Category Archives: Talks

Material related to my talks, mostly slides.

Programming with effects I: Theory

[UPDATE 2012-03-08: since this post was written eff has changed considerably. For updated information, please visit the eff page.]

I just returned from Paris where I was visiting the INRIA ?r² team. It was a great visit, everyone was very hospitable, the food was great, and the weather was nice. I spoke at their seminar where I presented a new programming language eff which is based on the idea that computational effects are algebras. The language has been designed and implemented jointly by Matija Pretnar and myself. Eff is far from being finished, but I think it is ready to be shown to the world. What follows is an extended transcript of the talk I gave in Paris. It is divided into two posts. The present one reviews the basic theory of algebras for a signature and how they are related to computational effects. The impatient readers can skip ahead to the second part, which is about the programming language.

A side remark: I have updated the blog to WordPress to 3.0 and switched to MathJax for displaying mathematics. Now I need to go through 70 old posts and convert the old ASCIIMathML notation to MathJax, as well as fix characters which got garbled during the update. Oh well, it is an investment for the future.

Continue reading Programming with effects I: Theory

Mathematically Structured but not Necessarily Functional Programming

These are the slides and the extended abstract from my MSFP 2008 talk. Apparently, I forgot to publish them online. There is a discussion on the Agda mailing list to which the talk is somewhat relevant, so I am publishing now.

Abstract: Realizability is an interpretation of intuitionistic logic which subsumes the Curry-Howard interpretation of propositions as types, because it allows the realizers to use computational effects such as non-termination, store and exceptions. Therefore, we can use realizability as a framework for program development and extraction which allows any style of programming, not just the purely functional one that is supported by the Curry-Howard correspondence. In joint work with Christopher A. Stone we developed RZ, a tool which uses realizability to translate specifications written in constructive logic into interface code annotated with logical assertions. RZ does not extract code from proofs, but allows any implementation method, from handwritten code to code extracted from proofs by other tools. In our experience, RZ is useful for specification of non-trivial theories. While the use of computational effects does improve efficiency it also makes it difficult to reason about programs and prove their correctness. We demonstrate this fact by considering non-purely functional realizers for a Brouwerian continuity principle.

Download: msfp2008-slides.pdf, msfp2008-abstract.pdf

Efficient computation with Dedekind reals

Two versions of this talk were given at Computability and complexity in analysis 2008 and at Mathematics, Algorithms and Proofs 2008.

Joint work with Paul Taylor.

Abstract: Cauchy’s construction of reals as sequences of rational approximations is the theoretical basis for a number of implementations of exact real numbers, while Dedekind’s construction of reals as cuts has inspired fewer useful computational ideas. Nevertheless, we can see the computational content of Dedekind reals by constructing them within Abstract Stone Duality (ASD), a computationally meaningful calculus for topology. This provides the theoretical background for a novel way of computing with real numbers in the style of logic programming. Real numbers are defined in terms of (lower and upper) Dedekind cuts, while programs are expressed as statements about real numbers in the language of ASD. By adapting Newton’s method to interval arithmetic we can make the computations as efficient as those based on Cauchy reals.

Slides: slides-map2008.pdf (obsolete version: slides-cca2008.pdf)
Extended abstract: abstract-cca2098.pdf

The Role of the Interval Domain in Modern Exact Real Arithmetic

With Iztok Kavkler.

Abstract: The interval domain was proposed by Dana Scott as a domain-theoretic model for real numbers. It is a successful theoretical idea which also inspired a number of computational models for real numbers. However, current state-of-the-art implementations of real numbers, e.g., Mueller’s iRRAM and Lambov’s RealLib, do not seem to be based on the interval domain. In fact, their authors have observed that domain-theoretic concepts such as monotonicity of functions hinder efficiency of computation.

I will review the data structures and algorithms that are used in modern implementations of exact real arithmetic. They provide important insights, but some questions remain about what theoretical models support them, and how we can show them to be correct. It turns out that the correctness is not always clear, and that the good old interval domain still has a few tricks to offer.

Download slides: domains8-slides.pdf