Category Archives: Publications

Research publications by Andrej Bauer

The troublesome reflection rule (TYPES 2015 slides)

Here are the slides of my TYPES 2015 talk “The troublesome reflection rule” with fairly detailed presenter notes. The meeting is  taking place in Tallinn, Estonia – a very cool country in many senses (it’s not quite spring yet even though we’re in the second half of May, and it’s the country that gave us Skype).

Download slides: The troublesome reflection rule (TYPES 2015) [PDF].

Intuitionistic Mathematics and Realizability in the Physical World

This is a draft version of my contribution to “A Computable Universe: Understanding and Exploring Nature as Computation”, edited by Hector Zenil. Consider it a teaser for the rest of the book, which contains papers by an impressive list of authors.

Abstract: Intuitionistic mathematics perceives subtle variations in meaning where classical mathematics asserts equivalence, and permits geometrically and computationally motivated axioms that classical mathematics prohibits. It is therefore well-suited as a logical foundation on which questions about computability in the real world are studied. The realizability interpretation explains the computational content of intuitionistic mathematics, and relates it to classical models of computation, as well as to more speculative ones that push the laws of physics to their limits. Through the realizability interpretation Brouwerian continuity principles and Markovian computability axioms become statements about the computational nature of the physical world.

Download: real-world-realizability.pdf

The HoTT book

The HoTT book is finished!

Since spring, and even before that, I have participated in a great collaborative effort on writing a book on Homotopy Type Theory. It is finally finished and ready for public consumption. You can get the book freely at Mike Shulman has written about the contents of the book, so I am not going to repeat that here. Instead, I would like to comment on the socio-technological aspects of making the book, and in particular about what we learned from open-source community about collaborative research.

Continue reading The HoTT book

Programming with Algebraic Effects and Handlers

With Matija Pretnar.

Abstract: Eff is a programming language based on the algebraic approach to computational effects, in which effects are viewed as algebraic operations and effect handlers as homomorphisms from free algebras. Eff supports first-class effects and handlers through which we may easily define new computational effects, seamlessly combine existing ones, and handle them in novel ways. We give a denotational semantics of eff and discuss a prototype implementation based on it. Through examples we demonstrate how the standard effects are treated in eff, and how eff supports programming techniques that use various forms of delimited continuations, such as backtracking, breadth-first search, selection functionals, cooperative multi-threading, and others.

Download paper: eff.pdf

ArXiv version: arXiv:1203.1539v1 [cs.PL]

To read more about eff, visit the eff page.

On the Bourbaki-Witt Principle in Toposes

With Peter LeFanu Lumsdaine.

Abstract: The Bourbaki-Witt principle states that any progressive map on a chain-complete poset has a fixed point above every point. It is provable classically, but not intuitionistically. We study this and related principles in an intuitionistic setting. Among other things, we show that Bourbaki-Witt fails exactly when the trichotomous ordinals form a set, but does not imply that fixed points can always be found by transfinite iteration. Meanwhile, on the side of models, we see that the principle fails in realisability toposes, and does not hold in the free topos, but does hold in all cocomplete toposes.

Download paper: bw.pdf
ArXiv version: arXiv:1201.0340v1 [math.CT]

This paper is an extension of my previous paper on the Bourbaki-Witt and Knaster-Tarski fixed-point theorems in the effective topos (arXiv:0911.0068v1).