
Specifications via Realizability

Andrej Bauer
Department of Mathematics and Physics

University of Ljubljana, Slovenia

Christopher A. Stone
Computer Science Department

Harvey Mudd College, USA

CLASE (@ ETAPS), Edinburgh UK, April 2005

Motivation & Background

Computable and constructive mathematics deals with computable aspects of

mathematics. We can extract programs from constructive proofs. This is

often done in an ad-hoc manner:

theorem & proof
grad student

// program

The following would be better:

theorem
tool #1

// specification

proof tool #2
// program

We are going to speak about tool #1 only.

2/17

Motivation & Background

Computable and constructive mathematics deals with computable aspects of

mathematics. We can extract programs from constructive proofs. This is

often done in an ad-hoc manner:

theorem & proof
grad student

// program

The following would be better:

theorem
tool #1

// specification

proof tool #2
// program

We are going to speak about tool #1 only.

2/17

Motivation & Background

Computable and constructive mathematics deals with computable aspects of

mathematics. We can extract programs from constructive proofs. This is

often done in an ad-hoc manner:

theorem & proof
grad student

// program

The following would be better:

theorem
tool #1

// specification

proof tool #2
// program

We are going to speak about tool #1 only.

2/17

Motivation & Background cont.

Why do we even need a tool for translation of theorems to specifications?

1. We want to express theorems directly in full first-order logic rather than

a specification language.

2. It turns out that theorems and constructions of computable mathematics

get too complicated for manual translation.

Try writing down a specification for the solution operator of ordinary

linear differential equations on smooth manifolds.

Why didn’t you extract programs from proofs?

1. We might have if we already had tool #1.

2. It is often easier to write a program than a formalized proof.

3. We are hoping others have done it already.

3/17

Motivation & Background cont.

Why do we even need a tool for translation of theorems to specifications?

1. We want to express theorems directly in full first-order logic rather than

a specification language.

2. It turns out that theorems and constructions of computable mathematics

get too complicated for manual translation.

Try writing down a specification for the solution operator of ordinary

linear differential equations on smooth manifolds.

Why didn’t you extract programs from proofs?

1. We might have if we already had tool #1.

2. It is often easier to write a program than a formalized proof.

3. We are hoping others have done it already.

3/17

Motivation & Background cont.

Why do we even need a tool for translation of theorems to specifications?

1. We want to express theorems directly in full first-order logic rather than

a specification language.

2. It turns out that theorems and constructions of computable mathematics

get too complicated for manual translation.

Try writing down a specification for the solution operator of ordinary

linear differential equations on smooth manifolds.

Why didn’t you extract programs from proofs?

1. We might have if we already had tool #1.

2. It is often easier to write a program than a formalized proof.

3. We are hoping others have done it already.

3/17

Overview

1. Theories & specifications

2. Realizability translation

3. Concluding remarks

4/17

Theories

We axiomatize mathematical structures in (constructive) first-order logic

with (predicative) set theory.

• logic: ∧ =⇒∨ ∃ ∀ > ⊥ =.

• sets: A × B, A → B, A + B,
{

x : A
∣

∣ φ(x)
}

, A/¬¬ρ.

This language is close to what is used in practice, except for missing

dependent types.

A theory is a list of sets, predicates/relations, constants and axioms.

5/17

Example

theory DenseLinearOrder =

thy

set s

relation (<) : s * s

implicit x, y, z : s

axiom transitive x y z = (x < y and y < z) => x < z

axiom assymetric x y = not (x < y and y < x)

axiom linear x y z = (x < y) => (x < z or z < y)

axiom dense x y = x < y => some z.(x < z and z < y)

end

6/17

Capabilities not shown in previous example

• A theory may be parameterized by a model of another theory.

E.g., the theory of vector spaces over a field F .

• An axiom may express a universal property by quantifying over all

structures of a given kind.

Finite lists over a set A are the initial algebra for the functor

X 7→ A + X .

Thus our system allows theories and axioms to be parameterized by models

of theories.

7/17

Capabilities not shown in previous example

• A theory may be parameterized by a model of another theory.

E.g., the theory of vector spaces over a field F .

• An axiom may express a universal property by quantifying over all

structures of a given kind.

Finite lists over a set A are the initial algebra for the functor

X 7→ A + X .

Thus our system allows theories and axioms to be parameterized by models

of theories.

7/17

Capabilities not shown in previous example

• A theory may be parameterized by a model of another theory.

E.g., the theory of vector spaces over a field F .

• An axiom may express a universal property by quantifying over all

structures of a given kind.

Finite lists over a set A are the initial algebra for the functor

X 7→ A + X .

Thus our system allows theories and axioms to be parameterized by models

of theories.

7/17

Specifications

• Specifications are ML signatures with assertions.

• Assertions are negative formulas:

⊥ > = ∧ =⇒ ∀

• The classical and constructive meanings of negative formulas coincide.

Benefit: programmers who are not familiar with constructive logic will

understand such specifications.

• Parameterized specifications are signatures for ML functors with

assertions.

8/17

Specifications

• Specifications are ML signatures with assertions.

• Assertions are negative formulas:

⊥ > = ∧ =⇒ ∀

• The classical and constructive meanings of negative formulas coincide.

Benefit: programmers who are not familiar with constructive logic will

understand such specifications.

• Parameterized specifications are signatures for ML functors with

assertions.

8/17

Specifications

• Specifications are ML signatures with assertions.

• Assertions are negative formulas:

⊥ > = ∧ =⇒ ∀

• The classical and constructive meanings of negative formulas coincide.

Benefit: programmers who are not familiar with constructive logic will

understand such specifications.

• Parameterized specifications are signatures for ML functors with

assertions.

8/17

Overview

✓ Theories & specifications

☞ Realizability translation

3. Concluding remarks

9/17

Realizability translation

• We translate theories to specifications using the realizability

interpretation, originally defined by S.C. Kleene.

• A common alternative is the Curry-Howard isomorphism, a.k.a.

“propositions-as-types”.

These two are similar but not equivalent and in fact the Curry-Howard
isomorphism is less suitable for our needs:

• Not every programming language is “just λ-calculus”.

Certain algorithms in computable analysis require programming

features like exceptions, timeouts, and decompilation.

• In computable mathematics partial functions are unavoidable.

One cannot make every function total by some trivial trick such as

prescribing a default value outside of domain of definition.

10/17

Realizability translation

• We translate theories to specifications using the realizability

interpretation, originally defined by S.C. Kleene.

• A common alternative is the Curry-Howard isomorphism, a.k.a.

“propositions-as-types”.

These two are similar but not equivalent and in fact the Curry-Howard
isomorphism is less suitable for our needs:

• Not every programming language is “just λ-calculus”.

Certain algorithms in computable analysis require programming

features like exceptions, timeouts, and decompilation.

• In computable mathematics partial functions are unavoidable.

One cannot make every function total by some trivial trick such as

prescribing a default value outside of domain of definition.

10/17

Realizability translation

• We translate theories to specifications using the realizability

interpretation, originally defined by S.C. Kleene.

• A common alternative is the Curry-Howard isomorphism, a.k.a.

“propositions-as-types”.

These two are similar but not equivalent and in fact the Curry-Howard
isomorphism is less suitable for our needs:

• Not every programming language is “just λ-calculus”.

Certain algorithms in computable analysis require programming

features like exceptions, timeouts, and decompilation.

• In computable mathematics partial functions are unavoidable.

One cannot make every function total by some trivial trick such as

prescribing a default value outside of domain of definition.

10/17

Realizability translation

• We translate theories to specifications using the realizability

interpretation, originally defined by S.C. Kleene.

• A common alternative is the Curry-Howard isomorphism, a.k.a.

“propositions-as-types”.

These two are similar but not equivalent and in fact the Curry-Howard
isomorphism is less suitable for our needs:

• Not every programming language is “just λ-calculus”.

Certain algorithms in computable analysis require programming

features like exceptions, timeouts, and decompilation.

• In computable mathematics partial functions are unavoidable.

One cannot make every function total by some trivial trick such as

prescribing a default value outside of domain of definition.

10/17

Realizability interpretation

1. A set A is interpreted by an underlying type of realizers |A| together
with a partial equality predicate =A on |A|.

• t =A s means “t and s realize (represent) the same element of A”.

• Also write t A x to mean “t realizes x ∈ A”.

• Propositions-as-types: set = type.

2. To every predicate φ we assign a type |φ| and specify when a term of
type |φ| realizes φ.

• We write t φ when t realizes φ.

• Some terms of type |φ| may not be valid realizers, e.g., because they

diverge.

• Propositions-as-types: proof = program.

11/17

Realizability interpretation

1. A set A is interpreted by an underlying type of realizers |A| together
with a partial equality predicate =A on |A|.

• t =A s means “t and s realize (represent) the same element of A”.

• Also write t A x to mean “t realizes x ∈ A”.

• Propositions-as-types: set = type.

2. To every predicate φ we assign a type |φ| and specify when a term of
type |φ| realizes φ.

• We write t φ when t realizes φ.

• Some terms of type |φ| may not be valid realizers, e.g., because they

diverge.

• Propositions-as-types: proof = program.

11/17

Realizability interpretation cont.

Consider a subset S = {x : A
˛

˛ φ(x)}:

|S| = |A| × |φ|

(t1, t2) S ιS(x) iff t1 A x and t2 φ(x)

Implication:

|φ =⇒ ψ| = |φ| → |ψ|

t φ =⇒ ψ iff for all u ∈ |φ|, if u φ then t u ψ

Existential quantifier:

|∃x ∈ A. φ(x)| = |φ| × |ψ|

(t1, t2) ∃x ∈ A.φ(x) iff t1 A x and t2 φ(x)

12/17

The translation procedure

Sets are translated to the corresponding datatypes.

For translation of propositions, we use:

Theorem:

In realizability interpretation, every φ is equivalent to ∃r ∈ |φ|. φ′(r),

where φ′(r) is a negative formula.

Intuitive meaning:

r is the computational content of φ and φ′(r) says “r realizes φ”.

A theorem φ is translated to the specification

val r : |φ|

(* Assertion φ′(r) *)

13/17

The translation procedure

Sets are translated to the corresponding datatypes.

For translation of propositions, we use:

Theorem:

In realizability interpretation, every φ is equivalent to ∃r ∈ |φ|. φ′(r),

where φ′(r) is a negative formula.

Intuitive meaning:

r is the computational content of φ and φ′(r) says “r realizes φ”.

A theorem φ is translated to the specification

val r : |φ|

(* Assertion φ′(r) *)

13/17

Overview

✓ Theories & signatures

✓ Realizability translation

☞ Concluding remarks

14/17

Related Work

• Realizability:

Kleene, Troelstra, Hyland, van Oosten, Longley, . . .

• Constructive and computable mathematics:

Bishop & Bridges, Markov, Pour El & Richard, Ko, Weihrauch,

Schröder, Hertling, Brattka, Scott, Edalat, . . .

• Extraction of signatures and programs:

– Schwichtenberg, Hayashi, Constable, Coquand, Huet, . . .

– Poernomo, Crossley & Wirsing 2002 (extraction of SML structures and

programs)

– Cruz-Filipe & Spitters (extraction from Fundamental theorem of algebra)

15/17

Contributions

We provide a tool, RZ, for automated translation of mathematical theories to

specifications.

• RZ should hopefully prove useful in bringing constructive mathematics

closer to programmers.

• RZ should hopefully be a good source of interesting specifications.

• RZ demonstrates how the realizability interpretation can be used as an

alternative to the Curry-Howard isomorphism.

16/17

Future Work

• Experiment with non-trivial theories.

Real numbers, differentiable functions, Banach and Hilbert spaces,

(weak) set theories, . . .

• Implement dependent types.

Note: under realizability interpretation the dependent types translate to

simple types, so we do not need a programming language with

dependent types.

• Hook up RZ with a program extraction tool.

17/17

