CLASE 2005 Preliminary Version

Specifications via Realizability

Andrej Bauer!

Department of Mathematics and Physics
University of Ljubljana
Ljubljana, Slovenia

Christopher A. Stone?

Computer Science Department
Harvey Mudd College
Claremont, CA, USA

Abstract

We present a system, called RZ, for automatic generation of program specifications
from mathematical theories. We translate mathematical theories to specifications
by computing their realizability interpretations in the ML language augmented with
assertions (as comments). While the system is best suited for descriptions of those
data structures that can be easily described in mathematical language (e.g., finitely
presented groups, real arithmetic, graphs, etc.), it also elucidates the relationship
between data structures and constructive mathematics.

Key words: Realizability, Constructive Logic, ML.

1 Introduction

Kleene [6] introduced realizability as a model of intuitionistic arithmetic based
on partial computable functions. The idea has since been studied and gener-
alized by various authors [11,4,5,13]. Building on the idea of typed realizability
by Longley [8], we have constructed a tool RZ to translate mathematical theo-
ries into specifications for code, explaining what is necessary in order to believe
that we have a correct implementation of the mathematical theory.

As the realizability interpretation validates the laws of intuitionistic logic,
our input theories are intuitionistic or constructive. Thus, RZ extracts the
computational meaning of a constructive theory and expresses it as a pro-
gramming specification.

! Email: Andrej.Bauer@andrej.com
2 Email: stone@cs.hmc.edu
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

BAUER AND STONE

We emphasize that RZ does mot extract programs from proofs—in fact,
there is no way to write a proof in our system. We just determine what the
programs are supposed to do, i.e., we provide specifications for them. We
leave it to the programmer, or to another tool, to construct the programs as
he or she sees fit. This leaves the programmer completely free to write efficient
programs that need not correspond directly to a formal proof.

The original aim of RZ was to aid development of data structures for com-
putable mathematics. If one sets out to actually compute realizability inter-
pretations of theories of constructive mathematics, one quickly wishes for an
automated way of doing it. With a tool like RZ it is much easier to experiment
and try out variations of a theory until a suitable specification is obtained. It
also appears that RZ can be used to explain and teach constructive mathe-
matics to programmers, who are typically trained in classical mathematics; it
translates constructive statements into easily understood requirements about
programs (expressed in classical logic).

Our implementation of RZ produces interfaces in Objective Caml [7] but
could easily be adopted to other similar typed languages. The essential fea-
tures we require of the target language are product, function, and sum types,
as well as support for module interfaces.

The paper is organized as follows. Section 2 contains a brief overview of
realizability. In Section 3 we describe theories and signatures, which are the
inputs and the outputs of RZ, respectively. In Section 4 we discuss various
point of implementation. In Section 5 we show typical examples and conclude
with Section 6.

2 Realizability

We briefly motivate the main idea of (typed) realizability. When we represent
a set of mathematical objects S in a programming language P there are two
natural steps to take: first choose an underlying type |S| of representing values,
and second specify how the values of type | S| represent, or realize, elements
of the set S. For example, consider how we might represent the set D of
simple finite directed graphs (whose vertices are labeled by integers). As the
underlying datatype we might choose |D| = int list % (int * int)list, and

represent a graph G € D as a pair of lists (v,e) where v = [z1;...;x,] is the
list of vertices and e = [ey; ... ;€] is the list of edges. Formally, we write
(U, 6) ”_D G

and read it as “(v, e) realizes G € D”. Observe that each graph is realized by
at least one pair of lists, and that no pair of lists represents more than one
graph. (As commonly occurs, most graphs are represented by many different
pairs of lists.) This leads us to the definition given below. We shall abuse
notation slightly and write ¢ € |S| to mean that ¢ is a closed expression of
type |S].

BAUER AND STONE

|T| = unit OFT
| L] =unit
|x =g y| = unit OlFz=sy iff =gy
(oA Y| = o] [(t1,t2) Fp A it i IF ¢ and t2 I- 9
6 = o] = |¢| — || tF¢ = ¢ iff forallue |¢|,if ulF ¢ then tulF ¢
6V ol = [¢] + Iyl inltl Ve i o
inrtlF gV iff ¢l
Vz € A. p(x)| = |A| — |@] tIFvae € Ap(x) iff forall u € |A|, if ulk4 « then tu - ¢(z)
[Tz € A ¢(x)| = |A| X |@] | (t1,t2) IF Tz € Ap(z) iff t1 k4 x and ¢o IF ¢(z)

Fig. 1. Realizability interpretation of logic (outline)

Definition 2.1 A modest set? is a triple (5, |5],IFs) where S is a set, |S] is
a type and IFg is a relation between expressions of type |.S| and elements of S,
satisfying:

(i) For every x € S there is t € |S]| such that t IFg .
(i) If t kg = and t IFg y then x = y.

A realized function f : (S,|S|,IFs) — (T,|T|,IFr) between modest sets is a
function f : S — T for which there exists u € |S| — |T'| such that

thksx = utlkp f(x).

We say that u realizes f.

The realizer u of a realized function f is more commonly known as an
“implementation of f” or an “algorithm for computing f”.

Modest sets and realized functions form a category of modest sets Mod(P).
In realizability theory this is a well known category with good properties. It is
regular and locally bi-cartesian closed, which allows us to interpret first-order
logic and a rich type theory. Here we only outline the main ideas behind the
realizability interpretation of logic. See e.g. [1] for details.

In the realizability interpretation of logic, each formula ¢ is assigned a
set of realizers which can be thought of as computations that witness the
validity of ¢. The situation is somewhat similar (but not equivalent) to the
propositions-as-types translation of logic into type theory, where the proofs of
a proposition correspond to terms of the corresponding type. More precisely,
to each formula ¢ we assign an underlying type |¢| of realizers. However,
unlike in the propositions-as-types translation, not all terms of type |¢| are
necessarily valid realizers for ¢. We write ¢ |- ¢ when t € |¢| is a realizer for ¢.

3 Modest sets were so named by Dana Scott. They are “modest” because their size cannot
exceed the number of expressions of the underlying datatype.

3

BAUER AND STONE

The underlying types and the realizability relation I are defined inductively
on the structure of ¢; an outline is shown in Figure 1. We say that a formula ¢
is valid in Mod(P) if it has at least one realizer.

We shall not dwell any further on the technicalities involving the category
of modest sets, but rather proceed to a concrete description of our realizabil-
ity translation. There is one technical point, though, which we first take care
of. A modest set is a triple (S5, |S],IFs) in which S is an arbitrary set. For
an automated system it would be convenient if it did not have to refer to
arbitrary sets but rather just to ingredients that are already present in the
programming language, such as types and sets of expressions. Up to equiv-
alence of categories, modest sets can be constructed as triples (|S], ||S]|, ~s)
where |S| is a type, ||S|| is a subset of expressions of type |S|, called the total
values,® and ~g is an equivalence relation on ||S||. The relationship between
this representation of a modest set and the original one is as follows:

o ||S|| is the set of those t € |S| that realize something, i.e., there is z € S
such that t IFg . These correspond to implementations that satisfy the
representation invariant, e.g., graphs where the list of edges mentions only
integers in the list of nodes, a subset of all values of type int list * (int *
int) list.

e t ~g u if t and u realize the same element, i.e., there is x € S such that
t ks x and u IFg x. This relation equates alternate concrete representations
of the same abstract value, e.g., equating two concrete graph representations
differing only in the order of the nodes or the order of the edges.

The alternative view of a modest set (]S, ||.S]|, ~s) only refers to objects and
concepts from the programming language. It is better suited for our purposes.

Note that the equivalence relation on ||S|| is also a partial equivalence
relation on |S|, which shows that modest sets are in fact equivalent to PER
models.

3 Theories and Signatures

In this section we describe first-order theories and signatures. Our system
translates the former into the later.

3.1 Theories

A theory is a description of a mathematical structure, such as a group, a vector
space, a directed graph, etc. A theory consists of

e a list of basic sets,

* a list of basic constants belonging to specified sets,

e a list of basic relations on specified sets,

4 We do not require that a total value must be a terminating expression.

4

BAUER AND STONE

Theory Elements

set s [= set]
const c[: set][= term]
[stable] relationr [: set][= prop]

equivalence : set
model M : theory
axioma [M : theory |* [z : set |* = prop
Propositions

true

false

not prop

prop && prop

prop || prop

prop => prop

prop <=> prop

r[term |*

term = term

all [z : set] . prop

some [z : set] . prop

unique [z : set] . prop

Sets

0

1

bool

s
Model .
set *
set —> set
‘label [: set] +
{ a[: set] | proposition }
set % relation

name
* set

Terms

T

(¢ term ,
term . n
‘label [term |
match term with pattern-matches
lam xz : set term

term term

term % relation

let x % relation in term = term
term :> set

term :< set

the z [: set] . prop

let x [: set] = term in term

, term)

Fig. 2. Input Language Summary

¢ g list of axioms.

-+ ‘label [:

set]

To take a simple example, consider the theory of a semigroup in which every
element has a (possibly non-unique) square root; recall that a semigroup is
a set with an associative binary operation and a neutral element.”® In our

system it could be written as follows:

theory SQGROUP = thy
set s
const e : s
const (*)
implicit x, y, z : s
axiom unit x =

s > 8 —> s

axiom assoc X y z =

axiom sqgrt x some y

end

X * e =Xxand e ¥ X = X
x*x (yxz) = (xXxx*xy) *z
y*y=x

The theory is enclosed by thy...end. This theory defines one basic set s, and
two basic constants: an element e of s and a (curried) binary infix operator
* on the set s. The implicit operator is not part of the theory proper, but

5 An example of a semigroup with square roots is the complex numbers with multiplication

as the binary operation.

BAUER AND STONE

signals to the type checker that bound variables named x or y or z should
be assumed to range over s unless otherwise specified. Finally, we have three
axioms. Axiom arguments, e.g., x, y, and z in the associativity axiom, name
the free variables occuring in the axiom. It is not too big a mistake to think
of them as being universally quantified.

It is important to note that theories do not include proofs, but rather just
the statements of the axioms (and theorems) specified to hold. Thus although
axioms can be defined, one cannot actually refer to them within the theory.

There are several features of theories that our system supports other than
those shown in this example above; the input language is summarized in Fig-
ure 2, where brackets imply optional elements.

Theories may declare or define relations. They may be stable, i.e., their
computational interpretation is trivial (see Section 4 for further discussion of
this point). Axioms can universally quantify over all models of a theory. This
is useful for describing universality properties, such as initiality of an algebra
or finality of a coalgebra.

The propositions are the familiar ones from first-order logic; unique is
unique existence (3!). In addition to the basic empty (0) and unit (1) sets,
one can form cartesian products, function spaces, tagged disjoint unions, sub-
sets, and quotients by stable equivalence relations. The corresponding intro-
duction and elimination forms appear in the language of terms. For example,
term % relation is the equivalence class under relation containing term, while
let x % relation = termq in termsy binds x to a representative of the equiv-
alence class term; to be used in terms. The expression term :> set injects
term into a given subset (recording a proof obligation of the term actually be-
ing a member of the subset), while term :< set projects term from a subset
out into its superset set. The value of the description operator the x . prop
is the unique z satisfying prop; using it incurs the obligation of proving that
there is exactly one such .

3.2 Signatures

On the logical side, we have models described by theories. Thus on the pro-
gramming side we should have implementations being described by specifi-
cations. Our tool thus translates theories into signatures, which are ML’s
module interfaces.

Signatures allow us to require the existence of certain types, as well as
values of given type. This allows decidable typechecking, but we need more
expressiveness in order to faithfully translate the content of a theory. We
therefore generate signatures augmented by assertion comments, which specify
constraints on the values and functions an implementation beyond their type.
It is the responsibility of the programmer to check that the implementation
satisfies these assertions, as RZ does not attempt to do any theorem proving.

Assertions are written in ordinary classical first-order logic. Since pro-

6

BAUER AND STONE

grammers typically are not trained in constructive logic, this may make it
easier to verify the assertions.
The output for the theory SQGROUP above is then:

module type SQGROUP =
sig
type s
(x* Assertion per_s = PER(=s=) x)
val e : s
(**x Assertion e_total = e : ||sl|]| *)
val (*) : s > 8 > s
(x* Assertion (*)_total =
all (x:s, y:s). x =s=y =>
all (x’:s, y’:s). x’ =s=y’ =>
X * X’ ==y *x y’
*)
(**x Assertion unit (x:|lIsl|]) =
X * e =s= x and e * X =8= X
*)
(** Assertion
assoc (x:|lsll, y:lIsll, z:lIsl]) =
x*x (y *2) =s= (x *xy) 2
*)
val sqrt : s -> s
(** Assertion sqrt (x:|lsll|) =
sqrt x : |lsll and sqrt x * sqrt x =s= x
*)

end

At the ML level we have required a type s, and three values e, *, and sqrt,
of types s, s->s->s, and s->s, respectively. The third value was generated
from the square root axiom, which has a non-trivial computational content,
cf. Subsection 4.2.

Comments contain other requirements, not expressible in ML, that further
contstrain the allowed implementations. The assertion PER(=s=) abbreviates
the requirement that =s= be a partial equivalence relation on s; its domain
[Is|| is the subset of terms of type s that realize semigroup elements, and
the relation =s= identifies (possibly different) terms realizing the same ab-
stract semigroup element. These data together determine a modest set. The
assertion following the declarations of e asserts that e realizes a valid semi-
group element, and the one following * asserts that * must not be affected by
the choice of realizers. Both e and * must of course still satisfy the unit and
assoc axioms. Finally, the new function sqrt derived from the logic must
compute square roots. Since the theory requires existence but not uniqueness
of square roots, there is no requirement that sqrt be invariant with respect to
the partial equivalence relation on s; different realizers of the same semigroup

7

BAUER AND STONE

element are allowed to produce (realizers of) different square roots.

3.8 Parameterized Theories

A theory may be parameterized by one or more models of other theories. For
example, a theory Real of the reals may be parameterized in terms of a model
N of the naturals. A theory of free groups may be parameterized in terms of
the generating set.

Parameterized theories serve two purposes. A model of a parameterized
theory is a generic implementation that, given any implementation of the
parameters, returns an implementation of the resulting theory. At the level of
ML, this would be a function from modules to modules, a so-called functor,
and so a parameterized theory can be translated into the signature of a functor.

Alternatively, once we have described a parameterized theory Real, we
may wish to use it to describe a single specific implementation of real numbers
based on a specific model N1 (implementation) of the natural numbers; this
can be described as an implementation satisfying the theory Real (N1).

The dual nature of parameterized theories as being both a description of
a parameterized model (a II type) and something which can be applied to a
model to produce a specialized theory (a A) is very reminiscent the type inclu-
sion of Automath [2]. ML does not permit applications of functor signatures,
however, so we beta-reduce all theory applications before generating signa-
tures; Real (N1) would produce a signature for a real-number implementation
that refers directly to N1 rather than to a generic parameter N.

4 Implementation

4.1 Pre-translation

After parsing, our implementation does type checking. The type checker does
simple type reconstruction. Instead of doing full unification, we require that
the types of all bound variables must either be given at the binding site, given
through an implicit declaration, or be obvious from their definition.

Unlike ML datatypes, we do not require disjoint union type to be de-
clared before they are used, or to have different unions involve different tags.
Therefore, a very small amount of implicit subtyping is done between sums.
Otherwise, if we had a specifiation of queues of integers that included

set iqueue

const emptyQueue

const enqueue : int*xiqueue -> iqueue

const dequeue : iqueue -> ‘None + ‘Some:int*iqueue

then the axiom

dequeue emptyQueue = ‘None

BAUER AND STONE

would fail to typecheck (the most-precise set for the left-hand-side is a two-
element disjoint unition, while the most-precise set for the right is a one-
element disjoint union.)

The type checker will also try to convert between set and a subset type

{ & : set | proposition } as necessary in order to type check. Thus,
set real
set nz_real = {x:real | not (x=zero)}
const one . real
const inv : nz_real -> nz_real

const (*) : real * real -> real

axiom field (x : real) =
not (x=zero) => x * (inv x) = one

is allowed, instead of requiring

axiom field (x : real) =
not (x=zero) => x *x ((inv (x:>nz_real)) :< real) = one

In this case, since :> and :< has computational content (going into a subset
involves pairing the item with the realizer of the proposition; going out of a
subset is then a first projection), the typechecker rewrites the former version
of field into the latter before passing it on to the translation phase. If
injections into subsets cannot be justified in the theory (e.g., if the field
axiom lacked the premise not (x=zero)) then the theory will still translate,
but the generated assertions will not be satisfied by any implementation.

4.2 Realizability Translation

We first discuss the realizability translation of sets and terms, and then focus
on the translation of logic, which is the interesting part.

A set S is translated into a modest set (|S],]|S]|,~s) according to its
structure: a basic set is translated to a modest set whose underlying type is
abstract, a product is translated to a product of modest sets, a function space
is translated to the exponential of modest sets, etc. Thus we simply use the
rich categorical structure of Mod(P) to interpret all the set constructors.

Similarly, terms are translated to suitable ML terms according to their
structure. Note however, that there are terms whose validity cannot be
checked by RZ because that would require it to prove arbitrary theorems. Such
an example is the definite description operator the x . ¢(x), whose validity can
be confirmed only by proving that there exists a unique = satisfying ¢(z). In
such cases RZ emits proof obligations for the programmer to verify. Note
however, that the translated terms always have valid ML types, even if the
accompanying proof obligations are not satisfied.

The driving force behind the realizability translation of logic is a theorem,
see e.g. [12, Thm. 4.4.10], which says that under the realizability interpretation

9

BAUER AND STONE

every formula ¢ is equivalent to one that says, informally speaking, “there
exists r, such that r realizes ¢”. Furthermore, the formula “r realizes ¢” is
computationally trivial. We explain what precisely this means next.

In classical logic a doubly negated formula ——¢ is equivalent to ¢. Con-
structively, this is not true in general. To see this, recall that in constructive
logic —¢ is defined as ¢ = L and observe that the underlying type of
realizers of ——¢ is (|¢| — unit) — unit. Terms of this type cannot be
converted to terms of type |¢| in a general way (although conversion in the
reverse direction can be done quite easily, which shows that ¢ implies =—¢).
Furthermore, terms of type (|¢| — unit) — unit do not compute much of
anything, so we might as well replace them by a special trivial realizer devoid
of any computational meaning. We can think of the trivial realizer as a term
which witnesses validity of a formula but does not compute anything.

In some cases it may happen even in constructive logic that ——¢ is equiva-
lent to ¢. When this is so we call ¢ a =—-stable formula, or just stable formula
for short. Stable formulas have trivial realizers, as they are equivalent to dou-
bly negated formulas. Among the stable formulas the almost negative formulas
are important because they can be easily recognized syntactically: they are
built from any combination of A, =, V, =, and those basic predicates that
are known to be stable, but 3 and V are only allowed to appear on the left
side of an = . ¢

The following theorem is a precise formulation of the claims we made in a
paragraph above.

Theorem 4.1 For every formula ¢ there exists a set Ry and an almost neg-
ative formula ¢' such that in the realizability interpretation ¢ is equivalent to
dr e R¢. ¢/(T).

We omit the proof, as it is fairly standard and involves a straightforward
induction on the structure of ¢. The set R, in the theorem is simply the set
of terms of the underlying type |¢| of realizers, while the intuitive meaning of
¢'(r) is “r realizes ¢”.

RZ translates an axiom ¢, or any other proposition it encounters, by com-
puting its underlying type |¢| and the almost negative formula ¢’ from the
above theorem. In the output signature it then emits

val r: |¢|
(* Assertion ¢'(r) *)

This way the axiom ¢ has been separated into its computational content r and
a statement ¢’ which describes when r is a valid realizer of ¢. Because ¢’ is
almost negative it has no computational content, which means that its classical
and constructive readings agree. Therefore a constructive mathematician and
a classical programmer will agree on the meaning of ¢'(r).

6 A negative formula is one that does not contain 3 and V at all.

10

BAUER AND STONE

RZ recognizes almost negative formulas and optimizes away their realizers,
as described below. In addition, the user may declare a basic predicate or
relation to be stable, which will be taken into account by RZ during translation
and optimization.

It seems worth noting that the computational irrelevance of stable proposi-
tions is akin to proof irrelevance studied by Pfenning [9]. This is not surprising
in view of the well known fact that double negation enjoys many formal prop-
erties of a modal possibility operator.

4.3 Optimization

Propositions without constructive content have trivial realizers, and so a final
“unit elimination” pass both removes these and does peephole simplification
of the resulting signature. Without an optimizer, the axioms of the theory
SQGROUP would produce

val unit : s -> top * top
(x* Assertion unit (x:|lsl|]) =
X * e =s= x and e ¥ X =s= X

*)

val sqrt : s => s * top

(¥* Assertion sqrt (x:|lsll|) =
piO(sqrt x) : |ls|| and
piO(sqrt x) * piO(sqrt x) =s= x

*)

where top is the type of trivial realizers; we use top instead of unit to empha-
size that these trivial realizers are terminating and hence safe to eliminate; this
would not necessarily be true for terms of type unit. The optimizer can easily
tell from the types that the realizers for the unit and assoc axioms are trivial
and can be discarded, and that although sqrt cannot be discarded entirely,
part of its return value is unnecessary. Assertions that reference discarded or
optimized constants are automatically rewritten to preserve well-typedness,
and we obtain the translation of SQGROUP shown previously, which contains
no occurrences of top.

5 Examples

Decidable set.

We now consider the theory of a decidable set. Recall that in constructive
mathematics a set S is said to be decidable if x =y or x # y for all z,y € S.
The input to RZ is

theory DecidableSet = thy
set s

11

BAUER AND STONE

axiom decidable (x:s) (y:s) = (x =y) or not (x = y)
end

and the output is

module type DecidableSet =
sig
type s
(¥* Assertion per_s = PER(=s=) *)

val decidable : s -> s -=> [‘or0 | ‘ori]
(x* Assertion
decidable (x:|lIsll, y:I1Isll) =
decidable x y = ‘or0 and x =s= y cor
decidable x y = ‘orl and not (x =s= y)
*)

end

The output signature asks for decidable to be a function accepting two re-
alizers x and y and returning one of two tokens ‘or0 and ‘ori, depending
on whether x and y realize the same element. (Disjunction is written cor to
emphasize that it is classical or.) This is nothing but a computable decision
procedure for equality on s with respect to =s=, as should be expected.

We remark that nothing requires the partial equivalence relation =s= to be
computable, so not every modest set is decidable. In fact, there are many nat-
ural and important examples of non-computable partial equivalence relations,
such as extensional equality of functions from natural numbers to natural num-
bers. (If we could computably decide whether two functions always give equal
results on equal arguments, we could construct a Halting Oracle.)

Natural Numbers.

Next we consider the theory of natural numbers. This example shows how
axioms can be parameterized by theories. Recall that the natural numbers are
the initial algebra with one constant and one unary operation (such algebras
are sometimes called “iteration algebras”):

theory Iteration = thy
set s
const zero : s
const succ : s -> s
end

theory Nat = thy
model N : Iteration

axiom initial [I : Iteration] =
unique (f : N.s -> I.s).

12

BAUER AND STONE

module type Iteration
sig

type s

(x* Assertion per_s

PER(=s=) *)
val zero : s

(x* Assertion zero_total
val succ : s -> s

(x*x Assertion succ_total

zero : |Is|| *)

all (x:s, y:s). X =s= y => Succ X =s= Succ y *)
end

module type Nat =
sig
module N : Iteration
module Initial : functor (I : Iteration) ->
sig
val initial : N.s -> I.s
(** Assertion initial =
(all (x:N.s, y:N.s). x =N.s= y => initial x =I.s= initial y) and
initial N.zero =I.s= I.zero and
(all (n:|IN.sl|). initial (N.succ n) =I.s= I.succ (initial n)) and
(all (u:N.s -> I.s).
(all (x:N.s, y:N.s). x =N.s=y =>ux =I.s=uy) =>
u N.zero =I.s= I.zero and
(all (n:|IN.sll). u (N.succ n) =I.s= I.succ (u n)) =>
all (x:N.s, y:N.s). x =N.s=y => initial x =I.s= u y)
*)
end
end

Fig. 3. Output for theories Iteration and Nat

(f N.zero = I.zero and all (n : N.s) . £ (N.succ n) = I.succ (f n))
end

The theory Iteration is an auxiliary theory. The theory Nat postulates the
existence of a model N of theory Iteration which satisfies the initiality axiom
stating that there exists exactly one algebra morphism from N to any other
iteration theory I. The output generated by RZ is shown in Figure 3. The
initiality axiom has been translated to a functor which expects an implemen-
tation I of an iteration theory and outputs a realizer for the axiom. A closer
look at the assertion reveals that it essentially says that the realizer defines a
function from natural numbers to I.s by simple recursion.

Axiom of Choice.
As a third example, we look at the realizability interpretation of the Axiom
of Choice. We work with the formulation of the axiom which states that every

13

BAUER AND STONE

total relation has a choice function:
(Vo € A. 3y € B. R(z,y)) = 3g € B*. Vo € A R(z,9(2)) .

We could write this as a theory parameterized by sets A, B and the relation R,
but to keep things simple, we use the following version:

theory Choice
set a
set b
relation r : a * b
(all (x:a). some (y:b) . r(x,y)) =>
some (g:a->b) . all (x:a) . r(x,g(x))

thy

axiom choice

end

The output is shown in Figure 4. The interesting bit is the assertion for
choice, which says that choice takes as an argument a realizer f for the
Vd statement and outputs a pair of functions, of which the first is the choice
function g and the second one provides realizers witnessing that the choice
function does its job. However, there is a problem: the realizer f is not
required to respect =a= while the choice function ¢ is. In general there is no
way for choice to transform f into a =a=-respecting function. It follows that
in general the Axiom of Choice is not valid in the realizability interpretation.
This is another important difference between realizability and propositions-
as-types.

6 Conclusions and Future Work

By translating only at the level of specifications, RZ provides a useful middle
ground between ad-hoc implementations and machine-generated implementa-
tions. It allows much more flexible implementation strategies, but relies on
programmers to verify properties of their code.

Further, RZ can serve as a means of explaining constructive mathematics
to programmers. Programmers who are not knowledgeable about constructive
mathematics can still understand the output of the translation, which involves
familiar concepts such as abstract types and (classical) first-order logic. Look-
ing at such examples can provide the necessary intuition behind the original
logic, and better explain why one might want to work with constructive rather
than classical logic to begin with.

Axioms parameterized by models (e.g., initiality) currently translate into
signatures of ML functors. We have experimented with an alternative trans-
lation of such axioms into polymorphic types. In this case the initial axiom
of the natural numbers yields the specification

val initial: ’a -> (a -> ’a) -> N.s -> ’a

which is exactly the familiar iterator for natural numbers (i.e., given an initial
value, a function, and a natural number, apply the function that many times

14

BAUER AND STONE

module type Choice =
sig

type a

(x* Assertion per_a

type b

(** Assertion per_b

type r

(** Assertion predicate_r =

PREDICATE(r, a * b,
lam t u.(pi0 t =a= pi0 u and pil t =b= pil u))

PER(=a=) x)

PER(=b=) *)

*)

val choice : (a => b * r) -> (a -> b) * (a -> 1)
(** Assertion choice =
all (f:a > b *x).
(all (x:llall). pi0 (f x) : |lbl| and
pil (f x) |=r (x,pi0 (f x))) =>

(all (x:a, y:a). x =a=y => pi0 (choice f) x =b= pi0 (choice f) y) and
(all (x:1lall). pil (choice f) x |= r (x,pi0 (choice f) x))

*)

end

Fig. 4. Output for theory Choice

to the initial value). Such types can be much more natural and much simpler
for programmers to understand. The theory behind the translation is well
understood, being the phase-splitting translation of Harper, Mitchell, and
Moggi [3]. Because of limitations of ML not every parameterized axiom can
be turned into polymorphism; ML allows only prenex quantifiers, and the
quantifiers can range over types but not type operators. However we would like
to do so where it is possible (the common case). As an alternative, we could
attempt to retarget the output to a language like Haskell [10] which supports
the necessary polymorphic types, though Haskell’s support of modules is much
weaker.

Another possible extension would be to allow dependent families in the
input language. Fortunately, this does not require finding a target language
that supports dependent types; we can use the underlying (non-dependent)
types, and then express the dependencies as additional properties that must
be verified for the implementation.

References

[1] A. Bauer. The Realizability Approach to Computable Analysis and Topology.
PhD thesis, Carnegie Mellon University, 2000. Available as CMU technical
report CMU-CS-00-164 and at http://andrej.com/thesis.

15

BAUER AND STONE

[2] Nicolas G. de Bruijn. A survey of the project AUTOMATH. In J. P. Seldin and
J. R. Hindley, editors, To H. B. Curry: Essays in Combinatory Logic, Lambda
Calculus, and Formalism, pages 589-606. Academic Press, 1980.

[3] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order Modules
and the Phase Distinction. In Proc. 17th ACM Symposium on Principles of
Programming Languages (POPL ’90), pages 341-354, 1990.

[4] JM.E. Hyland. The effective topos. In A.S. Troelstra and D. Van Dalen,
editors, The L.E.J. Brouwer Centenary Symposium, pages 165-216. North
Holland Publishing Company, 1982.

[5] J.M.E. Hyland, P.T. Johnstone, and A.M. Pitts. Tripos theory. Math. Proc.
Camb. Phil. Soc., 88:205-232, 1980.

[6] S.C. Kleene. On the interpretation of intuitionistic number theory. Journal of
Symbolic Logic, 10:109-124, 1945.

[7] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérome
Vouillon. The Objective Caml system, documentation and user’s manual -
release 3.08. Technical report, INRIA, July 2004.

[8] John Longley. Matching typed and untyped realizability. Electr. Notes Theor.
Comput. Sci., 35, 2000.

[9] F. Pfenning. Intensionality, extensionality, and proof irrelevance in modal
type theory. In Proceedings of the 16th Annual IEEE Symposium on Logic
in Computer Science (LICS’01), page 221. IEEE Computer Society, June 2001.

[10] Simon Peyton Jones, ed. The Haskell 98 language. Journal of Functional
Programming, 13(1), January 2003.

[11] A.S. Troelstra. Realizability. In S.R. Buss, editor, Handbook of Proof Theory,
pages 407-473. North-Holland, 1998.

[12] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics, An
Introduction, Vol. 1. Number 121 in Studies in Logic and the Foundations
of Mathematics. North-Holland, 1988.

[13] J. van Oosten. Ezercises in Realizability. PhD thesis, Universiteit van
Amsterdam, 1991.

16

	Introduction
	Realizability
	Theories and Signatures
	Theories
	Signatures
	Parameterized Theories

	Implementation
	Pre-translation
	Realizability Translation
	Optimization

	Examples
	Conclusions and Future Work
	References

