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How cool is computability theory?

I Way cool:
I surprising theorems
I clever programs
I clever proofs

I Way horrible, it contains expressions like

ϕp(r(i,ϕq(i)(ĝ(n,i,m)+1),m),ϕq(i)(ĝ(n,i,m)−1))(a− ĝ(n, i,m))

I Can we do computability theory as “ordinary” math?
I use axiomatic method
I argue conceptually and abstractly
I use customary mathematical notions



Related Work
I Friedman [1971], axiomatizes coding and universal

functions
I Moschovakis [1971] & Fenstad [1974], axiomatize

computations and subcomputations
I Hyland [1982], effective topos
I Richman [1984], an axiom for effective enumerability of

partial functions
I We shall follow Richman [1984] in style, and borrow ideas

from Rosolini [1986], Berger [1983], and Spreen [1998].



Computability without Turing Machines

I Use ordinary set theory:
no Turing Machines, or other special notions.

I Add a couple of axioms about sets of numbers.
I The underlying logic is intuitionistic:

this is a theorem, not a political conviction.
I Interpretation in the effective topos translates our theory

back to classical recursion theory.



Basic setup

I Intuitionistic logic:
generally, no Law of Excluded Middle or Proof by
Contradiction.

I As in Bishop-style constructive mathematics, we do not
accept the full Axiom of Choice, but only Number Choice
(and Dependent Choice).

I Basic sets:

∅, 1 = {∗}, N = {0, 1, 2, . . .}

I Set operations:

A× B, A + B, BA = A → B, {x ∈ A
∣∣ p(x)}, PA

I We say that A is
I non-empty if ¬∀ x∈A .⊥,
I inhabited if ∃ x∈A .>.



Some interesting sets

I The set of truth values:

Ω = P1

truth > = 1, falsehood ⊥ = ∅

I The set of decidable truth values:

2 = {0, 1} = {p ∈ Ω
∣∣ p ∨ ¬p} ,

where we write 1 = > and 0 = ⊥.
I The set of classical truth values:

Ω¬¬ = {p ∈ Ω
∣∣ ¬¬p = p} .

I 2 ⊆ Ω¬¬ ⊆ Ω.



Decidable and classical sets
I A subset S ⊆ A is equivalently given by its characteristic

map χS : A → Ω, χS(x) = (x ∈ S).
I A subset S ⊆ A is decidable if χS : A → 2, equivalently

∀ x∈A . (x ∈ S ∨ x 6∈ S) .

I A subset S ⊆ A is classical if χS : A → Ω¬¬, equivalently

∀ x∈A . (¬(x 6∈ S) =⇒ x ∈ S) .



The generic convergent sequence

I A useful set is the generic convergent sequence:

N+ = {a ∈ 2N ∣∣ ∀ k∈N . ak ≤ ak+1} .

I We have N ⊆ N+ via n 7→ λk. (k ≤ n).
I But there is also ∞ = λk. 0.
I N+ can be thought of as the one-point compactification

of N.



Enumerable & finite sets
I A is finite if there exist n ∈ N and an onto map

e : {1, . . . ,n} � A, called a listing of A. An element may be
listed more than once.

I A is enumerable (countable) if there exists an onto map
e : N � 1 + A, called an enumeration of A. For inhabited A
we may take e : N � A.

I A is infinite if there exists an injective a : N � A.



Lawvere → Cantor

Theorem (Lawvere)

If e : A → BA is onto then B has the fixed point property.

Proof.
Given f : B → B, there is x ∈ A such that
e(x) = λy : A . f (e(y)(y)). Then e(x)(x) = f (e(x)(x)).

Corollary (Cantor)

There is no onto map e : A � PA.

Proof.
PA = ΩA and ¬ : Ω → Ω does not have a fixed point.



Non-enumerability of Cantor and Baire space

Corollary

2N and NN are not enumerable.

Proof.
2 and N do not have the fixed-point property.

We have proved our first synthetic theorem: there are no
effective enumerations of recursive sets and total recursive
functions.



Projection Theorem

Recall: the projection of S ⊆ A× B is the set

{x ∈ A
∣∣ ∃ y∈B . 〈x, y〉 ∈ S} .

Theorem (Projection)

A subset of N is enumerable iff it is the projection of a decidable subset
of N× N.

Proof.
If A is enumerated by e : N → 1 + A then A is the projection of
the graph of e.
If A is the projection of B ⊆ N× N, define e : N× N → 1 + A by

e〈m,n〉 = if 〈m,n〉 ∈ B then m else ? .



Semidecidable sets
I A semidecidable truth value p ∈ Ω is one of the form, for

some d : N → 2,
p = ∃n∈N . d(n) .

I The set of semidecidable truth values:

Σ = {p ∈ Ω
∣∣ ∃ d∈2N . p = ∃n∈N . d(n)} .

This is Rosolini’s dominance.
I 2 ⊆ Σ ⊆ Ω.
I A subset S ⊆ N is semidecidable if χS : A → Σ.



Σ as a quotient of N+

I Σ is a quotient of 2N via taking countable joins: d ∈ 2N is
mapped to ∃n∈N . d(n).

I Σ is a quotient of N+ via the map q : N+ → Σ, defined by
q(t) = (t <∞).

I If q(t) = s we say that t is a time at which s becomes true.
Beware, t is not uniquely determined!



Semidecidable subsets

Theorem
The enumerable subsets of N are precisely the semidecidable subsets
of N.

Proof.
By Projection Theorem, an enumerable A ⊆ N is the projection
of a decidable B ⊆ N× N. Then n ∈ A iff ∃m∈N . 〈n,m〉 ∈ B.
Conversely, if A ∈ ΣN, by Number Choice there is
d : N× N → 2 such that n ∈ A iff ∃m∈N . d(m,n).

The enumerable subsets of N:

E = ΣN .



The Topological View

I Σ is the Sierpinski space.
I Σ is closed under finite meets, enumerable joins, and finite

meets distribute over enumerable joins.
I A σ-frame is a lattice with enumerable joins that distribute

over finite meets.
I The topology of A is ΣA.



Partial functions
I A partial function f : A ⇀ B is a function f : A′ → B

defined on a subset A′ ⊆ A, called the domain of f .
I Equivalently, it is a function f : A → B̃, where

B̃ = {s ∈ PB
∣∣ ∀ x, y∈B . (x ∈ s ∧ y ∈ s =⇒ x = y)} .

I The singleton map {−} : B → B̃ embeds B in B̃.
I For s ∈ B̃, write s↓ when s is inhabited.
I Which partial functions N → Ñ have enumerable graphs?



Σ-partial functions

Proposition

f : N → Ñ has an enumerable graph iff f (n)↓ ∈ Σ for all n ∈ N.

Define the lifting operation

A⊥ = {s ∈ Ã
∣∣ s↓ ∈ Σ} .

For f : A → B define f⊥ : A⊥ → B⊥ to be

f⊥(s) = {f (x)
∣∣ x ∈ s} .

A Σ-partial function is a function f : A → B⊥.



Domains of Σ-partial functions

Proposition

A subset is semidecidable iff it is the domain of a Σ-partial function.

Proof.
A semidecidable subset S ∈ ΣA is the domain of its
characteristic map χS : A → Σ = 1⊥.
If f : A → B⊥ is Σ-partial then its domain is the set
{x ∈ A

∣∣ f (x)↓}, which is obviously semidecidable.



The Single-Value Theorem

A selection for R ⊆ A× B is a partial map f : A ⇀ B such that,
for every x ∈ A,

∃ y∈B .R(x, y) =⇒ f (x)↓ ∧ R(x, f (x)) .

This is like a choice function, expect it only chooses when there
is something to choose from.

Theorem (Single Value)

Every open relation R ∈ ΣN×N has a Σ-partial selection.



Axiom of Enumerability

Axiom (Enumerability)

There are enumerably many enumerable sets of numbers.

Let W : N � E be an enumeration.

Proposition

Σ and E have the fixed-point property.

Proof.
By Lawvere, W : N � E = ΣN ∼= ΣN×N ∼= EN.



The Law of Excluded Middle Fails

The Law of Excluded Middle says 2 = Ω.

Corollary

The Law of Excluded Middle is false.

Proof.
Among the sets 2 ⊆ Σ ⊆ Ω only the middle one has the
fixed-point property, so 2 6= Σ 6= Ω.



Enumerability of N → N⊥

Proposition

N → N⊥ is enumerable.

Proof.
Let V : N � ΣN×N be an enumeration. By Single-Value Theorem and
Number Choice, there is ϕ : N → (N → N⊥) such that ϕn is a selection
of Vn. The map ϕ is onto, as every f : N → N⊥ is the only selection of
its graph.

Corollary (Church’s Thesis)

NN is subcountable (because NN ⊆ NN
⊥).

In other words, ∀ f ∈NN .∃n∈N . f = ϕn.



Focal sets
I A focal set is a set A together with a map εA : A⊥ → A such

that εA({x}) = x for all x ∈ A:

A
{−} //

AA
AA

AA
AA

AA
AA

AA
AA

A⊥

εA

��
A

The focus of A is ⊥A = εA(⊥).
I A lifted set A⊥ is always focal (because lifting is a monad

whose unit is {−}).



Enumerable focal sets
I Enumerable focal sets, known as Eršov complete sets, have

good properties.
I A flat domain A⊥ is focal. It is enumerable if A is decidable

and enumerable.
I If A is enumerable and focal then so is AN:

N
ϕ // // NN

⊥
eN
⊥ // // AN

⊥
εN

A // // AN

I Some enumerable focal sets are

ΣN, 2N
⊥, NN

⊥ .



Topological Exterior and Creative Sets

I The exterior of an open set is the largest open set disjoint
from it.

I An open set U ∈ ΣA is creative if it is without exterior:
every V ∈ ΣA disjoint from U can be enlarged and still be
disjoint from U.

Theorem
There exists a creative subset of N.

Proof.
The familiar K = {n ∈ N

∣∣ n ∈ Wn} is creative. Given any V ∈ E
with V = Wk and K ∩ V = ∅, we have k 6∈ V, so V′ = V ∪ {k} is
larger and still disjoint from K.



Immune and Simple Sets

I A set is immune if it is neither finite nor infinite.
I A set is simple if it is open and its complement is immune.

Theorem
There exists a closed subset of N which is neither finite nor infinite.

Proof.
Following Post, consider P = {〈m, n〉 ∈ N× N

˛̨
n > 2m ∧ n ∈ Wm}, and let

f : N → N⊥ be a selection for P. Then S = {n ∈ N
˛̨
∃m∈N . f (m) = n} is the

complement of the set we are looking for.
Because f (m) > 2m the set N \ S cannot be finite.
For any infinite enumerable set U ⊆ N \ S with U = Wm, we have f (m)↓,
f (m) ∈ Wm = U, and f (m) ∈ S, hence U is not contained in N \ S.



Inseparable sets

Theorem
There exists an element of Plotkin’s 2N

⊥ that is inconsistent with every
maximal element of 2N

⊥.

Proof.
Because 2⊥ is focal and enumerable, 2N

⊥ is as well. Let
ψ : N � 2N

⊥ be an enumeration, and let t : 2⊥ → 2⊥ be the
isomorphism t(x) = ¬⊥x which exchanges 0 and 1, and fixes ⊥.
Consider a ∈ 2N

⊥ defined by a(n) = t(ψn(n)). If b ∈ 2N
⊥ is

maximal with b = ψk, then a(k) = ¬ψk(k) = ¬b(k). Because a(k)
and b(k) are both total and different they are inconsistent.
Hence a and b are inconsistent.



End of Part I

Let’s get some coffee.



Part II

1. Quick overview of Part I
2. Post’s Theorem and Markov Principle
3. Recursion Theorem
4. Rice-Shapiro & Myhill-Shepherdson
5. Recursive Analysis



Recall from Part I

Truth values:
I truth values Ω = P1,
I decidable truth values 2 = {p ∈ Ω

∣∣ p ∨ ¬p},
I classical truth values Ω¬¬ = {p ∈ Ω

∣∣ ¬¬p = p},
I semidecidable truth values

Σ = {p ∈ Ω
∣∣ ∃ d∈2N . p = (∃n∈N . d(n) = 1)} .

Enumerable, or semidecidable, subsets of N:

E = ΣN .

Σ-partial functions: N → N⊥.



Axiom of Enumerability

Axiom (Enumerability)

There are enumerably many enumerable sets of numbers.

An enumeration W : N � E .
Consequences:

I Σ and E have the fixed-point property,
I Law of Excluded Middle is false,
I N → N⊥ is enumerable,
I Other enumerable sets:

I A focal and enumerable =⇒ AN focal and enumerable,
I N → 2⊥ is enumerable,
I retract of an enumerable set is enumerable,
I Scott domains are enumerable,

I Creative, simple, immune and inseparable sets exist.



Markov Principle

I If a binary sequence a ∈ 2N is not constantly 0, does it
contain a 1?

I For p ∈ Σ, does p 6= ⊥ imply p = >?
I Is Σ ⊆ Ω¬¬?
I For x ∈ N+, if x 6= ∞ is x = k for some k ∈ N?

Axiom (Markov Principle)

A binary sequence which is not constantly 0 contains a 1.



Post’s Theorem

Theorem
For all p ∈ Ω,

p ∈ 2 ⇐⇒ p ∈ Σ ∧ ¬p ∈ Σ .

Proof.

⇒ If p ∈ 2 then ¬p ∈ 2, therefore p,¬p ∈ 2 ⊆ Σ.
⇐ If p ∈ Σ and ¬p ∈ Σ then p ∨ ¬p ∈ Σ ⊆ Ω¬¬, therefore

p ∨ ¬p = ¬¬(p ∨ ¬p) = ¬(¬p ∧ ¬¬p) = ¬⊥ = > ,

as required.



Multi-valued functions
I A multi-valued function f : A ⇒ B is a function f : A → PB

such that f (x) is inhabited for all x ∈ A.
I This is equivalent to having a total relation R ⊆ A× B. The

connection between f and R is

f (x) = {y ∈ B
∣∣ R(x, y)}

R(x, y) ⇐⇒ y ∈ f (x) .

I A fixed point of f : A ⇒ A is x ∈ A such that x ∈ f (x).



Recursion Theorem

Theorem (Recursion Theorem)

Every f : A ⇒ A on enumerable focal A has a fixed point.

Corollary (Classical Recursion Theorem)

For every f : N → N there is n ∈ N such that ϕf (n) = ϕn.

Proof.
In Recursion Theorem, take the enumerable focal set A = NN

⊥
and the multi-valued function

F(g) = {h ∈ NN
⊥

∣∣ ∃n∈N . g = ϕn ∧ h = ϕf (n)} .

There is g such that g ∈ F(g). Thus there exists n ∈ N such that
ϕn = g = h = ϕf (n).



Open subsets of N+

Lemma
If U ∈ ΣN+ and ∞ ∈ U then there is n ∈ N such that n ∈ U.

Proof.
Suppose ∞ ∈ U ∈ ΣN+

. By Markov Principle, it suffices to show
¬∀n∈N .n 6∈ U. So suppose ∀n∈N .n 6∈ U. Recall the quotient map
q : N+ � Σ, q : x 7→ (x <∞), and define f : Σ → Σ by f (q(x)) = U(x).
Now f (>) = ⊥ and f (⊥) = >. Since Σ has the fixed-point property,
there exists p ∈ Σ such that f (p) = p. But then p 6= > and p 6= ⊥, i.e.,
¬p ∧ ¬¬p, a contradiction.

Note: the conclusion of the lemma cannot be improved to
∃n∈N . [n,∞] ⊆ U.



ω-Chain Complete Posets

I An ω-chain complete poset (ω-cpo) is a poset in which
enumerable ascending chains have suprema.

I A base for an ω-cpo (A,≤) is an enumerable subset S ⊆ A
such that:

I For all x ∈ S, y ∈ A, (x ≤ y) ∈ Σ.
I Every x ∈ A is the supremum of a chain in S.

I Examples of ω-cpos:
ΣN, N → N⊥, N → 2⊥, Scott domains, . . .



The Topology of ω-cpos

Theorem

1. The open subsets of an ω-cpo are upward closed and inaccessible
by chains.

2. If an ω-cpo A has a base S, then every open is a union of basic
opens sets ↑x = {y ∈ A

∣∣ x ≤ y}, x ∈ S.

Proof.
We only prove “upward closed”: if x ≤ y and x ∈ U ∈ ΣA, define
a : N+ → A by

ap =
∨
k∈N

if k < p then x else y

Then a∞ = x ∈ U and by Lemma there is k ∈ N such that y = ak ∈ U,
too.



Binary Trees

I Let 2∗ be the set of finite binary sequences, with
prefix-ordering �.

I The length of [a0, . . . , an−1] ∈ 2∗ is |a| = n.
I A tree T ⊆ 2∗ is an inhabited prefix-closed subset.
I A Kleene tree TK is a tree such that:

1. TK is decidable (as a subset of 2∗),
2. TK is unbounded: ∀ k∈N .∃ a∈TK . |a| ≥ k,
3. every infinite path exits TK:

∀α∈2N .∃n∈N . [α0, . . . , αn] 6∈ TK .



Construction of a Kleene Tree

1. Recall an enumeration ψ : N � 2N
⊥ and s(n) = ¬⊥ψn(n)

which is inconsistent with every α ∈ 2N.
2. Let 〈m−, d−〉 : N → N× 2 be an enumeration of the graph

of s, i.e., s(mk) = dk for all k ∈ N and we enumerate all such
pairs.

3. Given a = [a0, . . . , an] ∈ 2∗, say that a clashes with 〈m−, d−〉,
if there is k ≤ n such that mk ≤ n and amk 6= dk.

4. Define KT = {a ∈ 2∗
∣∣ a does not clash with 〈m−, d−〉}.

5. KT is a Kleene tree!



Construction of a Kleene Tree

KT = {a ∈ 2∗
∣∣ a does not clash with 〈m−, d−〉}

KT is a Kleene tree:
1. Clearly, decidable, inhabited, prefix-closed.
2. Unbounded: define [a0, . . . , an] by

aj =

{
dk if j = mk for some k ≤ n,
0 otherwise.

Then [a0, . . . , an] does not clash with 〈m−, d−〉.
3. Every path α ∈ 2N exits TK: α and s are inconsistent, hence

prefixes of α clash with 〈m−, d−〉 eventually.
Note: there is an enumeration ` : N → 2∗ without repetitions of
the leaves of TK.



Cantor space and Baire space

The Cantor space 2N and Baire space NN are complete separable
metric spaces, with metric (for both spaces)

d(α, β) = 2−min{k∈N
∣∣ αk 6=βk} .

Theorem
2N and NN are homeomorphic as metric spaces.

Proof.
The homeomorphism h : NN → 2N is defined by

h(α) = `(α0)`(α1)`(α2) · · ·



Computing 22N

22N
is the set of decidable subsets of decidable subsets.

22N
= 2NN

= 2N×NN
= (2N)NN

= (NN)NN
= NN×NN

= NNN
.

Remark: in sane models of computability, such as Equ, we have
2N 6∼= NN and 22N

= N.



Local non-compactness of R

I The “middle-thirds” embedding i : 2N → [0, 1],
i(α) =

∑∞
k=0

2αk
3k+1 .

I The image C = im(i) is a closed located subset of [0, 1].
I The map i ◦ h : NN → [0, 1] embeds NN as a closed located

subset C ⊆ [0, 1].

Theorem (Specker sequence)

There exists a sequence (an)n∈N in [0, 1] without accumulation point.

Proof.
The sequence bn = λk.n, is without accumulation point in NN. Define
an = i(h(bn)). Then an is without accumulation point in C. Because C
is closed and located, an is without accumulation point in [0, 1].



Extending a continuous map C → R

Theorem
Every continuous g : C → R can be extended to a continuous
g : [0, 1] → R.



Extending a continuous map C → R

Theorem
Every continuous g : C → R can be extended to a continuous
g : [0, 1] → R.



Unbounded continuous f : [0, 1] → R

Theorem
There exists an unbounded continuous map [0, 1] → R.

Proof.

I The map g : NN → R, g : α 7→ α0 is unbounded and
continuous.

I The map g ◦ h−1 ◦ i−1 : C → R is unbounded and
continuous.

I Extend g ◦ h−1 ◦ i−1 to a continuous f : [0, 1] → R. It is still
unbounded.



Conclusion
I The theme: as logicians, we should look for elegant

presentations of theories we study. They can lead to new
intuitions (and destroy old ones).

I These slides, and more, at math.andrej.com .
I We want food.
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