb{N} \mid n > 2m \land n \in W_m \}, and let f : \mathbb{N} \to \mathbb{N}_\perp be a selection for P. Then S = \{ n \in \mathbb{N} \mid \exists m \in \mathbb{N} . f(m) = n \} is the complement of the set we are looking for.
```

Because f(m) > 2m the set $\mathbb{N} \setminus S$ cannot be finite.

For any infinite enumerable set $U \subseteq \mathbb{N} \setminus S$ with $U = W_m$, we have $f(m) \downarrow$, $f(m) \in W_m = U$, and $f(m) \in S$, hence U is not contained in $\mathbb{N} \setminus S$.

Inseparable sets

Theorem

There exists an element of Plotkin's $2^{\mathbb{N}}_{\perp}$ that is inconsistent with every maximal element of $2^{\mathbb{N}}_{\perp}$.

Proof.

Because 2_{\perp} is focal and enumerable, $2_{\perp}^{\mathbb{N}}$ is as well. Let $\psi: \mathbb{N} \to 2_{\perp}^{\mathbb{N}}$ be an enumeration, and let $t: 2_{\perp} \to 2_{\perp}$ be the isomorphism $t(x) = \neg_{\perp} x$ which exchanges 0 and 1, and fixes \perp . Consider $a \in 2_{\perp}^{\mathbb{N}}$ defined by $a(n) = t(\psi_n(n))$. If $b \in 2_{\perp}^{\mathbb{N}}$ is maximal with $b = \psi_k$, then $a(k) = \neg \psi_k(k) = \neg b(k)$. Because a(k) and b(k) are both total and different they are inconsistent. Hence a and b are inconsistent.

End of Part I

Let's get some coffee.

Part II

- 1. Quick overview of Part I
- 2. Post's Theorem and Markov Principle
- 3. Recursion Theorem
- 4. Rice-Shapiro & Myhill-Shepherdson
- 5. Recursive Analysis

Recall from Part I

Truth values:

- ▶ truth values $\Omega = \mathcal{P}1$,
- ▶ decidable truth values $2 = \{p \in \Omega \mid p \vee \neg p\}$,
- ▶ classical truth values $\Omega_{\neg\neg} = \{p \in \Omega \mid \neg\neg p = p\}$,
- semidecidable truth values

$$\Sigma = \{ p \in \Omega \mid \exists d \in \mathbf{2}^{\mathbb{N}} . p = (\exists n \in \mathbb{N} . d(n) = 1) \} .$$

Enumerable, or semidecidable, subsets of \mathbb{N} :

$$\mathcal{E} = \Sigma^{\mathbb{N}}$$
 .

 Σ -partial functions: $\mathbb{N} \to \mathbb{N}_{\perp}$.

Axiom of Enumerability

Axiom (Enumerability)

There are enumerably many enumerable sets of numbers.

An enumeration $W : \mathbb{N} \to \mathcal{E}$.

Consequences:

- ▶ Σ and \mathcal{E} have the fixed-point property,
- ▶ Law of Excluded Middle is false,
- ▶ \mathbb{N} → \mathbb{N}_{\perp} is enumerable,
- Other enumerable sets:
 - A focal and enumerable $\implies A^{\mathbb{N}}$ focal and enumerable,
 - ▶ \mathbb{N} → 2 | is enumerable,
 - retract of an enumerable set is enumerable,
 - Scott domains are enumerable,
- Creative, simple, immune and inseparable sets exist.

Markov Principle

- ▶ If a binary sequence $a \in 2^{\mathbb{N}}$ is not constantly 0, does it contain a 1?
- ▶ For $p \in \Sigma$, does $p \neq \bot$ imply $p = \top$?
- ▶ Is $\Sigma \subseteq \Omega_{\neg \neg}$?
- ▶ For $x \in \mathbb{N}^+$, if $x \neq \infty$ is x = k for some $k \in \mathbb{N}$?

Axiom (Markov Principle)

A binary sequence which is not constantly 0 contains a 1.

Post's Theorem

Theorem

For all $p \in \Omega$,

$$p \in \mathbf{2} \iff p \in \Sigma \land \neg p \in \Sigma$$
.

Proof.

- ⇒ If $p \in \mathbf{2}$ then $\neg p \in \mathbf{2}$, therefore $p, \neg p \in \mathbf{2} \subseteq \Sigma$.
- \Leftarrow If $p \in \Sigma$ and $\neg p \in \Sigma$ then $p \vee \neg p \in \Sigma \subseteq \Omega_{\neg \neg}$, therefore

$$p \vee \neg p = \neg \neg (p \vee \neg p) = \neg (\neg p \wedge \neg \neg p) = \neg \bot = \top ,$$

as required.

Multi-valued functions

- ▶ A multi-valued function $f : A \Rightarrow B$ is a function $f : A \rightarrow \mathcal{P}B$ such that f(x) is inhabited for all $x \in A$.
- ▶ This is equivalent to having a *total relation* $R \subseteq A \times B$. The connection between f and R is

$$f(x) = \{ y \in B \mid R(x, y) \}$$

$$R(x, y) \iff y \in f(x) .$$

▶ A *fixed point* of $f : A \Rightarrow A$ is $x \in A$ such that $x \in f(x)$.

Recursion Theorem

Theorem (Recursion Theorem)

Every $f: A \Rightarrow A$ *on enumerable focal* A *has a fixed point.*

Corollary (Classical Recursion Theorem)

For every $f : \mathbb{N} \to \mathbb{N}$ there is $n \in \mathbb{N}$ such that $\varphi_{f(n)} = \varphi_n$.

Proof.

In Recursion Theorem, take the enumerable focal set $A = \mathbb{N}^{\mathbb{N}}_{\perp}$ and the multi-valued function

$$F(g) = \{ h \in \mathbb{N}^{\mathbb{N}}_{\perp} \mid \exists n \in \mathbb{N} . g = \varphi_n \land h = \varphi_{f(n)} \} .$$

There is g such that $g \in F(g)$. Thus there exists $n \in \mathbb{N}$ such that $\varphi_n = g = h = \varphi_{f(n)}$.

Open subsets of \mathbb{N}^+

Lemma

If $U \in \Sigma^{\mathbb{N}^+}$ and $\infty \in U$ then there is $n \in \mathbb{N}$ such that $n \in U$.

Proof.

Suppose $\infty \in U \in \Sigma^{\mathbb{N}^+}$. By Markov Principle, it suffices to show $\neg \forall n \in \mathbb{N} . n \notin U$. So suppose $\forall n \in \mathbb{N} . n \notin U$. Recall the quotient map $q : \mathbb{N}^+ \twoheadrightarrow \Sigma, q : x \mapsto (x < \infty)$, and define $f : \Sigma \to \Sigma$ by f(q(x)) = U(x). Now $f(\top) = \bot$ and $f(\bot) = \top$. Since Σ has the fixed-point property, there exists $p \in \Sigma$ such that f(p) = p. But then $p \neq \top$ and $p \neq \bot$, i.e., $\neg p \land \neg \neg p$, a contradiction.

Note: the conclusion of the lemma *cannot* be improved to $\exists n \in \mathbb{N} . [n, \infty] \subseteq U$.

ω -Chain Complete Posets

- ▶ An ω -chain complete poset (ω -cpo) is a poset in which enumerable ascending chains have suprema.
- ▶ A *base* for an ω -cpo (A, \leq) is an enumerable subset $S \subseteq A$ such that:
 - ▶ For all $x \in S$, $y \in A$, $(x \le y) \in \Sigma$.
 - ▶ Every $x \in A$ is the supremum of a chain in S.
- Examples of ω -cpos:

```
\Sigma^{\mathbb{N}}, \mathbb{N} \to \mathbb{N}_{\perp}, \mathbb{N} \to 2_{\perp}, Scott domains, ...
```

The Topology of ω -cpos

Theorem

- 1. The open subsets of an ω -cpo are upward closed and inaccessible by chains.
- 2. If an ω -cpo A has a base S, then every open is a union of basic opens sets $\uparrow x = \{y \in A \mid x \leq y\}, x \in S$.

Proof.

We only prove "upward closed": if $x \le y$ and $x \in U \in \Sigma^A$, define $a : \mathbb{N}^+ \to A$ by

$$a_p = \bigvee_{k \in \mathbb{N}} \texttt{if} \ k$$

Then $a_{\infty} = x \in U$ and by Lemma there is $k \in \mathbb{N}$ such that $y = a_k \in U$, too.

Binary Trees

- ▶ Let 2* be the set of finite binary sequences, with prefix-ordering ≤.
- ▶ The *length* of $[a_0, ..., a_{n-1}] \in 2^*$ is |a| = n.
- ▶ A *tree* $T \subseteq 2^*$ is an inhabited prefix-closed subset.
- ightharpoonup A *Kleene tree* T_K is a tree such that:
 - 1. T_K is decidable (as a subset of 2^*),
 - 2. T_K is unbounded: $\forall k \in \mathbb{N} . \exists a \in T_K . |a| \ge k$,
 - 3. every infinite path exits T_K :

$$\forall \alpha \in \mathbf{2}^{\mathbb{N}} . \exists n \in \mathbb{N} . [\alpha_0, \ldots, \alpha_n] \notin T_K .$$

Construction of a Kleene Tree

- 1. Recall an enumeration $\psi : \mathbb{N} \twoheadrightarrow \mathbf{2}^{\mathbb{N}}_{\perp}$ and $s(n) = \neg_{\perp} \psi_n(n)$ which is inconsistent with every $\alpha \in \mathbf{2}^{\mathbb{N}}$.
- 2. Let $(m_-, d_-) : \mathbb{N} \to \mathbb{N} \times 2$ be an enumeration of the graph of s, i.e., $s(m_k) = d_k$ for all $k \in \mathbb{N}$ and we enumerate all such pairs.
- 3. Given $a = [a_0, \dots, a_n] \in 2^*$, say that a clashes with $\langle m_-, d_- \rangle$, if there is $k \le n$ such that $m_k \le n$ and $a_{m_k} \ne d_k$.
- 4. Define $K_T = \{a \in \mathbf{2}^* \mid a \text{ does not clash with } \langle m_-, d_- \rangle \}$.
- 5. K_T is a Kleene tree!

Construction of a Kleene Tree

$$K_T = \{a \in \mathbf{2}^* \mid a \text{ does not clash with } \langle m_-, d_- \rangle \}$$

 K_T is a Kleene tree:

- 1. Clearly, decidable, inhabited, prefix-closed.
- 2. Unbounded: define $[a_0, \ldots, a_n]$ by

$$a_j = \begin{cases} d_k & \text{if } j = m_k \text{ for some } k \le n, \\ 0 & \text{otherwise.} \end{cases}$$

Then $[a_0, \ldots, a_n]$ does not clash with $\langle m_-, d_- \rangle$.

3. Every path $\alpha \in 2^{\mathbb{N}}$ exits T_K : α and s are inconsistent, hence prefixes of α clash with $\langle m_-, d_- \rangle$ eventually.

Note: there is an enumeration $\ell : \mathbb{N} \to \mathbf{2}^*$ without repetitions of the leaves of T_K .

Cantor space and Baire space

The Cantor space $2^{\mathbb{N}}$ and Baire space $\mathbb{N}^{\mathbb{N}}$ are complete separable metric spaces, with metric (for both spaces)

$$d(\alpha,\beta) = 2^{-\min\{k \in \mathbb{N} \mid \alpha_k \neq \beta_k\}}$$
.

Theorem

 $2^{\mathbb{N}}$ and $\mathbb{N}^{\mathbb{N}}$ are homeomorphic as metric spaces.

Proof.

The homeomorphism $h: \mathbb{N}^{\mathbb{N}} \to 2^{\mathbb{N}}$ is defined by

$$h(\alpha) = \ell(\alpha_0)\ell(\alpha_1)\ell(\alpha_2)\cdots$$

Computing 2^{2^N}

 $2^{2^{\mathbb{N}}}$ is the set of decidable subsets of decidable subsets.

$$2^{2^{\mathbb{N}}} = 2^{\mathbb{N}^{\mathbb{N}}} = 2^{\mathbb{N} \times \mathbb{N}^{\mathbb{N}}} = (2^{\mathbb{N}})^{\mathbb{N}^{\mathbb{N}}} = (\mathbb{N}^{\mathbb{N}})^{\mathbb{N}^{\mathbb{N}}} = \mathbb{N}^{\mathbb{N} \times \mathbb{N}^{\mathbb{N}}} = \mathbb{N}^{\mathbb{N}^{\mathbb{N}}} \;.$$

Remark: in sane models of computability, such as **Equ**, we have $2^{\mathbb{N}} \ncong \mathbb{N}^{\mathbb{N}}$ and $2^{2^{\mathbb{N}}} = \mathbb{N}$.

Local non-compactness of \mathbb{R}

- ▶ The "middle-thirds" embedding $i: 2^{\mathbb{N}} \to [0,1]$, $i(\alpha) = \sum_{k=0}^{\infty} \frac{2\alpha_k}{3^{k+1}}$.
- ▶ The image C = im(i) is a closed located subset of [0, 1].
- ▶ The map $i \circ h : \mathbb{N}^{\mathbb{N}} \to [0,1]$ embeds $\mathbb{N}^{\mathbb{N}}$ as a closed located subset $C \subseteq [0,1]$.

Theorem (Specker sequence)

There exists a sequence $(a_n)_{n\in\mathbb{N}}$ in [0,1] without accumulation point.

Proof.

The sequence $b_n = \lambda k$. n, is without accumulation point in $\mathbb{N}^{\mathbb{N}}$. Define $a_n = i(h(b_n))$. Then a_n is without accumulation point in C. Because C is closed and located, a_n is without accumulation point in [0,1].

Extending a continuous map $C \to \mathbb{R}$

Theorem

Every continuous $g: C \to \mathbb{R}$ *can be extended to a continuous* $\overline{g}: [0,1] \to \mathbb{R}$.

Extending a continuous map $C \to \mathbb{R}$

Theorem

Every continuous $g: C \to \mathbb{R}$ *can be extended to a continuous* $\overline{g}: [0,1] \to \mathbb{R}$.

Unbounded continuous $f : [0,1] \rightarrow \mathbb{R}$

Theorem

There exists an unbounded continuous map $[0,1] \to \mathbb{R}$.

Proof.

- ► The map $g : \mathbb{N}^{\mathbb{N}} \to \mathbb{R}$, $g : \alpha \mapsto \alpha_0$ is unbounded and continuous.
- ► The map $g \circ h^{-1} \circ i^{-1} : C \to \mathbb{R}$ is unbounded and continuous.
- ► Extend $g \circ h^{-1} \circ i^{-1}$ to a continuous $f : [0,1] \to \mathbb{R}$. It is still unbounded.

Conclusion

- ➤ The theme: as logicians, we should look for *elegant* presentations of theories we study. They can lead to new intuitions (and destroy old ones).
- These slides, and more, at math.andrej.com.
- We want food.