
Realizability as the Connection between

Computable and Constructive Mathematics

Andrej Bauer
Department of Mathematics and Physics

University of Ljubljana∗

October 16, 2005

Abstract

These are lecture notes for a tutorial seminar which I gave at a satellite seminar of “Com-
putability and Complexity in Analysis 2004” in Kyoto. The main message of the notes is that
computable mathematics is the realizability interpretation of constructive mathematics. The
presentation is targeted at an audience which is familiar with computable mathematics but
less so with constructive mathematics, category theory or realizability theory.

Contents

1 Introduction 3

2 Models of Computability 4
2.1 Type I Computability . 5
2.2 Type II Computability . 5
2.3 Other Models . 6

3 Representations 7
3.1 Basic Definitions . 7
3.2 Constructions of Representations . 8

3.2.1 Products . 8
3.2.2 Exponentials . 9
3.2.3 Disjoint sums . 10
3.2.4 Quotients . 11
3.2.5 Subrepresentations . 11

4 Realizability Logic 14
4.1 The Poset of Subobjects . 14
4.2 The Realizability Interpretation . 14

4.2.1 Constructions of Sorts . 15
4.2.2 Truth and Falsehood . 15
4.2.3 Conjunction . 15
4.2.4 Disjunction . 15
4.2.5 Implication . 15
4.2.6 Negation . 16
4.2.7 Existential quantification . 16
4.2.8 Universal quantification . 16

∗Address: Jadranska 19, 1000 Ljubljana, Slovenia. E-mail: Andrej.Bauer@andrej.com

1

4.2.9 Equality . 16
4.3 Basic Properties of the Realizability Interpretation 16

4.3.1 Realizability Logic is not Classical . 17
4.4 First Uses of Realizability Logic . 18

4.4.1 Computability for Free . 18
4.4.2 Classical Predicates . 19
4.4.3 Monos and Epis . 20
4.4.4 Multi-valued maps and ∀∃ predicates . 22
4.4.5 Axiom of Choice . 22
4.4.6 Decidable Predicates . 24

5 Examples from Computable Mathematics 26
5.1 Natural Numbers . 26
5.2 Real Numbers . 27
5.3 Metric Spaces . 29

5.3.1 The Baire Space . 30
5.3.2 The square-summable sequences . 31

5.4 Continuous Maps . 32

6 Conclusion 33
6.1 Further Reading . 33
6.2 Acknowledgment . 34

2

1 Introduction

I have attended a number of talks on computable analysis in which I got a distinct feeling that
the subject could be presented more cleanly and results arrived at more effortlessly if the speaker
used a bit of realizability theory. This would allow him or her to import known results from
constructive mathematics into the computable setting and avoid having to discover things that
can be computed mechanically. The purpose of these notes is to help those who are interested in
the basics of realizability theory, especially in relation to computable and constructive analysis.
These notes ignore complexity issues and focus entirely on computability.

Realizability theory is a subject which originated with Kleene’s [Kle45] interpretation of intu-
itionistic number theory and has since developed into a large body of work in logic and theoretical
computer science. We shall focus only on two basic flavors of realizability, number realizability
and function realizability, which were both invented by Kleene [Kle45, KV65]. They correspond to
two best known “schools” of computable mathematics, namely Recursive Mathematics and Type
Two Effectivity.

We assume familiarity with computable analysis at the level of Prof. Weihrauch’s gentle text-
book [Wei00]. We presuppose only very rudimentary knowledge of logic, intuitionistic logic, and
category theory.

By classical mathematics we mean mathematics developed in the realm of classical logic. By
constructive mathematics we mean mathematics developed in the realm of intuitionistic logic, as
was done by Bishop [Bis67]. By computable mathematics we mean the study of computability in
classical mathematics.

Warning. This is a draft version which I wrote hurriedly to have it ready for the audience at
the tutorial seminar at “Computability and Complexity in Analysis 2005” in Kyoto. I guarantee
that the notes contain errors and that bibliography omits important references. I gratefully collect
error reports and comments about the notes that will help me improve them.

3

2 Models of Computability

There is a universally accepted notion of computation, namely that of Turing machines, or any of
its equivalent formulations. One would think that this is the end of the story as far as computability
is concerned. Surely, if everyone agrees on what it means to compute, then everyone should agree
on, for example, what it means to compute the solution of a differential equation. But this is not
so.

Any specific description of computation involves manipulation of concrete mathematical ob-
jects, such as tapes, numbers, or syntactic expressions. When we study computability on abstract
mathematical entities, we are thus naturally lead to their representations by such concrete objects.
It turns out that the choice of representations, and more importantly of the type of representing
objects, is a source of differences between various schools of computability.

Let us give an example of how different representations lead to differences in computability.
There are at least two well known representations of real numbers:

Type I reals: a real number x is represented by a number n ∈ N, such that the n-th Turing
machine (in an effective enumeration of all Turing machines) on input k ∈ N terminates and
outputs a pair of integers a, b ∈ Z such that |x− a/b| < 2−k. A real number which has such
a representation is computable.

Type II reals: a real number x is represented by an infinite tape containing a sequence of rational
approximations a1/b1, a2/b2, . . . , such that |x− ak/bk| < 2−k for all k ∈ N. A real number
is computable if there is a computable sequence1 representing it.

Whereas in Type II we can represent all real numbers, in Type I we cannot do so because there
are only countably many Turing machines but uncountably many reals. Nevertheless, it is easy to
show that Type I computable reals are the same as Type II computable reals, so we do not have
a difference in computability yet. We denote the set of computable reals by Rc, and similarly let
[0, 1]c = Rc ∩ [0, 1].

The next step is to define what it means for a real function to be computable:

Type I functions: A function f : Rc → Rc is computable if there exists a Turing machine T
such that whenever n ∈ N represents x ∈ Rc, then T on input n terminates and outputs a
representation of f(x).

Type II functions: A function f : R → R is computable if there exits a Turing machine T such
that if a1/b1, a2/b2, . . . represents x ∈ R, the machine T outputs a representation of f(x)
when given as input the infinite tape containing the sequence a1/b1, a2/b2, . . .

2

We may analogously define Type I computable functions [0, 1]c → Rc and Type II computable
functions [0, 1] → R. A first difference between Type I and Type II computability is that Type I
computable functions accept as inputs and give as outputs only the computable reals. In contrast,
Type II computable functions may in principle accept any real as input. It is easy to see that a
Type II computable function outputs a computable real when given a computable real as input.
So perhaps Type I computable functions are just the restrictions of Type II computable functions
to computable reals. That this is not the case is witnessed by the following theorems.

Theorem 2.1 (Type I) There is a computably unbounded computable function f : [0, 1]c → Rc.

Theorem 2.2 (Type II) Every computable function f : [0, 1] → R is computably bounded.

1A sequence is computable if there exists a Turing machine which on input n outputs the n-th term of the
sequence.

2The machine T has an input tape, a write-only output tape, and a working tape. The computation itself is
infinite, but we can imagine stopping it in practice when the desired approximation has been reached. Note that T
writes out any finite part of its output in finite time.

4

The function f : [0, 1]c → Rc from the first theorem is not the restriction of any Type II computable
function g : [0, 1] → R. If it were, we could compute a bound M for g by the second theorem. But
then M would be a bound for f too, which is impossible by the first theorem. Therefore, Type I
computable functions are different from Type II computable functions.

The preceding example shows that questions about computability in analysis are intricate, and
that seemingly unimportant decisions may have unexpected consequences. It is thus useful to
have a tool such as realizability theory, which helps organize various choices one can make into
a coherent framework. As an added benefit, the realizability interpretation of logic connects the
Bishop-style constructive mathematics with the computable world.

2.1 Type I Computability

In Type I computability objects of computation are represented by finite strings of symbols from
a given finite alphabet. Computations are performed by Turing machines which operate on such
strings. As we are not interested in complexity issues, we may instead use natural numbers instead
of finite strings and partial recursive functions instead of Turing machines.

Let (ϕn)n∈N be an effective enumeration of partial recursive functions and 〈−,−〉 an effective
pairing function on natural numbers with projection functions fst 〈m,n〉 = m and snd 〈m,n〉 = n.
The pairing function allows us to view multivariate functions as univariate, i.e., instead of having
an f : N × N ⇀ N which takes two arguments m and n, we may have instead f : N ⇀ N which
takes a single argument 〈m,n〉.

We recall the important utm and smn theorems from the theory of partial recursive functions.

Theorem 2.3 (utm) There is a universal partial recursive function, i.e., a partial recursive func-
tion u : N ⇀ N such that u〈m,n〉 ' ϕm(n).

Theorem 2.4 (smn) For every partial recursive function p : N ⇀ N there is a recursive function
s : N → N such that p〈m,n〉 ' ϕs(m)(n). Moreover, the function s may be obtained effectively
from a description of p.

We denote the model of computability based on natural numbers and partial recursive functions
by K1, because it is also known as Kleene’s first partial combinatory algebra.

2.2 Type II Computability

In Type II computability objects of computation are represented by infinite strings of symbols
from a given finite alphabet. Computations are performed by Turing machines which write infinite
outputs on a write-only tape, i.e., once a machine writes a symbol on the output tape it is
not allowed to alter it. This is necessary to prevent the machine from changing the output
indefinitely. Type II computations are in principle infinite, but we may well imagine that in
practice a computation is aborted when a sufficient amount of output has been computed.

Once again, since we are not interested in computational complexity, we may replace infinite
strings by infinite sequences of natural numbers. This is a convenient but inessential change—
the diligent reader can verify that realizability may be formulated just as well in terms of actual
infinite strings over a finite alphabet. We denote sequences of natural numbers by Greek letters
α, β, γ, . . . , and denote the set of all such sequences by B = NN. The set B carries the product
topology, which makes it into a zero-dimensional Hausdorff space, known as the Baire space.

A partial map f : B ⇀ B is continuous if it is continuous as a map f : dom(f) → B, where
the domain dom(f) is equipped with the subspace topology. It can be shown that every partial
continuous map f : B ⇀ B can be extended to a partial continuous one whose domain is a Gδ-set
(a countable intersection of open sets) [Bau00, 1.1.6].

A partial function f : B ⇀ B is computable, if there exists a Turing machine, which takes
as input α ∈ B, written on an infinite input tape, and outputs f(α), or diverges when f(α) is
undefined. It can be shown that such an f is continuous and that its domain of definition is

5

a Gδ-set. Furthermore, there is an encoding η of such functions by sequences. The idea is to
encode f by a sequence of tuples 〈[a0, . . . , an],m, b〉, where such a tuple means “if [a0, . . . , an] is a
prefix of α then f(α)m = b”. Conversely, every γ ∈ B determines a partial continuous ηγ : B ⇀ B
whose domain is a Gδ-set, see [Wei00, 2.3] for details.

As in Type I computability, there is a computable pairing operation 〈−,−〉; B×B → B, which
simply interleaves sequences, together with projections fst and snd . Also in Type II computability
we get the utm and smn theorems [Wei00, 2.3] in which we use the encoding η in place of ϕ.

Theorem 2.5 (utm) There is a computable partial function u : B ⇀ B such that u〈α, β〉 '
ηα(β).

Theorem 2.6 (smn) For every computable partial map p : B ⇀ B there is a computable map
s : B → B such that p〈α, β〉 ' ηs(α)(β). Furthermore, the function s may be computed from a
description of p.

There are in fact three variations of Type II computability:

Effective: Input and output tapes are only allowed to contain computable sequences. Only com-
putable partial maps B ⇀ B are considered.

Continuous: Input and output tapes may contain arbitrary sequences. All partial continuous
maps B ⇀ B whose domains are Gδ-sets are allowed.

Mixed: Input and output tapes may contain arbitrary sequences. Only computable partial maps
B ⇀ B are allowed.

We have so far described the mixed version, which is most commonly used in computable analysis.
We shall not use the effective version, while occasionally we will refer to the continuous one. There
are also continuous versions of the utm and smn theorems, in which “computable” is replaced by
“continuous with Gδ domain”.

We denote the mixed version of Type II computability by K2 and the continuous one by Kcont
2 .

They are related to Kleene’s second partial combinatory algebra.

2.3 Other Models

The Type I and Type II models of computability are the ones that are used almost exclusively
in computable mathematics. General realizability theory, however, considers a wider class of
models, called (typed) partial combinatory algebras (pca). There are many examples of pca’s from
topology, domain theory and the theory of programming languages. Constructions of realizability
categories over these models give many more mathematical universes that support development
of computable mathematics, e.g., equilogical space [BBS04] and domain representations [Bla97]
to name just two.

A comprehensive account of computable mathematics should encompass a rich spectrum of
models of computability. We know that they are there, and we know that they do not all give the
same computable mathematics, but we know less on how they relate to each other. By focusing
on just a couple of models in the name of simplicity and historical importance of Turing machines,
an opportunity for the view of a larger picture is missed.

6

3 Representations

The basic idea of realizability is implicitly known to every programmer: entities with which we
want to compute must first be suitably represented, or realized, in the computer. In computable
mathematics, this idea is formalized by the notions of numberings (Type I) and Baire space
representations (Type II). In this section we first recall what these are and formulate them in a
way that is best suited for realizability theory.

3.1 Basic Definitions

Definition 3.1 A numbered set (A, νA) is a set A with a partial surjection νA : N ⇀ A, called
the numbering. We define |A| = {n ∈ N

∣∣ νA(n) ↓} to be the domain of νA. When x = νA(n) we
say that n is a name of x, or that n represents x.

A realized function f : (A, νA) → (B, νB) between numbered sets is a function f : A → B for
which there exists a partial recursive function p : N ⇀ N such that f(νA(m)) = νB(p(n)) for all
n ∈ |A|. We say that p tracks or realizes f .

Definition 3.2 A Baire space representation, or a representation for short, A = (A, δA), is a
set A with a partial surjection δA : B ⇀ A. We define |A| = {α ∈ B

∣∣ δA(α) ↓} to be the domain
of δA, and say that α is a name for x, or that α represents x, when x = δA(α).

A computably (resp. continuously) realized function f : A → B between representations is
a function f : A → B for which there exists a computable (resp. continuous) partial function
p : B ⇀ B such that f(δA(α)) = δB(p(α)) for all α ∈ |A|.

In realizability theory it is customary to think of a representation δA : B ⇀ A in terms of its
graph, i.e., as a relation between B and A.

Definition 3.3 The realizability relation A corresponding to a representation A is the graph
of δA:

α A x ⇐⇒ δA(α) = x .

Because δA and A determine each other, we may define representations in terms of their realiz-
ability relations.

Definition 3.4 (equivalent to Definition 3.2) A representation A = (A,A) is a set A with
a relation A ⊆ B×A which is surjective, meaning that

∀x∈A .∃α∈B . α A x , (1)

and single-valued, meaning that, for all α ∈ B, x, y ∈ A,

α A x ∧ α A y =⇒ x = y . (2)

A computably (resp. continuously) realized map f : A → B is a function f : A → B for which
there exists a computable (resp. continuous) partial map p : B ⇀ B such that

α A x =⇒ p(α) B f(x) .

Condition (1) for A corresponds to the condition that δA be surjective, while (2) corresponds to
the condition that δA be single-valued. If we drop (2) we get a more general notion of multi-valued
representations, which however we shall not consider here. In realizability theory representations
are also known as modest sets, and the multi-valued ones as assemblies.

To keep things organized, we define two categories of representations, corresponding to the
mixed and continuous case:

Rep(K2) : representations and computably realized functions,

Rep(Kcont
2) : representations and continuously realized functions,

7

We shall work with Rep(K2), and only occasionally in Rep(Kcont
2). Thus, unless explicitly stated

otherwise, when we speak of “realized maps” or “morphisms” we mean computably realized maps.

Exercise 3.5 Express the definition of numbered sets with realizability relations instead of num-
berings and define the category Rep(K1) of numbered sets and realized maps.

Representations A and B are isomorphic, written A ∼= B, if there exists a bijection f : A → B
such that both f and f−1 are realized. Note that the realizers for f and f−1 need not be inverses
of each other.

3.2 Constructions of Representations

One of the basic tasks in Type II computability theory is search for good representations of impor-
tant spaces N, R, C, `2, Lp[0, 1], etc. There are known criteria for what makes a good representa-
tion, such as admissibility, but on the whole one often gets the feeling that good representations
are discovered rather than computed. Typically, one faces several possible representations for a
given set. It is desirable to have precise criteria for picking the right one. There are various results,
see e.g. the “robustness” theorems in [Wei00], which help choose the right representations, but on
the whole a bit of experience is needed to always get things right. Realizability theory, with help
of category theory and constructive logic, replaces much of the discovery and guesswork process
by straightforward computation of representations. Basic constructions of representations, such
as products, exponentials (function spaces), disjoint sums, and quotients have standard category-
theoretic definitions. Therefore, we may simply compute them in the category of representation
Rep(K2).

To demonstrate the technique, we shall compute products and exponentials of representations
starting from their category-theoretic definitions. Many more advanced examples from analysis
will follow in later on.

3.2.1 Products

Let us first recall the definition of a product in category, applied to Rep(K2). Given representations
A and B, their product is a representation P together with realized maps p1 : P → A and
p2 : P → B, such that for all realized maps f : C → A, g : C → B there exists a unique realized
map 〈f, g〉 : C → P satisfying for all z ∈ C

p1〈f, g〉(z) = f(z) and p2〈f, g〉(z) = g(z) .

We first apply this definition to the singleton representation C = one, which is the singleton set
1 = {?} with representation δ1(α) = ?. Functions {?} → A are the same thing as elements of A.
Thus, for every x ∈ A and y ∈ B there must exists a unique z ∈ P , write it as 〈x, y〉, such that
p1〈x, y〉 = x and p2〈x, y〉 = y. Therefore, the set P is just the usual cartesian product of sets A
and B, with p1 and p2 the canonical projections. It remains to compute the representation δP .
Whatever it is, the canonical projections p1 : P → A and p2 : P → B are realized by computable
partial maps q1 : B ⇀ B and q2 : B ⇀ B, which means that

δP (α) = 〈x, y〉 =⇒ δA(q1(α)) = x ∧ δB(q2(α)) = y .

Thus from a name α of a pair 〈x, y〉, we should be able to compute names q1(α) and q2(α) of
its components. This condition tells us that we must put in α enough information to be able to
recover the names of x and y. On the other hand, because products are limits (in the sense of
category theory), they must be constructed as “economically” as possible, which suggests that a
name of a pair should contain just enough information to recover names of its components. In
other words, what we need is a pairing operation 〈−,−〉 on B, and we already know that there is
one. To summarize, the product of A and B is A×B where

δA×B〈α, β〉 = 〈δA(α), δB(β))〉 .

8

The projections p1 : A×B → A and p2 : A×B → B are realized by the projections fst and snd ,
respectively.

3.2.2 Exponentials

Given representations A and B, we may ask for a good representation of the set of realized
maps A → B. In categorical language, we would like to compute the exponential of A and B.
By definition, this is a representation W together with a morphism e : W × A → B, called
the evaluation, such that for every morphism f : C × A → B there exists a unique morphism
f̃ : C → W, called the transpose of f , such that, for all x ∈ A, z ∈ C,

e〈f̃(z), x〉 = x .

Let us first compute the exponential in Rep(Kcont
2), i.e., when morphisms are continuously realized.

Applying the definition of exponentials to A and B with C = one and taking into account the
isomorphism one×A ∼= A, we see that for every realized map f : A → B there is a unique element
t ∈ W such that f(x) = e〈t, x〉, and conversely, for every element t ∈ W , there is a realized map
A → B defined by x 7→ e〈t, x〉. Therefore, W is the set of all continuously realized functions
from A to B.

Since f(x) = e〈f, x〉 for every f ∈ W and x ∈ A, e is the usual evaluation map which applies
a function to an argument. We must also check that it is realized. We do not know yet what δW

might be, but suppose anyway that δW (α) = f for some f ∈ W , that p : B ⇀ B tracks f , and
δA(β) = x. A realizer u : B ⇀ B for e must satisfy δB(u〈α, β〉) = f(x) = δB(p(β)), which suggests
that we should require u〈α, β〉 = p(β). Clearly, there ought to be some relation between a name
α of f and a realizer p of f , so we may reasonably expect to have a map h such that h(α) = p.
Now we get

u〈α, β〉 = p(β) = h(α)(β) . (3)

which is a familiar equation: it is the utm theorem for Baire space representations. Hence we can
take h = η, the canonical encoding of partial continuous maps B ⇀ B with Gδ domain, and u = u
to be the universal map from the utm Theorem 2.5. The representation δW is then given by

δW (α) = f ⇐⇒ ηα tracks f .

Lastly, we need to check that with this (W, δW) every f : C × A → B has a unique transpose.
Suppose p : B ⇀ B tracks f : C ×A → B. The transpose f̃ : C → W , if it exists, must satisfy, for
all x ∈ A, z ∈ C,

f̃(z)(x) = f(z, x)

which determines f̃ uniquely as a function between sets. To verify that the codomain of f̃ is W ,
we must show that the map x 7→ f(z, x) is continuously realized for every z ∈ C, which it is by
β 7→ ηα〈γ, β〉, where γ ∈ B is any name of z. This establishes f̃ : C → W as a function. For it to
be a morphism, we seek a partial continuous s : B ⇀ B such that

ηs(γ)(β) = p〈γ, β〉 .

This is exactly what the smn theorem 2.6 gives us. The transpose f̃ is exists and is unique.
Let us summarize the construction we have just computed: in Rep(Kcont

2), the exponential of
A and B is W = BA where

W = {f : A → B
∣∣ f is continuously realized}

and
δW (α) = f ⇐⇒ ηα tracks f .

How about the mixed case Rep(K2)? Is W the set of computably realized or the set of continuously
realized functions? As it turns out, we need to take the continuously realized ones. To see the

9

reason for this, consider θ ∈ B which is not computable. Let C be the representation C = {†}
with realizability relation

δC(α) = † ⇐⇒ α = θ .

A realizer p for a function f : C × A → B may use the realizer θ as an oracle. Thus a realizer
for f̃(†) ∈ W is a function with access to an oracle θ, so we cannot expect it to be computable in
general.

Exercise 3.6 Calculate products and exponentials in Rep(K1).

The representations of products and exponentials which we computed are isomorphic to the
standard representations used in Type II computability, cf. [Wei00, 3.3.3 and 3.3.13]. The point
we want to make here is that even if we never heard of pairing functions, the utm and the smn
theorems, the category-theoretic definitions of products and exponentials would lead us to them.

Without going through further calculations in the same detail, we next state other basic con-
structions of representations. They are obtained by applying general category-theoretic definitions
to Rep(K2). To get used to the realizability notation, we shall sometimes use A instead of δA.

3.2.3 Disjoint sums

We first fix notation for disjoint sums. Given sets S and T , let S+T be their disjoint sum (disjoint
union) and i0 : S → S + T and i1 : S → S + T the canonical inclusions. We may denote the
elements of S + T as i0(x) or i1(y), depending on whether they belong to the first or the second
component. Thus

S + T = {i0(x)
∣∣ x ∈ S} ∪ {i1(y)

∣∣ y ∈ T} .

It is assumed that the maps i0 and i1 are chosen so that their images never overlap. One common
definition is i0(x) = 〈0, x〉 and i1(y) = 〈1, y〉. When no confusion may arise, we drop the inclusions
i0 and i1, and pretend that A ⊆ A + B and B ⊆ A + B. A common case when this is done is
definition by cases of a function f : A + B → C, which we write as

f(z) =

{
f0(z) if z ∈ A ,

f1(z) if z ∈ B .

It would be more correct to write down two separate cases, one for x ∈ A and one for y ∈ B, as

f(i0(x)) = f0(x) and f(i0(y)) = f1(y) .

The disjoint sum of representations A and B is the representation A + B = (A+B, +A + B)
where A+B is characterized by

〈α, β〉 A+B i0(x) ⇐⇒ α(0) = 0 ∧ β A x

〈α, β〉 A+B i1(y) ⇐⇒ α(0) = 1 ∧ β B y .

The canonical inclusions i0 : A → A + B and i1 : B → A + B are realized by β 7→ 〈0ω, β〉 and
β 7→ 〈1ω, β〉, respectively. If f : A → C and g : B → C are realized by p and q, respectively, there
is a realized map [f, g] : A + B → C, defined by

[f, g](z) =

{
f(z) if z ∈ A,

g(z) if z ∈ B .

It is realized by the map B ⇀ B defined by

α 7→ if (fst α)(0) = 0 then p(fst α) else q(sndα) .

A common disjoint sum is one+one. It is isomorphic to the representation 2 of Booleans 2 = {0, 1}
with realizability relation

α 2 0 ⇐⇒ α(0) = 0 and α 2 1 ⇐⇒ α(1) = 1 .

10

3.2.4 Quotients

Let A be a representation and ∼ and equivalence relation on its underlying set A. The equivalence
class of x ∈ A is the set [x]∼ = [x] = {y ∈ A

∣∣ x ∼ y}. The underlying set of the quotient
representation A/∼ is the set of ∼-equivalence classes A/∼ with the representation

δA/∼(α) = [δA(α)]∼ .

The canonical quotient map [−]∼ : A → A/∼, defined by x 7→ [x]∼, is realized by the identity
map. For any realized map f : A → B which respects ∼, i.e., x ∼ y implies f(x) = f(y), there is
a unique factorization f : A/∼ → B such that f([x]) = f(x). The factorization is tracked by at
least those maps B ⇀ B that track f .

3.2.5 Subrepresentations

Recall that a monomorphism, or mono for short, is a morphism m : A � B that can be cancelled
on the left: if m ◦ f = m ◦ g then f = g. Monos m : A � B and m′ : A′ � B are isomorphic if
there exists an isomorphism h : A → A′ such that m = m′ ◦ h.

In Rep(K2) a mono is an injective realized map m : A � B, i.e., one that satisfies m(x) =
m(y) =⇒ x = y. Note that a realizer of such a mono need not be injective.

Exercise 3.7 Prove what we just stated, namely, that m : A → B is mono in Rep(K2) if, and
only if, m : A → B is injective.

We may ask whether every mono is isomorphic to one that has a particularly nice form. The
next definition and proposition give one possible answer.

Definition 3.8 A mono i : A � B is canonical if A ⊆ B, i is the subset inclusion, and i is
tracked by fst.

Proposition 3.9 Every mono is isomorphic to a canonical one.

Proof. Suppose a mono m : A � B is tracked by p. To get a canonical mono i : A′ � B, let
A′ = im(m) = {y ∈ B

∣∣ ∃x∈A . y = m(x)} be the image of m, and define A′ by

〈α, β〉 A′ y ⇐⇒ α B y ∧ β A m−1(y) .

Let i : A′ → B be the subset inclusion. It is tracked by fst so that i : A′ → B is a canonical mono.
The isomorphism h : A → A′ between m and i is defined as h(x) = m(x). It is tracked by the
map α 7→ 〈p(α), α〉, and its inverse h−1 is tracked by β 7→ sndβ. To see that all this really works,
a few easy details need to be checked, which we leave as exercise.

Proposition 3.9 allows us to replace a mono with a canonical one that is isomorphic to it. Moreover,
by inspecting the above proof, we may improve the description of monos even further. Observe
that A′ is defined so that whenever 〈α, β〉 A′ y we may replace α by any other α′ B y to obtain
a realizer 〈α′, β〉 A′ y. But this means that it does not matter which α we have in 〈α, β〉 A′ y,
as long as it realizes y. Thus we are lead to a simple description of monos, given in the following
definition, which only involves realizers β and elements y. The α’s are not needed, as they can
recovered from δB .

Definition 3.10 A realizability predicate, or predicate for short, on a representation A is a relation
P ⊆ B×A. The canonical mono iP : {A|P} � A determined by P is given by

{A|P} = {x ∈ A
∣∣ ∃α∈B . 〈α, x〉 ∈ P} and 〈α, β〉 {A|P} x ⇐⇒ α A x ∧ 〈β, x〉 ∈ P . (4)

A realizability relation R between representation A1, . . . ,An is a realizability predicate on the
product A1 × · · · ×An.

Proposition 3.11 Every mono is isomorphic to one determined by a realizability predicate.

11

Proof. A mono m : A � B, tracked by p, determines a predicate P by

P = {〈α, y〉 ∈ B×B
∣∣ ∃x∈A . (α A x ∧m(x) = y)} .

Let iP : {A|P} � B be the canonical mono determined by P , as in (4). Observe that {A|P} is
the image of m and that

〈α, β〉 {A|P} y ⇐⇒ α B y ∧ ∃x∈A . (β A x ∧m(x) = y) .

The isomorphism h : A → {A|P} between m and iP is defined by h(x) = m(x). It is tracked by
the map α 7→ 〈p(α), α〉, and its inverse is tracked by snd, which is easily checked.

A predicate P ⊆ B×A on A tells us two things. Firstly, it tells us which elements x ∈ A satisfy
the predicate P , namely those belonging to {A|P}, defined in (4). Secondly, if 〈α, x〉 ∈ P , then α is
the reason as to why x satisfies P . It may seem strange that a sequence of numbers α can be seen
as a “reason” for anything, but do not forget that useful information may be encoded by it. For
example, a sequence of prime numbers α = [p0, q0, p1, q1, p2, q2, . . .] such that pk + qk = 2k + 4 for
all k ∈ N would be a very good reason to believe in the truth of the famous Goldbach’s conjecture,
which states that every even number larger than two is the sum of two primes. It is not important
how we could get such a sequence, or even how we could check that it had the desired property.
The point is that it is possible to encode a reason for the truth of Goldbach’s conjecture with a
sequence of numbers.

There is a customary notation for realizability predicates, which we shall use extensively. We
read 〈α, x〉 ∈ P as “x has property P because of α”, or “α realizes the fact that x has property P”,
so we write 〈α, x〉 ∈ P more intuitively as

α P (x) ,

and read it as “α realizes P (x)”. More generally, for a realizability relation R between represen-
tations A1, . . . ,An we write

α R(x1, . . . , xn)

instead of 〈α, x1, . . . , xn〉 ∈ R. Because it is not clear from this notation what the domain of R is,
we may also write more precisely

x1 :A1, . . . , xn :An

∣∣ α R(x1, . . . , xn) .

The sequence x1 :A1, . . . , xn :An is called the context. It makes it clear that R is a relation
between representations A1, . . . ,An and that x1, . . . , xn are elements of A1, . . . , An, respectively.

We say that realizability predicates P and Q are equivalent, written P ≡ Q, when they represent
isomorphic monos.

Proposition 3.12 Realizability predicates P and Q on A are equivalent if, and only if, there exist
computable partial maps p : B ⇀ B and q : B ⇀ B such that, for all α, β ∈ B, x ∈ A,

α A x ∧ β P (x) =⇒ p〈α, β〉 Q(x)

and
α A x ∧ β Q(x) =⇒ q〈α, β〉 P (x) .

Proof. Suppose P and Q are equivalent. Then there exists an isomorphism h : {A|P} → {A|Q}
between iP : {A|P} � A and iQ : {A|Q} � A, and because iP and iQ are subset inclusions,
this isomorphism is the identity map, h(x) = x. Let s be a realizer for h and t a realizer for h−1.
Define p(α) = snd s(α) and q(α) = snd t(α). If α A x and β P (x) then 〈α, β〉 {A|P} x,
hence s〈α, β〉 {A|Q} x and p〈α, β〉 Q(x), as required. By a symmetric argument, α A x and
β Q(x) implies q〈α, β〉 P (x).

Conversely, suppose there are p and q as in the proposition. For any x ∈ A, with α A x, if
x ∈ {A|P} then there is β ∈ B such that β P (x), hence p〈α, β〉 Q(x) and x ∈ {A|Q}, too. This

12

shows {A|P} ⊆ {A|Q}, and {A|Q} ⊆ {A|P} is proved similarly. To see that iP : {A|P} � A and
iQ : {A|Q} � A are isomorphic, we only need to show that the identity maps {A

∣∣ P} → {A|Q}
and {A|Q} → {A|P} are realized, which they are by α 7→ 〈α, p(α)〉 and β 7→ 〈β, q(β)〉, respectively.

We say that a predicate P on A has irrelevant realizers if α P (x) implies β P (x) for
all β ∈ B. Such realizers are indeed of no help as we cannot compute anything from them. We
say that a predicate is without computational content when it is equivalent to one with irrelevant
realizers.

Exercise 3.13 Let A be a representation. Every subset S ⊆ A determines a realizability predi-
cate PS with irrelevant realizers, namely the one defined by

α PS(x) ⇐⇒ x ∈ S .

Prove that every predicate on A without computational content is isomorphic to one of this form.
Thus, the realizability predicates on A without computational content are, up to isomorphism,
subsets of A.

13

4 Realizability Logic

In this section we study further properties of subobjects and realizability predicates. Then we
give rules for interpreting intuitionistic logic by realizability predicates.

4.1 The Poset of Subobjects

Consider monos m : A � C and n : B � C. We say that m is below n, and write m ≤ n, if m
factors through m, i.e., if there exists a morphism k : A → B such that m = n ◦ k. It is easily
shown (exercise) that k is mono and unique, if it exists. The relation ≤ is reflexive and transitive,
but it is not in general antisymmetric. In fact, m ≤ n and n ≤ m holds precisely when m and n
are isomorphic. Thus, the preorder ≤ on monos induces a partial order ≤ on the set of equivalence
classes of isomorphic monos, which are called subobjects.

Since realizability predicates represent monos, we may define a preorder on them, too. If P
and Q are realizability predicates on A, we let P ≤ Q when iP ≤ iQ.

Proposition 4.1 Let P and Q be realizability predicates on A. Then P ≤ Q if, and only if, there
exists a computable p : B ⇀ B such that, for all α, β ∈ B, x ∈ A,

α A x ∧ β P (x) =⇒ p〈α, β〉 Q(x) .

Proof. This is half of Proposition 3.12. Half of its proof is the proof of this proposition.

Our next task is to give an interpretation of (intuitionistic) first-order logic in Rep(K2). We
follow the standard techniques of categorical logic and interpret logical predicates as subobjects,
or rather as realizability predicates that represent subobjects. The basic logical operations are
interpreted as operations on the poset of subobject, or rather on the preorder of realizability
predicates. Specifically, for realizability predicates P and Q on A we have:

• truth > is the greatest subobject of A,

• falsehood ⊥ is the least subobject of A,

• conjunction P ∧Q is the greatest lower bound of P and Q,

• disjunction P ∨Q is the least upper bound of P and Q,

• implication P ⇒ Q is the greatest predicate S such that P ∧ S ≤ Q,

• negation ¬P is defined as P ⇒ ⊥,

For a realizability relation R on A×B, we interpret quantifiers as follows:

• existential quantification ∃AR is the least predicate on B through which the canonical pro-
jection A×B → B factors,

• universal quantification ∀AR is the largest predicate on B that factors through the canonical
projection A×B → B.

It would take too much time and effort to explain the precise meaning and motivation for the above
interpretation. The interested reader may consult a standard text in categorical logic [MM92,
McL95, Joh02]. We shall content ourselves with the resulting rules for computing logical operations
in Rep(K2).

4.2 The Realizability Interpretation

Our language is a multi-sorted first-order logic. It consists of sorts, which in our case are represen-
tations, predicates and relations on sorts, which to us are realizability predicates and relations. It
is simpler to work with predicates than with relations, so below we give rules for predicates only.
To obtain rules for general relations, just remember that relations are predicates on products and
apply the rules accordingly.

14

4.2.1 Constructions of Sorts

Since sorts are interpreted as representations, we may use the constructions from §3.2 to define
new sorts from old ones, for example products A×B, disjoint sums A+B and exponentials BA.

If P is a realizability predicate on A, the subrepresentation corresponding to P is {A|P},
defined in (4), also written as {x ∈ A

∣∣ P (x)}. It is interesting to look at the realizers for the
elements of a subrepresentation. A realizer for x ∈ {A|P} is a pair 〈α, β〉 where α A x and
β P (x). Thus, to know that an element belongs to a subrepresentation is to know not only a
realizer for the element, but also a reason for its being in the subrepresentation. In particular,
it is possible to have a predicate P on A such that {A|P} = A, that is for every x ∈ A there is
β ∈ B such that β P (x), yet A and {A|P} are not isomorphic, because the realizers of {A|P}
carry more information that those of A.

We need to be careful with quotients, since we do not want to mix up ordinary equivalence
relations and realizability equivalence relations. Suppose R is a realizability relation on A ×A.
It determines an ordinary relation R′ ⊆ A × A by R′ = {〈x, y〉 ∈ A × A

∣∣ ∃α∈B . 〈α, x, y〉 ∈ R}.
We define A/R to be the quotient of A by the least equivalence relation containing R′.

4.2.2 Truth and Falsehood

The constant > signifies truth, and is interpreted as the predicate which is always realized, i.e.,
x :A

∣∣ α > holds for all x ∈ A and all α ∈ B.
The constant ⊥ signifies falsehood, and it is interpreted as the predicate which is never realized,

i.e., x :A
∣∣ α ⊥ holds for no x ∈ A and α ∈ B.

Exercise 4.2 Show that, for any realizability predicate P on A, ⊥ ≤ P ≤ >.

4.2.3 Conjunction

Let P and Q be predicates on A. Their conjunction P ∧Q is the predicate on A, given by

〈α, β〉 P (x) ∧Q(x) iff α P (x) and β Q(x).

Exercise 4.3 Prove that P ∧ Q is the greatest lower bound of P and Q, i.e., that P ∧ Q ≤ P ,
P ∧Q ≤ Q, and that whenever R ≤ P and R ≤ Q then R ≤ P ∧Q.

4.2.4 Disjunction

Let P and Q be predicates on A. Their disjunction P ∨Q is the predicate on A, given by

〈α, β〉 P (x) ∨Q(x) iff (α(0) = 0 and β P (x)) or (α(0) = 1 and β Q(x)).

Notice that a realizer for a disjunction not only provides a realizer for one of the disjuncts, but
also explicit information as to which disjunct the realizer is for.

Exercise 4.4 Prove that P ∨ Q is the least upper bound of P and Q, i.e., that P ≤ P ∨ Q,
Q ≤ P ∨Q, and that whenever P ≤ R and Q ≤ R then P ∨Q ≤ R.

4.2.5 Implication

Let P and Q be predicates on A. The implication P ⇒ Q is the predicate on A, given by

α P (x) ⇒ Q(x) iff whenever β A x and γ P (x) then ηα〈β, γ〉 Q(x).

Thus, a realizer for P (x) ⇒ Q(x) is (the name of) a program which transforms realizers for x and
P (x) to realizers for Q(x).

Exercise 4.5 Prove that P ⇒ Q is the largest predicate R such that P ∧ R ≤ Q, i.e., that
P ∧ (P ⇒ Q) ≤ Q and that whenever P ∧R ≤ Q then R ≤ (P ⇒ Q).

15

4.2.6 Negation

Let P be a predicate on A. Negation ¬P (x) is defined as P (x) ⇒ ⊥, so we may simply compute
its interpretation. Suppose β A x. If α P (x) ⇒ ⊥ then, for all γ P (x), ηα〈β, γ〉 ⊥. Since
⊥ is never realized, this means that γ P (x) cannot happen. So ¬P (x) is realized only if P (x)
is not. And if P (x) is not realized, then any α is a realizer for ¬P (x). So we have

α ¬P (x) iff for all β ∈ B, not β P (x).

Later on we shall need to know the realizers of a doubly negated predicate. From the above we
may compute

α ¬¬P (x) iff for some β ∈ B, β P (x).

Thus, double negation destroys the computational content of a predicate, since it replaces compu-
tationally meaningful realizers with irrelevant ones.

4.2.7 Existential quantification

Let R be a relation on A × B. By quantifying existentially over A we may form the predicate
∃AR on B. If we think of R as a two-place relation R(x, y), we may write ∃x∈A .R(x, y) instead
of ∃AR. The existential quantification is characterized by

〈α, β〉 ∃x∈A .R(x, y) iff there exists x0 ∈ A such that α A x0 and β R(x0, y).

The realizer 〈α, β〉 consists of a realizer α for some x0 ∈ A and a realizer β which realizes R(x0, y).

4.2.8 Universal quantification

Let R be a relation on A × B. By quantifying universally over A we may form the predicate
∀AR on B. If we think of R as a two-place relation R(x, y), we may write ∀x∈A .R(x, y) instead
of ∀AR. The universal quantification is characterized by

α ∀x∈A .R(x, y) iff whenever β A x then ηα(β) R(x, y).

4.2.9 Equality

Equality on a representation A is the diagonal map A � A×A, x 7→ 〈x, x〉. Up to isomorphism,
it is represented by the realizability relation =A on A×A, defined by

α x =A y iff x = y.

Exercise 4.6 Prove that the diagonal map A � A × A is indeed isomorphic to the mono
determined by =A.

It is evident that the realizer α is irrelevant, so equality has no computational content. (This is
a property of the category of representations, which does not hold in realizability toposes, which
are generalizations of categories of representations.)

We usually omit the subscript in =A, especially when the representation A is clear from the
context. But it should be remembered that every representation has its own equality relation.

4.3 Basic Properties of the Realizability Interpretation

We say that a realizability predicate P on A is true or valid, if it is equivalent to truth >.
Since P ≤ > anyhow, validity amounts to > ≤ P , which is equivalent to existence of a certain
computable map:

Definition 4.7 A predicate P on A is true or valid, written |= P , when there exists a computable
partial map p : B ⇀ B such that if α A x then p(α) P (x). We say that p validates, or realizes P .

16

A predicate P on the singleton representation 1 is called a sentence. It is valid if, and only if,
it is realized.

Exercise 4.8 Show that up to equivalence there are two sentences in Rep(Kcont
2). Then prove

that in Rep(K2) sentences, quotiented by equivalence, are the Medvedev degrees from computability
theory.

Proposition 4.9 For realizability predicates P and Q on A:

1. |= P if, and only if, there exists a realizer for ∀x∈A .P (x),

2. P ≤ Q if, and only if, |= P ⇒ Q.

3. P and Q are equivalent if, and only if |= (P ⇒ Q) ∧ (Q ⇒ P).

Proof. If p validates P , then any α such that ηα = p realizes ∀x∈A .P (x). Conversely, if
α ∀x∈A .P (x) then ηα validates P . The second claim is equally easy, while the third one
follows directly from the second one.

We may build up realizability predicates using the logical connectives and quantifiers of first-
order logic. It is natural to ask about the relationship between provability of such predicates in
first-order logic and their validity in the realizability interpretation.

Proposition 4.10 Intuitionistic first-order logic is sound for the realizability interpretation, which
means: if intuitionistic logic proves that Q follows from P , then P ≤ Q. In particular, if intu-
itionistic logic proves P , then P is valid.

Proof. We omit the proof. One checks that intuitionistic rules of inference preserve validity, from
which it follows that that provable predicates are valid.

Normally, validity of a predicate is important but the map validating is of little interest. The
practical value of Proposition 4.10 is that it allows us to establish validity of a predicate by proving
it in intuitionistic logic, thus avoiding completely the construction of its validating map.

4.3.1 Realizability Logic is not Classical

The interpretation of logic given above validates the intuitionistic rules of reasoning. One may
wonder why we insist on intuitionistic logic. It would certainly be more convenient to use classical
logic, which most mathematicians are already familiar with. But which logic we use is not a matter
of choice, convenience, or philosophical conviction. The logic of Rep(K2) is a property of Rep(K2),
and not an extra thing that we add to it. In fact, following the standard techniques of categorical
logic, we have computed its rules. So far the rules have turned out to support intuitionistic logic.
We may also compute whether the logic of Rep(K2) happens to be classical.

The difference between classical and intuitionistic logic is in the rule known as Excluded Middle,
which states that, for every predicate P ,

P ∨ ¬P .

Does this rule hold in the realizability relation? Let P be a realizability predicate on A. Suppose
|= P∨¬P . Then there exists a computable p : B ⇀ B such that, for all α x, p(α) P (x)∨¬P (x).
By definition of disjunction, this means that

fst (p(α))(0) = 0 and snd (p(α)) P (x),

or
snd (p(α))(0) = 1 and snd (p(α)) ¬P (x).

17

Define q : B ⇀ {0, 1} by q(α) = fst (p(α))(0), which is obviously a computable map. For all
α A x,

q(α) =

{
1 if |= P (x),
0 if |= ¬P (x).

We have the following conclusion: if a realizability predicate P on A satisfies the Excluded Middle,
then there is a computable decision procedure q, which tells us for any given α ∈ |A| whether
P (δA(α)) holds.

It is not hard to think of an example which does not have such a computable decision procedure.
To make things simple, let us take A = (B, idB) and let S ⊆ B be a subset which is neither closed
nor open. Define the realizability predicate P by

α P (β) ⇐⇒ β ∈ S .

We claim that 6|= P ∨¬P . Suppose on the contrary that |= P ∨¬P . By the argument above, there
exists a computable map q : B → {0, 1} such that

q(α) =

{
1 if α ∈ S,
0 if α 6∈ S.

(5)

Since q is computable it is also continuous, hence q−1(1) = S should be an open and closed subset
of B, which it is not. Therefore 6|= P ∨¬P . We have proved that Excluded Middle fails in Rep(K2).
The same argument shows that Excluded Middle fails in Rep(Kcont

2) as well, as there is not even
a continuous q satisfying (5).

Since Excluded Middle does not hold for all predicates, it makes sense to give a name to those
for which it does.

Definition 4.11 A realizability predicate P on A is decidable if |= P ∨ ¬P .

4.4 First Uses of Realizability Logic

4.4.1 Computability for Free

It is often said that in intuitionistic logic an existential statement ∃x∈A .P (x) must be proved by
an explicit construction of an x0 satisfying P , whereas in classical logic one may prove ∃x∈A .P (x)
indirectly by proving ¬∀x∈A .¬P (x). Realizability offers one way of understanding what this
means precisely.

Proposition 4.12 Let P be a predicate on A and suppose |= ∃x∈A .P (x). Then there is x0 ∈ A
and a computable α ∈ B such that α A x0 and |= P (x0).

Proof. Since |= ∃x∈A .P (x) there exists a computable β such that β ∃x∈A .P (x). Then
α = fst β is also computable and there is x0 ∈ A such that α A x0 and sndβ P (x0), hence
|= P (x0).

Corollary 4.13 If intuitionistic logic proves ∃x∈A .P (x) then there exists a computable x0 ∈ A
such that P (x0) is valid.

Proof. This follows directly from Propositions 4.10 and 4.12.

18

It should be noted that intuitionistic logic does not assume that everything is computable. In
fact, there are various models for it which have nothing to do with computability, such as sheaves
on a topological space. So by Corollary 4.13 we really do get computability for free from an
intuitionistic proof.

A common application of Corollary 4.13 is as follows. Suppose we want to show the exis-
tence of a computably realized map f : A → B satisfying a certain condition. If we can express
this condition as a realizability predicate P , then it suffices to prove intuitionistically the state-
ment ∃ f ∈BA . P (f). In §4.4.4 we will see how a similar trick allows us to infer the existence of
computably realized multi-valued maps from intuitionistic proofs.

4.4.2 Classical Predicates

In §4.2.6 we saw that double negation destroys computational content of a realizability predicate.
Let us look at the relationship between P and its double negation ¬¬P .

Proposition 4.14 For any predicate P on A, |= P (x) ⇒ ¬¬P (x).

Proof. First proof: we look for a computable p : B ⇀ B, such that if α x then p(α) P (x) ⇒
¬¬P (x). There is a computable β ∈ B such that ηβ(γ) = 0ω for all γ ∈ B. Define p(α) = β. Now
if α A x and γ P (x) then ηp(α)〈α, γ〉 = ηβ〈α, γ〉 = 0ω ¬¬P (x), as required.

Second proof: we prove P (x) ⇒ ¬¬P (x) intuitionistically. Recalling the definition of negation,
we need to show P (x) ⇒ (P (x) =⇒ ⊥) =⇒ ⊥. But this is trivial: if P (x) and P (x) ⇒ ⊥ then
⊥.

It cannot be the case that |= ¬¬P ⇒ P for all predicates P because that would imply Excluded
Middle.

Definition 4.15 A realizability predicate P is classical if ¬¬P ≡ P .

Exercise 4.16 Show that a decidable predicate is classical. This is best done by proving (P ∨
¬P) ⇒ ¬¬P ⇒ P in intuitionistic logic.

Proposition 4.17 A realizability predicate is classical if, and only if, it is without computational
content.

Proof. If P and ¬¬P are equivalent then P is without computational content since ¬¬P has
irrelevant realizers.

Conversely, suppose P is without computational content. Then it is equivalent to a predicate
Q with irrelevant realizers. But then ¬¬Q is the same predicate as Q, so we have P ≡ Q = ¬¬Q ≡
¬¬P .

Classical realizability predicates are particularly easy to understand because realizers do not
play a role in their meaning. Thus we may read a classical realizability predicate as if it were and
ordinary predicate. There is a family of classical predicates which may easily be recognized from
their form.

Definition 4.18 A predicate is negative if it is built from basic classical predicates, equality, ⊥,
>, ∧, ⇒, ¬, and ∀.

Proposition 4.19 A negative predicate is classical.

19

Proof. We prove the proposition by induction on the structure of a negative predicate P . For each
case we prove intuitionistically that ¬¬P ⇒ P .

We already know that equality is classical, as it is without computational content, and clearly
⊥ and > are classical, too.

Suppose P is P1 ∧ P2 where P1 and P2 are classical. Assume ¬¬(P1 ∧ P2). If ¬P1 then also
¬(P1 ∧P2), which contradicts our assumption, hence ¬¬P1, and because P1 is classical, P1 holds.
An analogous argument establishes P2. Therefore P1 ∧ P2.

Suppose P is P1 ⇒ P2 where P1 and P2 are classical. Assume ¬¬(P1 ⇒ P2). Assume P1.
If ¬P2 then ¬(P1 ⇒ P2), which contradicts our assumption. Therefore ¬¬P2 and since P2 is
classical, P2 holds. Therefore P1 ⇒ P2.

Suppose P is ¬P1 where P1 is classical. Assume ¬¬¬P1. Since ¬¬P1 is equivalent to P1, we
obtain ¬P1.

Suppose P is ∀x∈A .P1(x), where P1 is classical. Assume ¬¬∀x∈A .P1(x). Consider an
arbitrary x ∈ A. If we had ¬P1(x) then it would follow that ¬∀x∈A .P1(x), which contradicts
our assumption. Therefore ¬¬P1(x) holds and since P1 is classical, P1(x) holds. We may conclude
∀x∈A .P1(x).

Exercise 4.20 If you think that the above proof is ugly, try writing down the realizers instead.

When P is a classical predicate on A, the subrepresentation {A|P} has a particularly simple
form. Recall that a realizer for x ∈ {A|P} is a pair 〈α, β〉 such that α A x and β P (x). Since P
is classical, we might as well drop the irrelevant realizer β.

Proposition 4.21 If P is a classical predicate on A, then up to isomorphism {A|P} is the
representation

{A|P} = {x ∈ A
∣∣ |= P (x)} α {A|P} x ⇐⇒ α A x . (6)

Proof. Without loss of generality, we may assume that P has irrelevant realizers. Representations
defined by (4) and (6) have the same underlying set {A|P}. To see that they are isomorphic, we
only need to show that the identity map {A|P} → {A|P} is realizes as a morphism between the
two representations. From (4) to (6) it is realized by fst, and in the other direction by α 7→ 〈α, 0ω〉.

In Rep(K2) there are predicates which are classical even though they are not negative. One
such important example is Markov Principle.

Proposition 4.22 (Markov Principle) Suppose P is a decidable predicate on N. Then the
predicate ∃n∈N . P (n) is a classical.

Proof. We give an informal proof. If P is decidable there is a computable q : N ⇀ {0, 1} such
that q(n) = 1 ⇐⇒ |= P (n). If |= ¬¬∃n∈N . P (n) then we may compute m ∈ N such that
|= P (m) as m = mink∈N(q(k) = 1). This m is well defined because q is not constantly zero
because |= ¬¬∃n∈N . P (n).

Exercise 4.23 Show that a parameterized Markov Principle holds in Rep(K2): if R is a relation
on A×N and |= ∀x∈A . (R(x, n) ∨ ¬R(x, n)) then ∃n∈N . R(x, n) is a classical predicate on A.

4.4.3 Monos and Epis

Realizability logic is only useful if we can express interesting properties of representations and
morphisms in it. This is indeed the case, and we start with simple examples.

Proposition 4.24 A morphism f : A → B is mono if, and only if,

|= ∀x, y ∈A . (f(x) =B f(y) ⇒ x =A y) . (7)

20

Proof. Observe that (7) is a negative predicate. Therefore its meaning in the realizability inter-
pretation is the same as its ordinary meaning. But the ordinary meaning is that f : A → B is
injective, i.e., that f : A → B is mono.

Let us also write down a more detailed proof. First of all, ∀x, y ∈A . · · · is an abbreviation
for ∀x∈A .∀ y ∈A . · · · . A realizer for (7) is a computable θ ∈ B such that, whenever α A x
and β A y, then ηηθ(α)(β) f(x) =B f(y) ⇒ x =A y. Since =B has trivial realizers, this
means that for all γ ∈ B, if f(x) = f(y) then ηηηθ(α)(β)〈〈α, β〉, γ〉 x =A y. Now if such a θ

exists, then f(x) = f(y) implies that x =A y is realized by ηηηθ(α)(β)〈〈α, β〉, γ〉, therefore x = y.
So f is indeed injective. Conversely, if f is injective, then there is a computable θ such that
ηηηθ(α)(β)〈〈α, β〉, γ〉 = 0ω for all α, β, γ. This θ realizes (7).

We have not said anything yet about epimorphisms. Recall that e : A → B is an epimorphism,
or epi, if it can be cancelled on the right: f ◦ e = g ◦ e =⇒ f = g. In Rep(K2), a realized map
e : A → B is epi if, and only if, e : A → B is surjective.

Exercise 4.25 Prove that in Rep(K2) a morphism is epi if, and only if, its underlying map is
surjective.

How can we express the fact that a realized map f : A → B is surjective with a realizability
predicate? Classically, surjectivity of f is the statement

∀ y ∈B .∃x∈A . f(x) = y . (8)

Let us see what the same statement means in realizability logic. We should suspect that it means
something else because (8) is not a negative formula as it contains an existential quantifier. A
realizer for (8) is a computable θ ∈ B such that if β B y then ηθ(β) ∃x∈A . f(x) =B y, which
means that there is x0 ∈ A such that

fst (ηθ(β)) A x0 and snd (ηθ(β)) f(x0) =B y .

Since =B has irrelevant realizers, we may safely ignore snd (ηθ(β)), except for the fact that it
tells us that f(x0) = y. However, fst (ηθ(β)) is very interesting. The map p(β) = fst (ηθ(β)) is
computable and, given β B y, it computes a realizer p(β) for some x0 ∈ A such that f(x0) = y.
Does this mean that p realizes a morphism g : B → A such that f(g(y)) = y? If that were the
case then β B y and β′ B y would imply p(β) A g(y) and p(β′) A g(y), but there is nothing
to force p to map two realizers β, β′ for y to two realizers p(β), p(β′) for the same element in A.
However, p does realizes a multi-valued map [Wei00, 3.1.3] g : A ⇒ B such that f(g(y)) = y for
all y ∈ B. We have proved:

Proposition 4.26 For a morphism f : A → B,

|= ∀ y ∈B .∃x∈A . f(x) =B y (9)

is valid if, and only if, f has a computable multi-valued right inverse.

Exercise 4.27 If you are familiar with category theory, prove that (9) is valid if, and only if, f
is a regular epi.

We have found a way to express in realizability logic the notion of an epi which has a computable
multi-valued right inverse, but we still do not know how to write down a predicate which says
that f : A → B is epi. A common trick is to try a predicate which is equivalent to (8) in classical
logic, but not in intuitionistic. The problem with (8) is that its realizers compute something useful
because of the existential quantifier. So we just need to “destroy” the computational content of ∃,
and we know that double negation does that.

Proposition 4.28 For a morphism f : A → B,

|= ∀ y ∈B .¬¬∃x∈A . f(x) =B y

is valid if, and only if, f is epi.

21

Proof. ∀ y ∈B .¬¬∃x∈A . f(x) =B y is intuitionistically equivalent to ∀ y ∈B .¬∀x∈A .¬f(x) =B

y, which is a negative formula. Its ordinary meaning is that f : A → B is surjective, i.e., that
f : A → B is epi.

Exercise 4.29 Prove in intuitionistic logic that ¬¬∃x∈A .P (x) is equivalent to ¬∀x∈A .¬P (x).

4.4.4 Multi-valued maps and ∀∃ predicates

In §4.4.3 we saw that a realizer for (9) also realized a multi-valued map. Let us look at the general
situation. Consider a realizability relation R on A×B and a ∀∃ predicate

∀x∈A .∃ y ∈B . R(x, y) .

A realizer for it is a computable θ ∈ B such that if α A x then ηθ(α) ∃ y ∈B . R(x, y), hence
there is y0 ∈ B such that

fst (ηθ(α)) A y0 and snd (ηθ(α)) R(x, y0) .

As before, the map p(α) = fst (ηθ(α)) is computable and it realizes a multi-valued map g : A ⇒ B
such that, whenever α A x then p(α) B y where y ∈ g(x) and |= R(x, y0). This gives us an idea
how to prove the existence of a computable multi-valued map using intuitionistic logic.

Proposition 4.30 If intuitionistic logic proves ∀x∈A .∃ y ∈B . R(x, y) then there exists a com-
putably realized multi-valued choice map g : A ⇒ B such that |= R(x, g(x)) for all x ∈ A.

Remark: the notation R(x, g(x)) is not entirely correct, as g(x) is a set of values. What we mean
is that any value of g(x) would work: for all x ∈ A, y ∈ B, if y ∈ g(x) then |= R(x, y).

Proof. Suppose intuitionistic logic proves ∀x∈A .∃ y ∈B . R(x, y). Then there is a computable
p : B ⇀ B which validates the predicate. Define a multi-valued map g : A ⇒ B by

g(x) = {y ∈ B
∣∣ ∃α∈B . (α A x ∧ fst (p(α)) y)} .

A computable realizer for g is the map α 7→ fst (p(α)). To see that g is a choice map for R,
consider any x ∈ A and y ∈ g(x). There exists α ∈ B such that α A x and fst (p(α)) B y, hence
p(α) R(x, y).

In practice we most often see ∀∃ predicates ∀xA∃ y ∈B . R(x, y) where R is a classical relation.
These are particularly simples as |= R(x, y) may be read as an ordinary relation.

4.4.5 Axiom of Choice

As we saw in §4.4.4, valid ∀∃ predicates give us choice functions which are multi-valued in general.
Existence of single-valued choice functions is expressed by (one form of) the axiom of choice. We
examine those representations for which the axiom of choice is valid in the realizability logic.

Definition 4.31 A representation A is said to satisfy choice when

|= (∀x∈A .∃ y ∈B . R(x, y)) ⇒ ∃ f ∈BA .∀x∈A .R(x, f(x)) . (10)

for every representation B and relation R on A×B,

Statement (10) says that every total relation R with domain A has a (single-valued) choice function.
Of course, Definition 4.31 is of value only if we can characterize in a simple way representations
satisfying it.

22

Definition 4.32 A representation A = (A, δA) is canonically projective if its representation func-
tion δA : B ⇀ A is injective, or equivalently, if for all α, β ∈ B, x ∈ A,

α A x ∧ β A x =⇒ α = β .

A representation is projective if it is isomorphic to a canonically projective one.

It seems odd that we call a representation “projective” when its representation is injective. The
name comes from a general definition in category theory (projective for regular epis), which in
Rep(K2) happens to mean precisely injectivity of δA.

Proposition 4.33 A representation satisfies choice if, and only if, it is projective.

Proof. Suppose A satisfies choice. Let B be the representation

B = |A| = {α ∈ B
∣∣ ∃x∈A .α A x} and β B α ⇐⇒ β = α .

Define a realizability relation R on A×B by

β R(x, α) ⇐⇒ α A x .

Observe that R has irrelevant realizers. Because A satisfies choice there is a computable p : B ⇀ B
which validates (10) for our B and R.

A computable θ such that ηθ(α) = 〈α, 0ω〉 realizes ∀x∈A .∃α∈B . R(x, α), thus p(θ)
∃ f ∈BA .∀x∈A .R(x, f(x)). By Proposition 4.12, there exists a morphism f : A → B, real-
ized by a computable q : B ⇀ B, such that |= ∀x∈A .R(x, f(x)). Because ∀x∈A .R(x, f(x)) is
a valid classical predicate we may read it as an ordinary predicate. It tells us that f(x) A x for
every x ∈ A. Now let C be the representation

C = im(f) = {α ∈ B
∣∣ ∃x∈A . f(x) = α} and β C α ⇐⇒ β = α .

Clearly, C is canonically projective. We claim that f : A → C is an isomorphism. The map
f : A → C is surjective by definition and injective because f(x) = f(y) together with f(x) A x
and f(y) A y implies x = y. As a morphism A → C, f is realized by q, and f−1 is realized by
the identity map. This proves that f is an isomorphism. Therefore A is projective.

It suffices to prove the converse for a canonically projective A. We argue informally that (10)
is realized by showing that there is a computable procedure transforming realizers of the an-
tecedent to realizers of the consequent. Suppose θ ∀x∈A .∃ y ∈B . R(x, y). For α A x,
ηθ(α) ∃ f ∈BA .∀x∈A .R(x, f(x)). The computable map p(α) = fst (ηθ(α)) tracks a mor-
phism f0 : A → B, defined by f0(δA(α)) = δB(p(α)), which is a good definition because A is
canonically projective. Now α 7→ snd (ηθ(α)) maps α ∈ B such that α A x to a realizer for
∀x∈A .R(x, f0(x)), therefore the consequent is realized.

A representation A induces a topology on the underlying set A, namely the quotient topology
induced by the representation map δA : B ⇀ A. We say that A represents a topological space X
if A = X and the induced topology on A coincides with the topology of X. In Rep(Kcont

2) there
is an interesting topological characterization of those representations that satisfy choice.

Exercise 4.34

1. Prove that zero-dimensional countably-based Hausdorff spaces (Hausdorff spaces with count-
ably based clopen base) are precisely those spaces that embed into Baire space B.

2. Show that a quotient map f : X → Y between zero-dimensional countably-based Hausdorff
spaces is a retraction, i.e, that there exists a continuous g : Y → X such that f ◦ g = idY .

3. Prove that in Rep(Kcont
2) a representation is projective if, and only if, it represents a zero-

dimensional countably-based Hausdorff space.

23

By combining Exercise 4.34 and Proposition 4.33, we get an interesting connection between real-
izability logic and topology.

Corollary 4.35 A representation satisfies choice in Rep(Kcont
2) if, and only if, it represents a

zero-dimensional countably-based Hausdorff space.

Exercise 4.36 Figure out why Corollary 4.35 does not work in Rep(K2) and recover it by formu-
lating a suitable notion of computable zero-dimensional countably-based Hausdorff spaces.

4.4.6 Decidable Predicates

In classical logic we are used to defining a function f : A → B by cases as

f(x) =

{
f0(x) if P (x),
f1(x) otherwise,

where P is any (ordinary) predicate on the set A. This defines a function because, for every
x ∈ A, exactly one of the possibilities P (x) and ¬P (x) holds. Therefore, definition by cases relies
on Excluded Middle, which means that in intuitionistic logic a definition by cases is allowed only
when P is decidable.

The characteristic map χP : A → {0, 1} is an example of a map defined by cases,

χP (x) =

{
1 if P (x),
0 if ¬P (x).

Thus in intuitionistic logic only decidable predicates have characteristic maps into {0, 1}. (Even
intuitionistically every predicate has a characteristic map into Ω, the set of (intuitionistic) truth
values. But we do not have Ω because we are not working with a topos.)

We can also explain the connection between decidable predicates and characteristic maps with
realizability logic. Suppose P is a predicate on A. Recall that by the argument in §4.3.1 if P is
decidable then there exists a computable map q : B ⇀ {0, 1} such that, for all α A x,

q(α) =

{
1 if |= P (x),
0 if |= ¬P (x).

With the help of q we may then realize the characteristic map

χP (x) =

{
1 if |= P (x),
0 if |= ¬P (x).

Conversely, if the characteristic map χP is realized, then P is decidable because

|= P (x) ⇐⇒ χP (x) = 1 (11)

and
|= χP (x) = 1 ∨ ¬(χP (x) = 1) . (12)

Exercise 4.37 Write down computable maps which validate (11) and (12).

An important special case of a decidable predicate is decidable equality.

Definition 4.38 A representation A is decidable if its equality relation is decidable, |= x =A

y ∨ ¬(x =A y).

24

By what we said above, A is decidable if, and only if, the characteristic map of equality

eqA(x, y) =

{
1 if x = y,
0 if x 6= y,

is realized as a morphism eqA : A×A → 2, where 2 is the representation of Booleans {0, 1}.

Exercise 4.39 Prove that 2 is decidable and give as simple as possible an example of a represen-
tation that is not decidable.

Exercise 4.40 In Rep(Kcont
2) there is a topological characterization of decidable representations.

Prove that A is decidable if, and only if, the topology on A induced by δA is discrete. What
happens in Rep(K2)?

The Limited Principle of Omniscience (LPO) is the statement

∀ f ∈ 2N . ((∀n∈N . f(n) = 0) ∨ (∃n∈N . f(n) = 1)) .

Proposition 4.41 In Rep(K2), LPO is not valid.

Proof. LPO is intuitionistically equivalent to decidability of 2N. But a decidable representation
induces the discrete topology on the underlying set by Exercise 4.40. Since the topology 2N

induced by the representation on 2N is the usual product topology, 2N is not decidable.

Exercise 4.42 Fill in the holes in the above proof: (1) prove intuitionistically that LPO is equiv-
alent to “2N is decidable” (hint: you will need Markov Principle 4.22), and (2) prove that the
topology on 2N induced by 2N is the product topology (hint: see Proposition 5.12).

25

5 Examples from Computable Mathematics

In §4 we explained realizability logic and computed examples which showed how we can use it to
express interesting properties of representations and realized maps. The calculations involved a
fair bit of manipulation of realizers. This might give one the impression that in order to work with
realizability logic one has to fiddle with realizers all the time. Quite on the contrary, realizability
logic allows us to avoid realizers and use intuitionistic logic instead, by applying Proposition 4.10,
Corollary 4.13, and Proposition 4.30. However, all this is not very useful if we do not know how
to speak computable mathematics in the language of intuitionistic logic. Fortunately, the right
way of speaking has already been developed, and it is called constructive mathematics:

Computable mathematics is
the realizability interpretation of

constructive mathematics.

We do not have to guess how constructions and theorems of computable mathematics translate into
realizability logic. According to the slogan, they are just the familiar constructive constructions
and theorems. In this section we look at several examples which demonstrate this point.

5.1 Natural Numbers

The best way to arrive at the representation of natural numbers is to apply the category-theoretic
definition of natural numbers object to Rep(K2). According to the definition, we need a represen-
tation N with an element 0 ∈ N and a morphism s : N → N such that, for every A, x0 ∈ A, and
f : A → A there exists a unique h : N → A such that, for all n ∈ N ,

h(0) = x0 and h(s(n)) = f(h(n)) .

Since we already have a pretty good idea of how to represent natural numbers, it is easiest to
check that our guess satisfies the above condition.

Let N be the representation N = N = {0, 1, 2, . . .} with realizability relation

α N n ⇐⇒ ∀ k∈N . α(k) = n .

Let s : N → N be the successor map, s(n) = n + 1, which is clearly realized. Given and x0 ∈ A
and f : A → A, define h : N → A by simple recursion:

h(0) = x0 and h(n + 1) = f(h(n)) .

With a bit of effort it can be checked that h is realized. Suppose g : N → A also satisfies
g(0) = x0 and g(s(n)) = f(g(n)). Then g = h by induction: g(0) = x0 = h(0) and if g(n) = h(n)
then g(n + 1) = f(g(n)) = f(h(n)) = h(n + 1).

The representation N behaves in realizability logic much like ordinary natural numbers to in
classical logic. For example, we have the usual induction principle.

Proposition 5.1 For every predicate P on N, the induction principle is valid:

|= (P (0) ∧ ∀n∈N . (P (n) ⇒ P (n + 1))) ⇒ ∀n∈n . P (n) .

Proof. The induction principle is a negative formula. Since it holds for N in classical logic, it is
valid in realizability logic.

Proposition 5.2 N is decidable.

26

Proof. It would be easy to show directly that the characteristic map of equality =N is computably
realized. Alternatively, we may construct the characteristic map intuitionistically.: define the map
e : N×N → 2 by double recursion:

e〈0, 0〉 = 1
e〈0, n + 1〉 = 0
e〈m + 1, 0〉 = 0

e〈m + 1, n + 1〉 = e〈m,n〉 .

Then a double induction on n and m shows that e〈n, m〉 = 1 ⇐⇒ n = m. It follows that e is the
characteristic map of =N .

Proposition 5.3 (Number Choice) N satisfies choice.

Proof. Clearly, N is canonically projective, therefore it satisfies choice by Proposition 4.33.

The sets of integers Z and rational numbers Q have their standard representations Z and Q,
too. We do not dwell on them, as their treatment is very similar to that of natural numbers. We
move on to real numbers, instead.

5.2 Real Numbers

In Type II Computability [Wei00, 4.1] various representations of real numbers are considered.
Three of them, ρ<, ρ> and ρ turn out to be most useful, and it is shown that ρ is equivalent to
a representation by rapidly converging Cauchy sequences. On the other hand, the representation
by all Cauchy sequences is rejected as inappropriate [Wei00, 4.1.14.1].

According to our slogan, the representations R< = (R, ρ<), R> = (R, ρ>), and R = (R, ρ)
ought to be realizability interpretations of well known definitions in constructive mathematics.
This is indeed the case.

The standard construction of Cauchy reals Rc in constructive mathematics consists of two
steps. First, the set of rapidly converging rational sequences is defined:

C = {a ∈ QN
∣∣ ∀n∈N . |a(n + 1)− a(n)| < 2−n} , (13)

Then the set of Cauchy reals is obtained as a quotient Rc = C/∼, where ∼ is the coincidence
relation on C, defined by

a ∼ b ⇐⇒ ∀n∈N . |a(n)− b(n)| < 2−n+2 .

Let us calculate the realizability interpretation of this construction. Because the defining predicate
in (13) is a negative (< on Q is classical, and even decidable) we may use Proposition 4.21 to
calculate the representation C of rapidly converging Cauchy sequences. Not surprisingly, the
underlying set C consists of the rapidly converging Cauchy sequences. A realizer for such a
sequence simply encodes its terms. The coincidence relation ∼ is defined by a negative formula,
too, so its realizability interpretation coincides with the ordinary meaning. Thus Rc consists of
equivalence classes of coincident Cauchy sequences, i.e., it is the set of real numbers. A real number
is represented by a realizer which represents a Cauchy sequence from its equivalence class. We
have indeed obtained the Cauchy representation of reals [Wei00, 4.1.5]:

Proposition 5.4 The realizability interpretation of constructive real numbers is the Cauchy rep-
resentation of reals, which is isomorphic to the standard representation R.

There is another well known construction of reals by Dedekind cuts. In constructive mathe-
matics, a Dedekind cut is a pair (L,U) of subsets of Q such that:

1. L and U are inhabited: ∃ q ∈Q . x ∈ L and ∃ r∈Q . x ∈ U ,

27

2. L is a lower set and U is an upper set: r ∈ L ∧ q < r ⇒ q ∈ L and q ∈ U ∧ q < r ⇒ r ∈ U ,

3. L and U are open: q ∈ L ⇒ ∃ r > q . r ∈ L and r ∈ U ⇒ ∃ q > r . q ∈ U ,

4. the cut is located: q < r ⇒ (q ∈ L ∨ r ∈ U),

5. L and U are disjoint: ¬(q ∈ L ∧ q ∈ U).

The Dedekind reals Rd are defined as the set of all Dedekind cuts. It is well known that the
Cauchy and Dedekind construction give isomorphic sets, if Number Choice is valid, which it is in
the realizability interpretation. As stated, the construction of Rd requires powersets, since Rd is
defined as a subset of PQ×PQ. However, it turns out that we may consider only the topologically
open cuts so that PQ may be replaced by ΣQ, where Σ is the standard representation of the
Sierpinski space. When this is done, the construction makes sense in Rep(K2), and it gives a
representation that is isomorphic to R.

A lower Dedekind cut is a subset L ⊆ Q which is an inhabited, bounded open lower set.
The realizability interpretation of the set of lower Dedekind cuts (again the cuts are interpreted
as elements of ΣQ) gives the representation R<. Similarly, the upper Dedekind cuts give the
representation R>.

Exercise 5.5 Consider representations

{a ∈ QN
∣∣ (∀n∈N . a(n) < a(n + 1)) ∧ ∃ q ∈Q .∀n∈N . a(n) < q}/≈ .

and
{a ∈ QN

∣∣ (∀n∈N . a(n) < a(n + 1)) ∧ ¬∀ q ∈Q .¬∀n∈N . a(n) < q}/≈ .

where ≈ is the coincidence relation on QN defined as

a ≈ b ⇐⇒ ∀ k∈N .∃m∈N .∀n, n′ ∈N .
(
n > k ∧ n′ > k ⇒ |a(n)− b(n′)| < 2−k

)
. (14)

Which of the two representations, if any, is isomorphic to R<? (Hint: trust your constructivist
feelings.)

As we mentioned before, Type II Computability rejects the so-called “naive Cauchy” represen-
tation of reals Rnc = (R, ρnc) where a ρnc-name of x ∈ R encodes any rational Cauchy sequence
converging to x. Let us see what this representation corresponds to in the constructive world.
Define the predicate cauchy(a) on QN by

cauchy(a) ⇐⇒ ∀ k∈N .∃m∈N .∀n, n′ ∈N .
(
n > k ∧ n′ > k ⇒ |a(n)− a(n′)| < 2−k

)
.

The intuitive meaning of θ cauchy(α) is that ηθ computes from k ∈ N a number m ∈ N such
that all terms of a after the m-th one are less than 2−k apart from one another.

Proposition 5.6

1. {a ∈ QN
∣∣ cauchy(a)}/≈ is isomorphic to the standard representation of reals R,

2. {a ∈ QN
∣∣ ¬¬cauchy(a)}/≈ is isomorphic to the naive representation Rnc.

Proof.

1. Here ≈ is defined as in (14). This is most easily proved in intuitionistic logic. We just need
to show that for every Cauchy sequence there is a rapidly converging Cauchy sequence that
coincides with it. The intuitionistic proof relies on Number Choice 5.3, and is left as an
exercise, or can be looked up in [Bau00, 5.5.2].

2. The defining predicate ¬¬cauchy(a) is classical. Thus {a ∈ QN
∣∣ ¬¬cauchy(a)} is the set of

all rational Cauchy sequences, where the realizers encode the terms of the sequences. When
we quotient this set by ≈ we get the set of real numbers, represented by realizers that encode
Cauchy sequences converging to them. This is the naive representation Rnc.

28

Even an unexperienced constructive mathematician would immediately reject the second definition
in Proposition 5.6 as unnatural. It is also clear from the point of view of computable mathematics
that the first definition is better, because it does not throw away the valuable realizers for cauchy(a)
which tell how quickly a converges.

Exercise 5.7 (Reals in Type I Computability) Show that when the construction of rapidly
converging Cauchy reals is interpreted in Rep(K1) we get the standard numbering of computable
real numbers. What do we get when we interpret the construction of lower and upper Dedekind
cuts? (Hint: look up the definition of left- and right-computable reals.)

5.3 Metric Spaces

The constructive definition of a metric space is the same as the classical one. A (constructive)
metric space (M,d) is a set M with a metric d : M ×M → R satisfying the usual axioms:

• d(x, y) ≥ 0,

• d(x, y) = 0 ⇐⇒ x = y,

• d(x, y) = d(y, x),

• d(x, z) ≤ d(x, y) + d(y, z).

Observe that these conditions are negative predicates because = and≤ on real numbers are classical
(a fact we did not verify). Because of this, the realizability interpretation of a constructive metric
space is not surprising at all: it is a representation M equipped with a computably realized map
d : M×M → R which satisfies the above conditions.

It is more interesting to look at constructive complete metric spaces and their realizability
interpretation. Recall that a metric space is complete if every Cauchy sequence has a limit. We
have seen in §5.2 that instead of general Cauchy sequences we may use the rapidly converging
ones, which is convenient because the rapidly converging sequences have simpler realizers. So we
define a (constructive) metric space (M,d) to be complete if every rapidly converging sequence has
a limit. To see what the realizability interpretation of this condition is, we compute its realizers.
Let CM be the representation of rapidly converging Cauchy sequences in M ,

CM = {a ∈ MN ∣∣ ∀ k∈N . d(a(k), a(k + 1)) < 2−k} .

Completeness of M is expressed by the formula

∀ a∈CM .∃x∈M .∀ k∈N . d(a(k), x) < 2−k+2 . (15)

The metric space (M,d) is interpreted by a representation with computable metric (M, d), as
above. The interpretation of CM is a representation CM whose underlying set is the set of rapidly
converging Cauchy sequences in M . A δCM

-name of a ∈ CM encodes the terms of the sequence,
where each term is encoded by its δM -name. By Proposition 4.30, validity of (15) is equivalent to
the existence of a multi-valued computable map ` : CM ⇒ M such that, for all a ∈ CM ,

|= ∀ k∈N . d(a(k), `(a)) < 2−k+2 .

The above realizability predicate is negative so we may read it as an ordinary one. It tells us that
`(a) is the limit of a. Since the limit of a Cauchy sequence is unique, if it exists, the map ` is
actually single-valued. To summarize: the realizability interpretation of completeness of a metric
space is a computable limit operator which maps (rapidly converging) Cauchy sequences to their
limits. This immediately suggest a definition of a computable complete metric space:

Definition 5.8 A computable complete metric space is a triple (M, d, `) where M is a represen-
tation, d : M×M → R is a computable metric, and ` : CM → M is a computable limit operator
which maps a (rapidly converging) Cauchy sequence to its limit.

29

Next, let us find a suitable definition of separability. A metric space (M,d) is separable if there
exists a sequence s : N → M such that

∀ k∈N .∀x∈M .∃n∈N . d(x, s(n)) < 2−k .

Once again this is a ∀∃ statement (we may rewrite the double ∀∀ as a single one ranging over
N×M). By Proposition 4.30 its validity is equivalent to the existence of a computable multi-valued
map h : N×M → N such that d(x, s(h(k, x))) < 2−k for all k ∈ N , x ∈ M .

Definition 5.9 A computable separable metric space is a quadruple (M, d, s, h) where d : M ×
M → R is a computable metric on R, s : N → M is a computable sequence, and h : N×M ⇒ N
is a computable multi-valued map such that d(x, s(h(k, x))) < 2−k for all k ∈ N , x ∈ M .

Above definitions are rather rudimentary realizability interpretations of constructive defini-
tions. For a non-trivial application of constructive mathematics we cite a result by Lietz.

Proposition 5.10 Suppose intuitionistic logic proves that (M,d) is a complete separable metric
space. Then the realizability interpretation of M is an admissible representation.

Proof. Combine Theorems 3.2.7 and 3.2.9 of [Lie04].

Exercise 5.11 Compute representations of compact metric spaces via the realizability interpre-
tation of constructive complete totally bounded metric spaces. Recall that a metric space (M,d)
is totally bounded when for every k ∈ N there exists a finite sequence y0, . . . , yn ∈ M such that
for every x ∈ M there exists m ≤ n such that d(x, ym) < 2−k. Warning: total boundedness is
a ∀∃∀∃ statement, which yields rather unwieldy realizers if interpreted literally. You should first
use intuitionistic logic and Number Choice to simplify it.

5.3.1 The Baire Space

The natural representation for the Baire space it is the exponential NN. Constructively, Baire
space is a complete separable metric space, therefore NN has a computable metric, a computable
limit operator, and is computably separable.

In Rep(K2) Baire space enjoys a few special properties which have important consequences for
computable analysis. These properties are not generally valid in other realizability models.

Proposition 5.12 NN satisfies choice.

Proof. By Proposition 4.33 it suffices to show that NN is isomorphic to a canonically projective
representation. Let B be the representation

B = NN α β ⇐⇒ α = β .

Obviously, B is canonically projective. We claim that B ∼= NN. Both representations have the
same underlying set so we only have to check that the identity map between them is realized in each
direction. The identity map on NN is realized as a morphism NN → B by α 7→ (n 7→ (ηα(nω))(0)).
The other direction is realized by an equally ugly realizer.

30

Exercise 5.13 Show that in Rep(K1) Baire space does not satisfy choice. Hint: total recursive
functions do not have canonical Gödel codes.

If α ∈ B and n ∈ N, let α(n) denote the finite prefix [α(0), . . . , α(n)]. The sets B and N
are metric spaces with the usual computable metrics (where the usual metric on B is d(α, β) =
2−mink(αk 6=βk)). A function f : B → N is pointwise continuous in the metric if, and only if,

∀α∈B .∃n∈N .∀β ∈B .
(
α(n) = β(n) ⇒ f(α) = f(β)

)
This condition says that the value of f(α) depends only on a finite prefix of α.

Proposition 5.14 In Rep(K2) the statement “every function f : NN → N is pointwise continu-
ous” is realized:

|= ∀ f ∈NNN

.∀α∈NN .∃n∈N .∀β ∈NN .
(
α(n) = β(n) ⇒ f(α) = f(β)

)
(16)

Proof. We do not provide a detailed proof. Observe that (16) is a ∀∃ statement, thus its validity
may be proved by showing that a suitable computable multi-valued map exists. The argument
uses ideas similar to those in the proofs of [Wei00, 6.2.7,6.2.8].

5.3.2 The square-summable sequences

We borrow an instructive example from Lietz [Lie04, §3.3.3, p. 86]. Recall that a sequence a :
N → R is square-summable if the sum

‖a‖2 =
∞∑

k=0

|ak|2

converges. The set of square-summable sequences

`2 = {a ∈ RN ∣∣ ∑∞
k=0 |ak|2 converges} (17)

is a Hilbert space that can be equipped with at least two important topologies on `2: the one
induced by the norm ‖−‖2, and the weak topology (the weakest topology on `2 for which all
continuous linear functionals on `2 are still continuous). For each of these topologies there are
admissible representations of `2 in Type II Computability. So it looks like our slogan is in trouble—
how can both representations be the realizability interpretation of the constructive definition of `2?
Can there be two constructive definitions of `2? Yes!

The first constructive definition of `2 is (17). From it one may show constructively that `2 is a
complete separable metric space. By Proposition 5.10 it follows that the realizability interpretation
of `2 is an admissible representation of `2, equipped with the topology induced by the norm.

To get a second constructive definition, consider

`
(w)
2 = {a ∈ RN ∣∣ ∑∞

k=0 |ak|2 bounded} .

This is classically equivalent to (17) but not intuitionistically, because in intuitionistic logic we
cannot prove that a bounded monotone sequence has a limit. According to Lietz, the realizability
interpretation of `

(w)
2 is a representation of the set `2 equipped with the weak topology.

Exercise 5.15 Peter Lietz did not bother to include a proof that `
(w)
2 really does induce the weak

topology on the set `2. I suspect he meant it to be an exercise for you.

31

5.4 Continuous Maps

By Proposition (16), the realizability relation validates the statement “all f : NN → N are
pointwise continuous”, and by Proposition 5.12 NN satisfies choice. It is known [TvD88b, The-
orem 7.2.7] that these two together imply constructively the statement “all f : M → M ′ are
pointwise continuous” for complete separable metric spaces M and M ′. Therefore, in the realiz-
ability interpretation we have

|= all f ∈ M ′M are pointwise continuous

for any computably complete separable metric spaces M and M′. We apply this to M = M′ = R.
The statement “all f ∈ RR are pointwise continuous” is

∀ f ∈RR .∀x∈R .∀ k∈N .∃m∈N .∀ y ∈R . (|x− y) < 2−m ⇒ |f(x)− f(y)| < 2−k .

This is a ∀∃ statement. Because it is valid it follows by Proposition 4.30 that there is a computable
multi-valued map RR×R×N ⇒ N which computes a modulus of continuity. This is a standard
result in computable analysis [Wei00, Corolary 6.2.8], which we proved here by applying standard
results in constructive analysis.

The constructive mathematicians (if any are still reading) will be interested to hear that Rep(K2)
also validates the Fan Theorem. Among the various realizability models, Rep(K2) is the one that
Brouwer would have liked best.

32

6 Conclusion

At “Computability and Complexity in Analysis 2001” in Dagstuhl, I was asked to represent my
view of computable mathematics. I draw a a pretty slide.

I have since grown older and wiser, and I know the slide I drew was all wrong. Computable
and constructive mathematics is like the Matrix. Do you remember the film Matrix? Computable
mathematics is the Matrix, a world built by intelligent computers to keep people from seeing the
world as it really is. The realizers are the little green characters that keep falling down the screens.
They seem infinitely more boring and less comprehensible than the Matrix. However, when Neo,
the hero who saves humankind, reaches a higher level of awareness he sees the Matrix as it really
is—made of little green characters. Intuitionistic logic and category theory are the Architect and
the Oracle, but I am not telling which is which.

6.1 Further Reading

I hope these notes make it clear that anyone interested in computable mathematics should be
familiar with constructive mathematics. Thus, if you have not yet read, or at least looked at
Bishop’s constructive mathematics [Bis67, BB85], you should. Another rich source on constructive
mathematics is [TvD88a, TvD88b].

33

If you think Type II computability and realizers are fun you should read [KV65], with which
Type II computability originated.

For material on computable mathematics via realizability theory, I recommend Peter Lietz’s
Ph.D. dissertation [Lie04], which contains advanced topics, such as constructive treatment of ad-
missible representations. I also wrote a Ph.D. dissertation [Bau00] about the realizability approach
to computable analysis and topology, which you may find useful to look at.

6.2 Acknowledgment

I gratefully thank the organizers of “Computability and Complexity in Analysis 2005”, where I
lectured on this topic at a satellite seminar. In particular, I thank Hideki Tsuiki and all the local
organizers from Kyoto for their hospitality and generous support. I also thank Alex Simpson for
his advice on how to make the notes better.

34

References

[Bau00] A. Bauer. The Realizability Approach to Computable Analysis and Topology. PhD thesis,
Carnegie Mellon University, 2000. Available as CMU technical report CMU-CS-00-164
and at http://andrej.com/thesis.

[BB85] E. Bishop and D. Bridges. Constructive Analysis, volume 279 of Grundlehren der math.
Wissenschaften. Springer-Verlag, 1985.

[BBS04] A. Bauer, L. Birkedal, and D.S. Scott. Equilogical spaces. Theoretical Computer Sci-
ence, 1(315):35–59, 2004.

[Bis67] E. Bishop. Foundations of Constructive Analysis. McGraw-Hill, New York, 1967.

[Bla97] J. Blanck. Computability on Topological Spaces by Effective Domain Representations.
PhD thesis, Department of Mathematics, Uppsala University, 1997.

[Joh02] P.T. Johnstone. Sketches of an Elephant. Number 43 in Oxford Logic Guides. Oxford
University Press, 2002.

[Kle45] S.C. Kleene. On the interpretation of intuitionistic number theory. Journal of Symbolic
Logic, 10:109–124, 1945.

[KV65] S.C. Kleene and R.E. Vesley. The Foundations of Intuitionistic Mathematics, especially
in relation to recursive functions. North-Holland Publishing Company, 1965.

[Lie04] P. Lietz. From Constructive Mathematics to Computable Analysis via the Realizability
Interpretation. PhD thesis, Technische Universität Darmstadt, 2004.

[McL95] C. McLarty. Elementary Categories, Elementary Toposes. Oxford Logic Guides. Oxford
University Press, 1995.

[MM92] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic. A First Introduction to
Topos Theory. Springer-Verlag, New York, 1992.

[TvD88a] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics, An Introduction, Vol.
1. Number 121 in Studies in Logic and the Foundations of Mathematics. North-Holland,
1988.

[TvD88b] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics, An Introduction, Vol.
2. Number 123 in Studies in Logic and the Foundations of Mathematics. North-Holland,
1988.

[Wei00] Klaus Weihrauch. Computable Analysis. Springer-Verlag, 2000.

35

