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Hello everyone. It is a great honor for me to have the opportunity to address such a wide audience today. I would like to tell you about 
formalized mathematics, which is mathematics written in a formal language and verified with computers. I believe that one day formalized 
mathematics will change how mathematics is done, and that day may be nearer than we think.


By the way, you can download my slides with speaker notes and links to references at math.andrej.com.



What is formalized 
mathematics?

Let me first explain what precisely I mean by “formalized mathematics”.



Characteristica universalis Gottfried Leibniz

Already in the 17th century Gottfried Leibniz spoke of “characteristica universalis”, an imagined precise language and diagrammatical 
system able to express mathematical, scientific, and metaphysical concepts. His ideas spared much interest and never died out.



Begriffschrift Gottlob Frege

About two centuries later mathematicians made serious progress in devising formal languages that could in fact express mathematical 
constructions and proofs. An important advance was made by Gottlob Frege who devised “Begriffschrift”, a diagrammatic system that 
was entirely formal and precise.




Principia Mathematica

Alfred North WhiteheadBertrand Russell

Then at the beginning of the 20th century, in their monumental work “Principia Mathematica”, Bertrand Russell and Alfred North 
Whitehead, sought to reduce all of mathematics to pure logical principles and symbolism. The work inspired the development of formal 
logic in the 20th century. 


It was claimed or expected that various formalism, such as first-order logic and Zermelo-Fraenkel set theory, could in principle be used to 
express all of mathematics with complete precision. Moreover, the formal expression could be checked for correctness mechanically. But 
could it realistically be done? Somebody had to try.



Gründlagen der Analysis Edmund Landau

When I was a student, I heard that someone had formalized and checked with computer an entire book of analysis. The book was 
Edmund Landau’s “Gründlagen der Analysis”.


My teachers implied that this was a heroic but slightly insane task which only demonstrated what everyone knew already, namely that 
mathematics could indeed be formalized. And now that the point had been made, we could all proceed with business as usual and forget 
about formalizing mathematics.



AUTOMATH formalization of GründlagenBert van Benthem Jutting

I later learned that the “someone” was Lambertus Salomon (Bert) van Benthem Jutting, who used the AUTOMATH proof checker in the 
1970s. The source code was preserved by Freek Wiedijk who also re-implemented AUTOMATH. We can still verify (instantly!) Landau’s 
book today.


On the right you see the formal language of AUTOMATH. It was indeed a heroic and somewhat insane undertaking. The top line states 
that multiplication is associative. It is recognizable as a mathematical statement, albeit rather unfriendly. The AUTOMATH was 
revolutionary and ahead of its time, but could not realistically be used on a large scale. So what happened next?



Mizar

Computer scientists and computer-science minded logicians took up the task of making formalized mathematics practical. The idea of a 
proof assistants emerged: a program which assists a human in formalization. Over the decades various designs were explored.


Here we see fragments of code from some of the most well known proof assistants. Notice that they are a great deal friendlier than the 
original AUTOMATH.



NuPRL

Computer scientists and logicians took up the task of improving the formalism and the programs. The idea of a proof assistants emerged: 
a program which assists a human in formalization. Over decades various designs were explored.


Here we see fragments of code from some of the most well known proof assistants. Notice that they are a great deal friendlier than the 
original AUTOMATH but still a bit intimidating, unless you’re a programmer.



Isabelle/HOL

Computer scientists and logicians took up the task of improving the formalism and the programs. The idea of a proof assistants emerged: 
a program which assists a human in formalization. Over decades various designs were explored.


Here we see fragments of code from some of the most well known proof assistants. Notice that they are a great deal friendlier than the 
original AUTOMATH but still a bit intimidating, unless you’re a programmer.



Coq

Computer scientists and logicians took up the task of improving the formalism and the programs. The idea of a proof assistants emerged: 
a program which assists a human in formalization. Over decades various designs were explored.


Here we see fragments of code from some of the most well known proof assistants. Notice that they are a great deal friendlier than the 
original AUTOMATH but still a bit intimidating, unless you’re a programmer.



Agda

Computer scientists and logicians took up the task of improving the formalism and the programs. Over decades various designs were 
explored, and the idea of a proof assistants emerged: a program which assists a human in formalization.


Here we see fragments of code from some of the most well known proof assistants. Notice that they are a great deal friendlier than the 
original AUTOMATH but still a bit intimidating, unless you’re a programmer.



How does a proof 
assistant work?

Allow me to explain a little bit what proof assistants are and how they work.


Since they are complex pieces of software there are many aspects of their design. We shall focus on those that are relevant and 
interesting to mathematicians.



y : ℂ → [ℂop, Set]
yoneda@{u u0 u1 u2 u3 u4} = 
fun (H : Funext) (A : PreCategory) 
 => @coyoneda H 
       (Category.Dual.opposite A)
: forall (H : Funext)
    (A : PreCategory), Functor A 
    (@functor_category H
    (Category.Dual.opposite A
    (@set_cat H))

It has been clear since the days of AUTOMATH that the real challenge is not bare computer verification of formal proofs, but one of 
human-computer interaction: given the considerable gap between mathematics as done by humans and the formal mathematics 
understood by computers, how can the human and the machine cooperate?


To get some idea of what needs to be accomplished, let us look at an example.



If f is linear then f(2 · x + y) = 2 · f(x) + f(y).

Read the statement. Do you understand it? Of course you do, you’re a mathematician. You can also tell that the statement is obviously 
true.


Yet from a formal point of view, the statement is quite inexact, as it omits a number of details. The details do not matter and your brain 
can recover them automatically if so desired, but it is perhaps surprising how many details need to be filled in.



If U and V are vector spaces and f : U → V is linear 
then, for all x, y ∈ U,  f(2 · x + y) = 2 · f(x) + f(y).

Firstly, we should make the domain and codomain of f explicit by introducing vector spaces U and V. Next, we can tell that x and y range 
over U, or else f(x) and f(y) makes no sense.


It is understood that U and V are vector spaces over some unmentioned field.



If K is a field, U and V are vector spaces over K, 
and f : U → V is linear then, for all x, y ∈ U, 
f(2 · x + y) = 2 · f(x) + f(y).

Ok, so let us make the field explicit as well.

See what is going on? As the statement gets more precise, it gets harder to understand and its gist is lost in the bureaucracy. There is a 
reason people prefer concise imprecise statements to precise obfuscated ones. And we are still not done.



If K is a field, U and V are vector spaces over K, 
and f : |U| → |V| is linear then, for all x, y ∈ |U|, 
f(2 · x + y) = 2 · f(x) + f(y).

A vector space U is a structure with an underlying carrier set  |U|. These should be distinguished.

(Side remark: regarding f, we could alternatively state that it is a morphism in the category of vector spaces, but then f would not be a 
map together with the fact that it is linear, so we would have to write something like |f| for the underlying map and write |f|(x) instead of 
f(x).)


The numeral 2, is that a natural number? It should be an element of K. And why are we using + for addition in both U and V?



If K is a field, U and V are vector spaces over K, 
and f : |U| → |V| is linear then, for all x, y ∈ |U|, 
f(2K ·U x +U y) = 2K ·V f(x) +V f(y).

Here is the final form, although we could probably go on.

We tagged 2 with K to indicate that we mean the image of 2 by the canonical map ℤ → K. 

We also tagged vector addition and scalar multiplication with U and V, respectively.




If K is a field, U and V are vector spaces over K, 
and f : |U| → |V| is linear then, for all x, y ∈ |U|, 
f(2K ·U x +U y) = 2K ·V f(x) +V f(y).

If f is linear then f(2 · x + y) = 2 · f(x) + f(y).

Elaboration

The process we just described is called elaboration.


It is part of implicit mathematical knowledge that is passed on by observation and imitation, and rarely talked about. The 20th century 
logic has mostly ignored elaboration, because it preoccupied itself with other problems, that were more relevant at the time.



Informal Formal

“An assumed ambient field K.” existential variable

“Guess that x ranges over U.” type inference

“Automatically change U to |U|.” implicit coercion

“Read 2 as element of K.” notational scope

Elaboration

Elaboration is an essential part of modern proof assistants. It is the bridge between the human and the machine. It was not developed by 
mathematicians or logicians, but by computer scientists who faced similar issues of human-computer interaction when designing 
programming languages.


When you learn to use your first proof assistant, keep in mind that you already know the elaboration techniques, you just never gave them 
names or thought of them mathematically.



import linear_algebra

variables
  (K : Type*) [field K]
  (U : Type*) [add_comm_group U] [module K U]
  (V : Type*) [add_comm_group V] [module K V]
  (f : U !ₗ[K] V)

example: ∀ x y, f (2 · x + y) = 2 · f x + f y
  := by simp

Lean

You might be curious how the statement would be written in a proof assistant. Here it is in the syntax of the Lean proof assistant. There 
are some mysterious bits, but for the most part it is comprehensible, and it certainly is not worse than LaTeX. The last line, “by simp”, is 
how you tell Lean to prove the statement using the tactic “simp” (which stand for “simple”).


I shall say more about Lean and its rapidly growing community at the end of the talk.



Vernacular

Elaboration

Core formalism

Kernel
• checks formal proofs

• small piece of code

• the only critical component

• simple & exact

• foundation of math

• designed for computer

• expressive & exact

• automates work

• designed for humans

Verification

The anatomy of a proof assistant

Having explained elaboration, let us look at how a modern proof assistant is structured.

There are two formal languages: the vernacular and the core formalism.


The vernacular is designed for humans, while still formally precise so that computers can process it. It supports common mathematical 
notations, provides support for automation, and generally attempts to accommodate the user. This is what you need to learn to master a 
proof assistant.


The elaborator translates the vernacular to a core formalism. This is the underlying formal mathematical foundation as commonly 
understood by mathematicians and logicians. It should be mathematically well-understood and free of unnecessary complexity.


The verification is carried out by a special component of the proof assistant, the kernel. This is the only critical component: a bug in the 
elaborator is just annoying, whereas a bug in the kernel may lead to faulty mathematics. The kernel is designed to be small so that it can 
be more easily audited and trusted.


Further reading: Robert Pollack, “How to believe a Machine-Checked Proof” (1996)



Which foundation?

First-order logic &
Zermelo-Fraenkel set theoryType theory
• Better fit with informal mathematics

• Supports large-scale organization of math

• Captures constructions as well as proofs

• Better at detecting typical mistakes

We have not yet discussed which mathematical foundation should be used.


It is an accepted norm that set theory is the foundation of mathematics. Indeed, in the 20th century set theory helped relate and connect 
all branches of mathematics, and served as a lingua franca.


However, most proof assistants do not use set theory. Instead they rely on various incarnations of type theory. We may speculate why this 
is the case, but it is undeniable that in practice type theory is the preferred formalism.


Further reading: Andrej Bauer, “What makes dependent type theory more suitable than set theory for proof assistants?”, an answer to 
MathOverflow question (2020)



Why formalize?

I have not yet addresses the obvious question:

Why bother with formalization of mathematics at all?


People have been drawn to formalized mathematics for various reasons.



Checking inhumane proofs

1. Four-color theorem [Gonthier et al., 2005]

Verified in Coq, 633 critical configurations.


2. Kepler’s sphere packing conjecture 
[Hales et al., 2014]


Verified in HOL-light, 23 000 non-linear inequalities.


3. CompCert: verified C compiler [Leroy et al., 2009]

10000+ theorems about C compiler & PowerPC, ARM, 
RISC-V and x86 processors.

Sometimes formalization is necessary because the proof is not realistically checkable by hand.


Two famous examples from mathematics are the four-color theorem and Kepler’s conjecture. At first both were checked with computer 
programs that performed large amounts of computation – but nobody proved that those programs were free of mistakes (which they were 
not). This has since been rectified: all the theorems, proofs, as well as programs were formalized in proof assistants and are water-tights. 
We are talking about a level of confidence that is far above that of a proof published in a reputable math journal.


An important motivation for formalized mathematics comes from computer science. Security and reliability of computer systems can be 
established by formal verification of proofs. In a typical situation we have to prove thousands of boring theorems, which is a hopeless 
task without machine support. A noteworthy example is CompCert – an optimizing C compiler that has been formally proven to work 
correctly.



Losing trust in humanity

And who would ensure that I did not forget something 
and did not make a mistake, if even the mistakes in 
much more simple arguments take years to uncover? 

The Origins and Motivations of Univalent Foundations 
Vladimir Voevodsky (2014)

I spent much of 2019 obsessed with the proof of this 
theorem, almost getting crazy over it. In the end, we 
were able to get an argument pinned down on paper, 
but I think nobody else has dared to look at the details 
of this, and so I still have some small lingering doubts. 

Liquid tensor experiment, Peter Scholze (2020)

Some mathematicians have reached a level of complexity in their work at which they have lost confidence in their own ability to carry out 
the proofs correctly and to spot mistakes. Where else would they turn for help, if not to machines?


Or to put it another way: to break the one-mind barrier, mathematicians will organize themselves into hives, centered around machines.


Further reading: Jacques Carette et al., “Big Math and the One-Brain Barrier A Position Paper and Architecture Proposal” (2019)



Creating new mathematics

Although such a formalization is not part of this book, 
much of the material presented here was actually done 
first in the fully formalized setting inside a proof assistant, 
and only later “unformalized” to arrive at the presentation 
you find before you — a remarkable inversion of the usual 
state of affairs in formalized mathematics. 

Homotopy type theory: Univalent foundations of mathematics 
Univalent foundations programme (2013)

Formalized mathematics is not only about checking what we already know. It also leads to new discoveries. Those who have formalized 
mathematics will tell you that it often leads to significant improvements and simplifications, and sometimes to new discoveries.


In 2013, at the Institute for Advanced Study in Princeton, a group of mathematicians and computer scientists was developing a new 
foundation of mathematics, known as homotopy type theory. It was so new & unfamiliar that we did not know how to communicate and 
think in it. We turned to proof assistants for guidance, and “unformalized” homotopy type theory once we learned how it works. The result 
was “HoTT book”, 600+ pages written in 6 months by two dozen mathematicians.



Recognizing the potential

I now clearly understand that software such as Lean is 
part of the inevitable future of mathematics. … Tools 
such as Lean will one day help us mathematicians 
search for theorems in the literature, and help us to 
prove theorems. … These tools may also change the 
way we teach. … It is possible that they will begin to 
do research semi-autonomously, perhaps uncover 
problems in the literature. Maybe they will replace 
research mathematicians. 

The future of mathematics? 
Kevin Buzzard (2019)

If a machine can can beat the best chess and go players, does it not stand to reason that in the future it will also help professional 
mathematicians?


Some mathematicians are recognizing the potential & significance of doing mathematics with computers, and are not willing to sit and 
wait for computer scientists to do work for them.



Will formalized 
mathematics go 

mainstream?

To wrap up, let me speculate about the answer to the obvious question. It is not “whether” formalized mathematics transform 
mathematics …




Will formalized 
mathematics go 

mainstream?

When

… but rather when the transformation will take place.


It would be preposterous to expect that mathematics is immune from the disruptive power of computer technology.



Archive of Formal Proofs

The growth of formalized mathematics in the last two decades has been impressive. We have progressed from small groups of 
enthusiastic researchers to a rapidly growing community which is increasingly shifting from computer scientists to mathematicians.


Of course, formalized mathematics is still just a tiny part of all of mathematics. However, it is not its size, but the potential for disruption 
that is relevant.



Lean mathematical library

To give you an idea of the collaborative power of formalized mathematics, let us watch a short video. It shows mathematicians working 
on the mathematical library “mathlib”, implemented in the Lean proof assistant.


The moving figures are people, the tree shows the directory structure and the files of the library. The rays of light indicate a user modifying 
a file.


Ok, it’s pretty, but does it tell us anything? Yes. We are not watching separate groups of two or three mathematicians, each belaboring on 
a paper of their own. This is not a medieval mathematicians’ guild (which is how mathematics is still organized today), but an industrial 
division of labor. It is a math hive. It is exciting and new.


Separate link to video: https://vimeo.com/566990363



The future is now

As I was preparing the slides for this talk, an article in Nature took notice of a recent success in formalized mathematics. It is worth 
reporting here.


Half a year ago Peter Scholze posed a formalization challenge: formalize a difficult new theorem that he was not sure about. The 
challenge took half a year, which is comparable with refereeing process, but the results are far more significant: we know that the 
theorem is true beyond reasonable doubt, and new mathematics was discovered during formalization. The is a glimpse of the future – 
true cooperation of man & machine.


Further reading:

• Peter Scholze: Liquid tensor experiment

• Peter Scholze: Half a year of the Liquid Tensor Experiment: Amazing developments

• Nature: Mathematicians welcome computer-assisted proof in ‘grand unification’ theory



How do I join?

If you are interested in trying out & learning about formalized mathematics, I recommend the new kind on the block – the Lean proof 
assistant and its mathematical library. The community, spearheaded by Kevin Buzzard, has thousands of members. They are a friendly 
bunch who takes care of beginners.


Of course, you can also try out the older, venerable proof assistants, especially if you are interested in computer-science applications, 
constructive mathematics, or homotopy type theory.



Thank you!

This material is based upon work supported by the Air Force Office 
of Scientific Research under award number FA9550-21-1-0024.


