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We prove two embedding and extension theorems in the context of the constructive theory of metric spaces. The
first states that Cantor space embeds in any inhabited complete separable metric space (CSM) without isolated
points, X, in such a way that every sequentially continuous function from Cantor spafeskbends to a
sequentially continuous function froAi toR. The second asserts an analogous property for Baire space relative

to any inhabited locally non-compact CSM. Both results rely on having careful constructive formulations of the
concepts involved.

As afirst application, we derive new relationships between “continuity principles” asserting that all functions
between specified metric spaces are pointwise continuous. In particular, we give conditions that imply the
failure of the continuity principle “all functions fronX to R are continuous”, whetX is an inhabited CSM
without isolated points, and whexi is an inhabited locally non-compact CSM. One situation in which the latter
case applies is in models based on “domain realizability”, in which the failure of the continuity principle for
any inhabited locally non-compact CSM,, generalizes a result previously obtained by Esgantd Streicher
in the special cas& = C[0, 1].

As a second application, we show that, when the notion of inhabited complete separable metric space without
isolated points is interpreted in a recursion-theoretic setting, then, for any such’$ptee exists a Banach-

Mazur computable function fronX to the computable real numbers that is not Markov computable. This
generalizes a result obtained by Hertling in the special caseékthathe space of computable real numbers.
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1 Introduction

In computable and constructive analysis, it sometimes happens that pathological properties of Baire space are
reflected by similar pathologies holding for “continuous” spaces of the sort that arise in analysis. Two examples
of such phenomena have appeared in the recent literature.

The first occurs in the context of so-callddmain realizability i.e. in realizability toposes constructed over
domain-theoretic models of the untypaetalculus. In many such models, the interpahtinuity principle“all
functions from Baire space ti are continuous” is known to be false, even though externally all morphisms
from Baire space t® are continuous, because it conflicts with choice principles valid in the models. Recently,
Escard and Streicher showed that similarly the internal statement “all functionsdfom] to R are continuous”
is false [7]. Once again, externally, all morphisms fr6ff, 1] to R are continuous.

The second example arises in the context of differentiating between computability in the sense of Markov and
computability in the sense of Banach and Mazur. It is an old result of Friedberg [8] that there exists a Banach-
Mazur-computable function, mapping computable sequences of natural numbers (the computable version of Baire
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space) taN, that is not Markov computable (whereas every Markov computable function is trivially Banach-
Mazur computable). Recently, Hertling answered a longstanding open question by proving that, similarly, there
exists a Banach-Mazur-computable function on the computable real numbers that is not Markov computable [10].

In neither example above [7, 10] is the pathological behaviour in the analytic world derived from the analogous
result for Baire space. Instead, direct proofs are given, borrowing ideas from the known proofs for Baire space,
but adapting them, with added complexity, to apply to the spaces under consideration. In this paper, we provide
instead a method of deriving such results directly as consequences of the corresponding results for Baire space,
and we show that the results of [7, 10] both follow from applications of our method.

Working within the context of Bishop’s Constructive Mathematics [5], we identify two properties of complete
separable metric spaces (CSMs), namely baiitgout isolated point&indlocal non-compactnes®espite the
negative terminology, as befits the constructive setting, these concepts are formulated as positive properties of
spaces. Our first main result, Theorem 2.4, states that Cantor space, which is itself without isolated points,
embeds in any inhabited CSM without isolated points, in such a way that every sequentially continuous
function from Cantor space té extends to a function fronX to R. A second result, Theorem 2.5, gives an
analogous property for Baire space relative to any inhabited locally non-compact CSM. These results are proved
in Section 3.

In Section 4, we apply Theorem 2.5 to derive Eséaadd Streicher’s result that the continuity principle “all
functions fromC[0, 1] to R are continuous” is false in domain realizability [7]. This is a simple consequence of
the known result for Baire space, together with the fact €jét1] is easily shown to be locally non-compact.
Furthermore, our approach establishes a more general result that, for any inhabited locally non-c¢émpact
the statement “all functions fronX to R are continuous” is false in any constructive setting in which certain
choice and sequential-continuity principles are valid. Realizability toposes built from domain-theoretic models
of A-calculus validate these principles. More generally, we establish various relationships between different
continuity principles, including the failure of continuity principles involving inhabited CSMs without isolated
points, in certain situations in which Theorem 2.4 applies.

In Section 5, we derive Hertling’s result, [10], that there exists a Banach-Mazur computable function on the
computable real numbers that is not Markov computable, as a consequence of Friedberg’s result [8]. More
generally, we show that, for any inhabited CSMwithout isolated points (understood recursion-theoretically),
there exists a Banach-Mazur computable function féoro the computable reals that is not Markov computable.

We believe that Theorems 2.4 and 2.5 may have other applications in computable and constructive analysis,
as they appear to provide general tools for extending properties of the Cantor and Baire spaces to other spaces.

2 Two constructive embedding-extension theorems

Following Bishop [4, 5], we do mathematics using intuitionistic logic, and we assume the principermtble
choiceACy, namely choice for statements of the form e N. 3z € X . ¢. We shall not need dependent choice.
In fact, we mostly require only number-number choid€, o, i.e. countable choice in the special case= N.
However, in Lemmas 3.7 and 3.16, we make use of the stronger priiple, i.e. countable choice in the case
X = N, We also assume extensionality for functionsf (f:) = g(x) for all x thenf = g, and ifz = y then
f(x) = f(y). (This is needed in Proposition 4.7 and in Corollary 4.8.) For the development that follows, it does
not matter whether real numbeéRsare taken to be Cauchy sequences of rationals, with equality as an equivalence
relation over them, or whether real numbers are taken to be equivalence classes of Cauchy sequences. The former
is Bishop's approach to real numbers, the latter is the natural approach when reasoning in the internal logic of an
elementary topos, where, because we assiifipg), the objectR of equivalence classes of Cauchy sequences is
isomorphic to the favoured object of Dedekind reals.

We assume familiarity with the constructive notions of metric space, Cauchy sequence (n.b. constructively a
Cauchy sequence is required to have an associated modulus function) and convergence. Because we consider
several notions of continuity, we spell out each one of them. A functiolX — Y between metric spaces is:

— uniformly continuousvhen for everys > 0 there exist®) > 0 such that, for alk, 2’ € X, if d(z,2") < ¢
thend(f(z), f(z')) < e.
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— pointwise continuous at € X when for everye > 0 there existsy > 0 such that, for alk’ € X,
d(z,z") < § impliesd(f(z), f(z')) < e. A function which is pointwise continuous at every point is
pointwise continuous

— sequentially continuougrhen it preserves limits of convergent sequencesu.if;cn converges ta in X
then(f(a;)):cn converges tgf(a) in Y.

Obviously, uniform continuity implies pointwise continuity, which in turn implies sequential continuity. Con-
structively, the converses need not hold, even for closed totally bounded spaces. Indeed, in Recursive Mathe-
matics there exists a pointwise continuous functiari] — R which is unbounded and hence not uniformly
continuous [20§6.4.4]. Also, in the setting of Example 4.12 below, all functidfisl] — R are sequentially
continuous, but not all such functions are pointwise continuous.

For a metric spac€X, d), we write B(z, r) for theopen ballcentered at € X with radiusr > 0. We say that
(X, d) is separabldf it contains a countable dense subspace; and thatitrispletef every Cauchy sequence
converges. As is customary we abbreviedenplete separable metric spageCSM

For reference we list several standard examples of complete separable metric spaces. The set of re&® numbers
equipped with the usual metri{z, y) = |x — y| is a CSM, and so is the set of real sequerResvith the metric
defined by

oo
d(z,y) = > min(1, |z — yyl) - 27
k=0

Baire spacds defined as the subspaZ€ of RN consisting of all integer sequences, aahtor space! is the
subspace C ZN of binary sequences:

MN={aecZV|VieN.(a;=0Va; =1)}.
Theone-point compactification f is the subspach* of 2V defined by
Nt ={ac2V|VieN.(;=0 = Vj>i.a; =0)}.

N is a subspace df* where a numbern is represented by the sequencewhose firstn terms arel, and all
others ard). The spac&™ also contains thpoint at infinityx., which is the constanit sequence.

An e-netin a metric spaceX is a finite subsefV C X such that, for every € X, there existg, € N for
whichd(x,y) < e. ACSM is said to beomplete totally bounded (CTB)t has ans-net for every > 0. Cantor
space, closed intervals,b] = {z € R | a < x < b} and the spacBl™ are easily seen to be CTB. The notion
of CTB space provides one possible constructive formulation of compactness, though, in general, it cannot be
shown constructively that CTB spaces have the Heine-Borel property. Indeed, it is consistent for the Heine-Borel
property to fail for Cantor space af@ 1].

We next define the concepts needed to formulate our main results. AapainX is acluster pointif every
open ball centered atcontains a point distinct from. In the presence d&Cy o this is equivalent ta: being the
limit of an injective sequenc@y; );cn, Which is a sequence for whiel{a,,, a,,,) > 0 whenevem £ m.

Definition 2.1 A metric space isvithout isolated pointf every point is a cluster point.

We say that a sequen¢e; );cr In @ metric spacéX, d) is without accumulation poinvhen, for everyr € X,
there exist > 0 andm € N such thatl(z, a;) > £ forall i > m.

Definition 2.2 A metric spac€ X, d) islocally non-compact at € X if for everye > 0the open balB(z, ¢)
contains a sequence without accumulation poinXinlt is locally non-compacif it is locally non-compact at
everyz.

Examples of spaces without isolated points are metric vector spaces, locally non-compact spaces, and dense
subspaces of spaces without isolated points.

Any infinite-dimensional separable Hilbert space is a locally non-compact CSM, for example theé%spfice
square-summable sequences; or the sgaife1] of uniformly continuous mapf, 1] — R, equipped with the
supremum norm. The latter example generalizes as followX. if a CTB space and : X — R is uniformly
continuous, then its supremum nofiffi||. = sup{f(z) | = € X} is well defined, and s6,(X) is a normed
vector space. Then we have the following proposition.
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Proposition 2.3 If (X, d) is a CTB space which contains a cluster point tifeflX') equipped with the supre-
mum norm is locally non-compact.

Proof. AsC,(X) is a normed vector space, it suffices to find’jjf X') a single bounded injective sequence
(fi)ien without accumulation point. Let € X be a cluster point an¢u;);en an injective sequence which
converges td. Without loss of generality we may assume thig, a,,) > 0 for all n € N. For eactn € N let
fn : X — R be defined byf,, (x) = max(0,1 —2d(z, a,,)/d(b, ay)). Clearly,|| fn]lcc = 1 @nd|| fr, — fin|lcc >0
if n # m. It remains to be shown th&f;);cn is without accumulation point. Consider any uniformly continuous
mapg : X — R. If |g(b)] > 1/3then|lg — frllco > |9(b) — fn(b)| = |g(b)| > 1/3foralln € N. If |g(b)| < 2/3
then there exists > 0 such thatg(z)| < 2/3 for all z € B(b,e). Because€a;);cn converges td there is
m € N such that,, € B(b,¢) for all n > m. Therefore fom > m we get||lg — fnlloo > |9(an) — fn(an)

| =
lg(an) — 1/ > 1/3. [

Two other important examples of locally non-compact CSMs are the sRHcef infinite sequences of real
numbers and Baire spaZe'.

In the presence of the formalized Church’s The€i$, [20, §4.3], the real lineR and the closed interval
[0, 1] give surprising examples of locally non-compact spaces. This is be€ausénplies the existence of
strong Specker sequenci9, §6.4.7], which are nothing but bounded monotone sequences of reals without
accumulation point. This shows that, constructively, it is consistent to have a CSM that is simultaneously CTB
and locally non-compact.

We now state the two main embedding-extension results of this paper. The proofs are deferred to Section 3.

Theorem 2.4 If X is an inhabited CSM without isolated points then there exist8 — X such that:
1. The mape is a uniformly continuous embedding with closed image.

2. For every sequentially continuoyfs: 2N — 7, there exists a sequentially continuofis X — R such that
f(z) = f(e(x)) forall z € X.

Theorem 2.5 If X is an inhabited and locally non-compact CSM then there exis" — X such that:
1. The maype is a uniformly continuous embedding with closed image.

2. For every sequentially continuoys: 7N — 7, there exists a sequentially continuofis X — R such that
f(x) = f(e(x)) forall x € X.

In classical mathematics, the second statement of each theorem follows from the first, as a consequence of the
Tietze extension theorem [6, Theorem 7.5.1]. However, existing constructive versions of the Tietze Theorem, see
e.g. [4, 5], are too restrictive to imply the results above.

Another difference from the classical setting is that, constructively, the different notions of continuity need not
agree. Thus one can imagine analogues of the above results in which sequential continuity is replaced with other
(stronger) forms of continuity. In fact, we have verified that our proofs of Theorems 2.4 and 2.5 adapt to show
that, when thef above are pointwise continuous then so are the assogiatddvertheless, in the present paper,
we restrict attention to the sequentially continuous versions stated above. Not only are the sequential versions the
ones needed for our applications later on, but also their proofs turn out to be harder than the proofs when stronger
notions of continuity are used.

3 The Proof of Theorems 2.4 and 2.5

The proofs of Theorems 2.4 and 2.5 are very similar. We therefore treat the (more interesting) case of Theorem 2.5
in detail, and afterwards outline how the proof may be adapted to deal with the (much easier) case of Theorem 2.4.
We break Theorem 2.5 into two separate propositions.

Proposition 3.1 For any inhabited locally non-compact CSH, there exist a uniformly continuous embed-
dinge : Z¥ — X with closed image and a pointwise continuous ngap X — RN such that the left-hand
diagram below commutes.
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X—‘g>RN RNLR

N

A N —— L

Proposition 3.2 For every sequentially continuoyfs: ZY — Z there exists a sequentially continuous function
h : RN — R such that the right-hand diagram above commutes.

Theorem 2.5 follows immediately from Propositions 3.1 and 3.2, with the fnap o g as the required extension
of f alonge.

3.1 Proof of Proposition 3.1

Throughout this section we assume ti3atis an inhabited locally non-compact CSM with a countable dense
subsetS C X. For the construction af we will need the “cone” and “hill” functions, which we define now. For
z € X and0 < g < r letcone(z,r) : X — Randhill(z,r,¢q) : X — R be defined as

cone(z,7)(y) = max(0,1 —r~* - d(x,y))),
hill(z, ¢, 7)(y) = max(0,1 — (r — ¢)~" - max(0, d(x,y) — q)) -

Lemma 3.3 If (a;);en and (b;);en satisfylim; . d(a;,b;) = 0 and if (a;);en IS @ Sequence without accu-
mulation point then so i&; );en-.

Proof. Consider an arbitrary € X. There exists > 0 andm € N such thatd(z,a;) > ¢ for all
i > m. There exists: € N such thatd(a;,b;) < e/2 for all ¢ > n. Then for alli > max(m,n) we have
d(z,b;) > d(x,a;) — d(a;, b;) > /2. O

Lemma 3.4 Every open ball inX contains an injective sequenceSnwithout accumulation point itk .

Proof. LetB(x,r)be anopen balliX. By assumptiorX is locally non-compact, so there exists a sequence
(ai)ien in B(z,7/2) without accumulation point. BWC, ( there exists a sequengg;);cn in S such that
d(a;,b;) < r/2¢+! for everyi € N. By Lemma 3.3 the sequencg; );cy is without accumulation point. It is
contained inB(z,r) becausel(x, b;) < d(z,a;) + d(a;, b;) < r/2+r/201 <.

By ACy o there is a choice functiofi : N — N which chooses for each € N somef(n) > n such that there
existse > 0 for which d(b,,, b,,) > € for all m > f(n). Now the sequencg:;);cn defined bye,, = bgn (o) is
injective. Because it is a subsequenceBj;cy it has no accumulation points and is contained in b®thnd
B(z,r), as required. O

We say that a sequencs;);cn of positive realsonvergently spacessequencéu;);cn in X if lim; oo e; =0
andi # j impliesd(a;,a;) > 2(e; + ;). Clearly, if (¢;);en convergently space@:;)ien then(a;);exn is an
injective sequence. For sequences without accumulation point, there is a converse.

Lemma 3.5 If (a;);en is an injective sequence without accumulation point, then foramy0, there exists a
sequencés; );cn Of positive rationals< e that convergently spac€s, );cn.

Proof. We show that, for all, there exists a positive rationa} < min(277,¢) such that, for allj # i, it
holds that; < d(a;,a;)/4. The lemma then follows immediately BCy o.

As (a;);en is without accumulation point, for eactthere existsn; and¢; > 0 such that, for allj > m,;, it
holds thati(a;, a;) > ¢;. Becauséa;);en is injective, the valu€; = min{d(a;,a;) | 7 < m;A\j # i} is positive.
Thus there exists a positive rational< min(27, ¢, (;/4, &;/4), and this has the required properties. O

Lemma 3.6 If (a;);en is without accumulation point antk;);cn convergently space@:; );cn then, for all
z € X, (i) there exists a uniqué such thatd(z, ax) < 2ey, or (i) for all 4, it holds thatd(z, a;) > «;.
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Proof. As(a;)ien is without accumulation point, there exist and¢ > 0 such that, for allj > m it holds
thatd(z, a;) > ¢. Aslim;_. €; = 0, there existsn’ such that, for alj > m/, it holds that:; < ¢. Thus, for all
J > max(m,m’), we haved(z, a;) > ¢;. For eachi < max(m,m’), d(z,a;) < 2¢; ord(z,a;) > ;. As there
are only finitely many < max(m, m’)} (i) there exitsk < max(m, m’) such thati(z, ax) < 2¢y; or (ii) for all
i < max(m,m’), it holds thatd(x, a;) > ¢;. In the first case, thé such thati(z, a) < 2¢; is unique because
(€:)ien convergently spaces;);cn. In the second casé(x, a;) > ¢; for all i. O

If (£:)ien cOnvergently spaces;);cn, then we say that(a;)ien, (£:)ien) is well inside B(v, n) if, for all i,
it holds thatd(v, a;) < /3 ande; < n/3.

LetN* be the set of finite sequences of integers. # N* andj € N, we writea;j for the sequence followed
by j. The empty sequence is denoted[bwand the length of is denoted bya|. We write «,, for the prefix in
N” of an infinite sequence € NT,

Lemma 3.7 There exist a familyw(a))qen+ in S and a family(d(a)).en+ Of positive rational numbers such
that, for everyu € N*:

1. the sequencéw(ai));en is without accumulation point;
2. the sequencé(ai));cn convergently spaceso(ai));en ; and
3. ((w(ai))ien, (6(ai))ien) is well insideB(w(a), 6(a)).

Proof. Giverw € S and rational; > 0, we have by Lemmas 3.4 and 3.5 that there there exist an injective
sequencév;);en in S N B(v,n/3) without accumulation point, and a sequer{gg);cn of positive rationals
< n/3 that convergently spacés;);cn. As S is countable, byACy 1, we obtain a function mapping each pair
(v,n) to such a pair of sequencé®;)icn, (7;)ien)-

To prove the lemma, start off by fixing([]) to be any member of andd([]) = 1. Then(w(ai),d(ai)) is
defined by applying the above function to the pait(a), §(a)), and extracting thé-indexed components of the
resulting sequences. It is immediate from the definition that this gives rise to fafaili€s,cn- and(w(a))qen-
satisfying the required properties. O

Lemma 3.8 Let (w(a))qen+ @and(d(a))qen+- be as in Lemma 3.7. if € N* is a proper prefix ob € N* then
B(w(b),d(b)) € B(w(a),25(a)/3).

Proof. This follows easily from property 3 of Lemma 3.7. O

Lemma 3.9 Let (w(a))qen+ and (6(a))qen~ be as in Lemma 3.7. For all, b € N™ with a # b, it holds that
d(w(a),w(d)) > 2(6(a) + 6(b)).

Proof. We can writer # b asa = cia’ andb = cjb’, wherec is the common prefix and+# j. The proof is
by induction onja’| = |b|. When|a’| = 0 the lemma is immediate from property 2 of Lemma 3.7. fadr> 0,
we haver’ = o”’m andb’ = b'n. The induction hypothesis givei§w(cia”), w(cjb”)) > 2(5(cia”) + §(cjb")).
Also, by Lemma 3.8, we havé(w(a),w(cia”)) < 2§(cia”)/3 andd(w(b), w(cjb”)) < 25(cjb”)/3. Thus
d(w(a),w(b)) > 4(6(cia”) + 6(cjb"))/3. However, by property 3 of Lemma 3.4(a) < d(cia’)/3 and
5(b) < d(egb")/3. Sod(w(a), w(b)) > 4(6(a) + §(b)) > 2(d(a) + 4(b)). O

Lemma 3.10 Let (w(a))qen+ and(6(a))q,en+ be as in Lemma 3.7. For everye N andz € X, there exists
a uniqueb € N" such thatd(w(b), x) < 24(b), or for all a € N™ it holds thatd(w(a), z) > d(a).

Proof. By induction om € N. Whenn = 0 the lemma states thad{w([]),z) < 24([]) or d(w([]),z) >
5([]), which of course holds. Suppose > 0. By Lemma 3.8, for all’ € N"~1, if d(z,w(a’)) > d(a)
thend(z,w(a'i)) > &(a’i) for all i. By the induction hypothesis, there exists a unige N"~! such that
d(z,w(b)) < 26(V'), or, for alla’ € N1 it holds thatd(z,w(a’)) > d(a’). In the second case, we are
done by the previous observation. Thus suppgdse N"~! is the unique such thak(z, w(v')) < 26(t'). By
uniqueness, fon’ € N with o’ # ¥/, it holds thatd(z,w(a’)) > d(a’). Hence, by the observation above,
d(z,w(a'i)) > 6(a'i), for all a’ # v € N*~! andi. So, if alsod(w(V'j),z) > §(b'j) for all j, then indeed
d(w(a),z) > §(a) for all a € N™. By Lemma 3.6, the only other possibility is that there exists (a unigseich
thatd(w(b'k), x) < 26(b’'k). By Lemma 3.9, this is the uniquec N™ with d(w(b), z) < 26(b). O

Copyright line will be provided by the publisher



mlqg header will be provided by the publisher 9

We now prove Proposition 3.1. Létv(a)).en+ @and (6(a))qen+ be as in (the proof of) Lemma 3.7, with
0([]) = 1. Using any bijection betweefi andN, we rewrite these families &3v(a))qcz+ and (d(a))qez=-
Define the map : ZY — X by

e(a) = lim w(alf) .
This is well defined because, by statement 3 of Lemmad3aj, < 3~1°/ for all « € Z*, and so, by Lemma 3.8,
the sequencéw(al;));en is Cauchy. Also by Lemma 3. 8,(@( y,w(al)) <28(al)/3 < §(af) < 371 Thuse
is uniformly continuous because, for any> 0, takeé = 2~%, wherek is such tha8=* < ¢/2. If d(a, ) < §

thena, = B, so indeedi(e(a), ¢(8)) < d(e(a), w(aly)) + d(e(8), w(Bl)) < 2-37% < e.
To defineg : X — RY, we first define functiong; : X — R, for eachi € N, by:
() = a; - hill(w(a),26(a)/3,0(a))(x) if there exists unique € Z* ! with d(w(a), z) < 26(a),
I =0 if d(w(a),z) > §(a) forall a € Zi+,

where we write any: € Z‘*! asaga; . ..a;. The functiong; is well defined because when both clauses apply
they agree thay; () = 0, and, by Lemma 3.10, at least one of the cases always applies. Easily, when the first
clause applies, thes (y) = a; - hill(w(a),26(a)/3,d(a))(y) forally € B(z,26(a) — d(w(a),z)). Similarly,
when the second clause appligy) = 0 forally € B(x, d(w(a),x) — d(a)). Thus the functiory; is pointwise
continuous. Now defing : X — RY by g(z) = (gi(x))ien. This is also pointwise continuous because the
metric onRY definesRY as a countable product with respect to pointwise continuous maps.

By Lemma 3.8, for anyy = aga; ... € ZN, we haved(w(alii1),e(a)) < 26(aliv1)/3 < 26(alit1), SO
gi(e(a)) = a; - hill(w(alit1), 20(a +1)/3 I z—H))( (o)) = «;. Thereforeg(e(w)) = a.

It remains to show thatis injective and that its image is closed. Itis injective becauseis injective. To see
that the image is closed, consider a sequéngicy in Z" such thate(a;));en converges ta: € X. Because
is pointwise continuous the sequer{gée(a;)))ien = (i )ien converges tg(z), whereg(x) € ZN becausé&.
is a closed subspace Bf'. Therefore,r ande(g(z)) are both limits of(e(a;));cn, hence equal, and sois in
the image ok. This concludes the proof of Proposition 3.1.

3.2 Proof of Proposition 3.2

For the proof of Proposition 3.2, assume given a sequentially continlo' — 7Z. We construct a function
h : RN — R extendingf.

Forvy € RN andg € Z, define a sequenc(af(y))ieN of real numbers by:
hy () = £(0) |
Qi—J
B (1) = B () + (F(Bl4a0%) H cone(f;,1/4)(7;))” -

We say that3 is adequate fory if, for all i € N,
Bi —2/3 <7y <pBi+2/3.

By ACy o, for everyy € RY, there exists? € Z" adequate fory.
Lemma 3.11 If g and 3’ are both adequate foy thenhf(y) = hf/ ().

Proof. The proof proceeds by induction orCIearthf(y) = hf/ (v) inthe case that; = 3}, forall j < i.
Otherwise, without loss of generality, there exigts ¢ such thats; < 6;. Then, as botl# and3’ are adequate
for 4, it holds thaty; — 2/3 < 8; < B} < v; +2/3. Thusg; = 3; + 1andg; + 1/3 < v; < 3; —1/3,
so cone(f3;,1/4)(yj) = 0 = cone(83},1/4)(v;). By induction hypothesish? (v) = b2 () = hfﬁl(v) =
h' (7). O
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10 A. Bauer and A. Simpson: Two Constructive Embedding-Extension Theorems with Applications

The above lemma justifies the definition
hi(y) = h?(7), for any 3 adequate fory .

The following technical lemma is in preparation for Lemma 3.13 below.
Lemma3.12 Let(&;);en be a sequence i, 1] satisfyingt; 41 < €2, foralli € N, and letP; = []/—(1-¢)).
Thenm > n implies|P, — P,,| < (2/3)", and so the infinite produt}ﬂjio(l —¢;) = lim,_. . P, converges.

Proof. We show that» > n implies P, — P,,, < (2/3)™ (and also obviouslg < P, — P,;,). There are two
cases. First, if; > 1/3 for all i < n, then

P,— P, <P, <(2/3)".
In the second case there exikts< n such thatt, < 1/2 and¢; > 1/3 for all i < k. Then, for alli > k,
P < P, < (2/3)F andg; < (1/2)% ", so

k

P = P = P& < (2/3)"- (1/2"7 < (2/3)F - (1/2)' 7.

From this we derive

m—1

Py — P < (2/3)F -3 (1/2)7F < (2/3)F - (1/2)"7F < (2/3)" .

i=n

Lemma 3.13 For everyy € RY, the sequencéh;(7));en converges.

Proof. Let3 be adequate foy. We must show tha(thf(y)),»eN converges. A is sequentially continuous,
there exists: such thatf (5},,,0¢) = f(8) for all m > n. Then, form > n, the equality

m—1 i

W) = F8) + () — £ - 1 (1 11 (cone(s;. 1/4)@))2”) (1)
i=n j=0
is easily shown by induction om. Define
n+k gtk
&(8,7) = ] (cone(B;,1/4)(x)) : @)
§=0

By Lemma 3.12£(8,7) = [Tieo(1 — & (3, 7)) exists, and so the sequen@d’ (v)):cn converges tof () +

(h(v) = f(B)) - £(8,7) 0
We defineh to be the function
h(v) = lim hy(y) . 3)

By the proof of the above lemma, fis adequate fofy andn is such thatf (51,,0¢) = f(5) for all m > n, then
h(v) = f(B) + (hiy(v) = [(8)) - €(B,7) - (4)
Lemma 3.14 For all a € ZV, it holds thath(a) = ().

Proof. Trivially, 5 = « is the only sequence adequate forWe must show thdim,, .. A%, (a) = f(«).
Letn be such that, for alln > n, it holds thatf («},,0¢) = f(«). Then, by (1), we have?, (y) = f(«) for all
m > n, becauseone(a;, 1/4)(a;) = 1 for all j. O
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It remains to show thdt is sequentially continuous. This result is not needed for Sections 4 and 5. The readers
who are mostly interested in the last two sections may wish to skip the following proof.

Observe that the functiorgg : ZY x RY — R defined in (2) are uniformly continuous because they are finite
products of cone functions. By Lemma 3.12, the produét v) = [T,—,(1 — & (3, 7)) converges uniformly.
Therefore : ZN x RY — R is a pointwise continuous function. Similarly, for any= N and3 € Z, the
function hf : RY — R is uniformly continuous, because it is a polynomial of cone functions. Howawezed
not be pointwise continuous, because its defining limit (3) is not necessarily uniform.

Lemma 3.15 Supposéy);cn is a sequence ilRY converging toy. There exists a sequen¢g?);cy in ZN
converging ta3 such thats is adequate fory and 3? is adequate fory® for everyi € N.

Proof. ByACy o there existgs € ZN such that, for ali € N,
,37;—5/9<%‘<ﬂi+5/9.

By ACy 1 there exists a sequent#);cy in ZN such tha#® is adequate foy?, for alli € N. UsingACy o and the
fact that(yj-)ieN converges toy;, we obtain a functiom: : N — N such that for alj € N andi > m(j) it holds
that|y; — ;| < 1/9. Now define the sequeng by

g {ﬂj if i > m(j),

77 &5 otherwise.
We claim that eacts” is adequate fo’. Indeed, ifi < m(j) theng; = &%, and ifi > m(j) then

185 =il = 185 = | <185 — vl + 1 =l <5/9+1/9=2/3.
Finally, lim, .., 8* = 3 because agrees with3’ in the firstj terms when > max(m(0),...,m(j — 1)). O
Lemma 3.16 Supposé3?);cn converges t@ in ZY. There exist& € N such that, for alin,n > k,

F(B"10%) = F(B™) = f(BR0%) = f(8) -

Proof. Forj € NdefineL; C Nx NtobeL; = {(m,j) | m > j}U{(j,n) | n > j}. By sequential
continuity of f there existy € N such that, for allj > ¢, f(3) = f(57) = f(B];0~). We claim that, for all
j >4, either

V(m,n)€L;. f(6"0%) = f(B) (%)

or

A(m,n) € L;. f(B™10%) # £(B) . (6)

To see this, use sequential continuityfato obtainj’ > j such that, for alln,n > 5/, f(8™[;04) = f(B];0¥) =
f(B)andf(871,0¢) = f(B7) = f(B). By inspecting the finitely many valug$m,n) € L, | m,n < j'} it can
now be determined whether (5) or (6) holds.

Next we define sequenceés.(j));>¢ and(n(j));>¢ as follows:

if (5) holds forj,
(m,n) the lexicographically smallegtn,n) € L; for which (6) holds.

The sequencé3™ ) l(;)0%);>¢ converges tg3 in ZN becausen(j) > j andn(j) > j. By the sequential
continuity of f, there existst > ¢ such that, for allj > k, f(3™)|,;0¢) = f(B). By the definition of
(m(5),n(4)), we must have (5) for ajl > k. Therefore, ifm,n > k thenf(8™1,0) = f(8™) = f(BI.0%) =
f(B) becausém,n) € Lyin(m,n) @andmin(m,n) > k > £. O
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12 A. Bauer and A. Simpson: Two Constructive Embedding-Extension Theorems with Applications

At last we show that: is sequentially continuous. Lét);cn be a sequence iR converging toy. By
Lemma 3.15 there exists a sequefiBd);cy in Z" converging ta3, such that3 is adequate fory and eachp’ is
adequate fory’. By Lemma 3.16 there exists€ N such thatf(37],0%) = f(8™) = f(3],0%) = f(3) for all
m,n > k. By (4), forallm > k,

h(y™) = F(B™) + (b (™) — F(B™)) - (8™, ™)
= F(B) + (B (™) — F(B)) - (8™ A™) -

There existg’ € N such that, for alln > £/, 3 and3™ agree in the firsk terms. Thus, forn > £/, it holds that
W™ (v™) = h (™), hence for alin > max(k’, k) it is the case that

A™) = F(8) + (™) = F(B)) - (8™ 7™)
We observed above that the functighand hf are pointwise continuous, so

lim h(y™) = lim (f(8) + (K, (™) — F(B)) - €(B™,7™))

m—0o0 m—0o0

= £(8) + (h{(7) — £(B)) - €(B,7)
=h(7),

where the last equality follows from (4), usiffd@5},,0«) = f(3) forall n > k.

This completes the proof of Proposition 3.2. Observe that, in addition to showing the existénger f,
the proof constructs a function mapping any sequentially continuous fungtioh" — Z to a corresponding
sequentially continuous extensibn : RN — R.

Remark 3.17 Under the stronger assumption ttfais uniformly continuous on CTB subspacesZof (this is
the main notion of continuity used by Bishop [4]) there is an easier construction of an extension fandtmm
anyz € R define the probability distributiop,.: Z — [0, 1] by p,.(a) = max(0, 1 — max(1, |z — a|)). For any
v € RY definey., to be the product measure @' whosei-th component is the measure @ndetermined by
D~,. Then define

h(v) = /fd/l'v -

Constructively, the assumption thatis uniformly continuous on CTB subspaces is needed to ensure that the
integral is well defined. A generalization of this approach to extending functionals has been worked out in a
classical setting by Normann, who has embedded the entire continuous type hierarcRyiotiee continuous

type hierarchy oveR, see [17].

Remark 3.18 It should be possible to avoid the technical proof thas sequentially continuous, by prov-
ing a meta-theorem guaranteeing that, becausedefined constructively from functions that are themselves
sequentially continuous, it holds automatically that sequentially continuous too. One possible approach to
formalizing such a meta-theorem would be to develop a constructive analogue of Johnstone’s “topological topos”
T of sheaves for the canonical Grothendieck topology on the monoid of continuous endomorphiSmgl@h
Then the relativization of the construction bfto 7 would result in a sequentially continuous function being
produced. It would be interesting to see this worked out in detalil.

Remark 3.19 The proof of Lemma 3.16 can be generalized to show that every sequentially contifiuous
N+ xN* — Nis uniformly continuous. For further connections between sequential continuity and thé\space
see Section 4 below.

In Section 5, we shall use a couple of straightforward consequences of the proof of Proposition 3.2, rather than
the result itself. To formulate these, we say that RY andB C Z" form anadequate subdomain pait

1. for ally € G there exists? € B with 3 adequate foty, and
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2. forall g € B andn € Nit holds thatg, ... 3,-10¢ € B.

Given suchGG and B and sequentially continuoys: B — Z, the proof of Proposition 3.2 clearly constructs a
functionhg g 5 : G — R.

Lemma 3.20 If G and B are an adequate subdomain pair afid: B — Z is sequentially continuous then
ha,B.y) : G — Rsatisfiesh ¢ g 5y = f(a) forall a € GN B.

Proof. Identical to the proof of Lemma 3.14. O

Lemma 3.21 If G, B and G’, B’ are adequate subdomain pairs, arfd: B — Z and f’ : B’ — Z are
sequentially continuous functions satisfyifigy) = f'(«) foralla € BNB’, thenh 5 ) (v) = har B/, 1) (V')
forally e GNG'.

Proof. Suppose € GNG'. Lets € BandB’ € B’ be adequate foy. Write h{’ﬁ(v) for the convergent
sequence determining s, ) (v) andhf/’ﬁl () for that determiningh ¢ 5/ /y(7'). Note, of course, that the
function f is used in the recursive definition b{’ﬁ/ (7), whereasf’ is used in the definition ohlfﬁ (7). We
show by induction ori thathf’ﬂ('y) = h{/’ﬂl ().

Supposes; = 3}, forall j <. Theng ;0¥ = g'[;0“ € BNB', sof(B:0) = f'(8'[;0¥). Thus, by applying
the induction hypothesis to the definitions/gf” (v) andh! ' (v), we obtainh!?(v) = h/"7 (v).

Otherwise, without loss of generality, there exigts: i such tha3; < 3]. Asin the proof of Lemma 3.11,

cone(f3;,1/4)(7y;) = 0 = cone(3},1/4)(v;). So, by induction hypothesié{’ﬁ(y) = h{"_ﬁ(y) = h{i’f'(y) =
7 (). O

3.3 Proof of Theorem 2.4

We conclude this section with a summary of the proof of Theorem 2.4. The main difference is to replace Propo-
sition 3.1 with the analogous result below.

Proposition 3.22 Let X be an inhabited CSM without isolated points. There exists a uniformly continuous
embedding : 2 — X with a closed image and a pointwise continuous mapX — R such thay(e(a)) = a
for all a € 2N

The proof follows along the same general lines as that of Proposition 3.1, but is significantly simpler. In the
proof of Proposition 3.1, a familyB(w(a),d(a))).cn+ Of open balls inX is defined withB(w(b), (b)) C
B(w(a),2(a)/3) whenever is a proper prefix ob, and such that each sequerfegai));cn is without accu-
mulation point. To prove Proposition 3.22, one more easily constructs a falily(a), d(a))).c2+ Of Open

balls, again withB(w(b),d(b)) € B(w(a),2d(a)/3) whenevera is a proper prefix ob, but such that each
sequenceuv(a0) # w(al). The required functiory can then be defined in much the same way as before, but
nowhere in the proof is there any need for analogues of Lemmas 3.3-3.6 and 3.10, which are all specific to
sequences without accumulation point.

Finally, Theorem 2.4 is easily derived from a combination of Propositions 3.22 and 3.2. Indeed, given a
sequentially continuoug : 2V — Z, this easily extends to a sequentially continugtis Z¥ — Z, and hence
Proposition 3.2 applies to yield a sequentially continubu®Y — R. Then the composit¢ = h o g, whereg
is given by Proposition 3.22, gives the extension required by Theorem 2.4.

4 Applications to Continuity Principles

Continuity principlesare statements asserting that all functions between certain spaces are continuous. Nontrivial
continuity principles are inconsistent with classical mathematics, but play an impdtarh Brouwer’s intu-
itionistic mathematics. They are also a feature of the internal logic of many toposes. In this section we apply
Theorems 2.4 and 2.5 to derive new relationships between different continuity principles.
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14 A. Bauer and A. Simpson: Two Constructive Embedding-Extension Theorems with Applications

For metric spaceX andY we consider the two continuity principles:

CPx(X,Y): Allfunctionsf : X — Y are pointwise continuous,
CPiq(X,Y) :  Allfunctionsf : X — Y are sequentially continuous.

The sequence of propositions below, which is mostly folklore, summarizes basic relationships between the
main continuity principles. In them, we writ®C,  for the the principle of choice for statements of the form
VfeNN.3neN.p.

Proposition 4.1 Consider the following statements.

N).

+(X,N), for all CSMsX.

1. CPy(ZN
(
(
(X

Pot
Pp
CPy(ZN, R).

pt )

4. CPy(X,Y), for all CSMsX and metric space¥’.

Thenl <= 2 <=3 <= 4. Moreover, ifAC; ( holds thenl = 3.

Proof. The implicatior2 = 1 is immediate, and 4 implies the other statements. In §212.7], it is
shown that every CSM is a quotient (with respect to pointwise continuous maps) Fhis gives the implication
1 = 2. Similarly, if 3 holds then so doeBP,;(X,R) for all CSMsX. To see that this implies 4, consider
any f: X — Y and element € X. By CP,(X,R), the functionz’ — d(f(z), f(z’)): X — Ris pointwise
continuous. Hence, for any > 0 there existd such that, for alk’ € B(z,d), we haved(f(x), f(z')) < e.
Thus f is continuous at every, hence pointwise continuous. Finally if both 1 af@, , hold then so does the
principleWC-N, see [20£4.6.3]. It is shown in [21§7.2.7] thatWC-N and 4 together impl{P,: (X, Y"), for all
CSMs X and separable metric spacdésThus, in particular, 3 holds. O

Recall, from Section 2, the notion of CTB space. We say that a metric spaekcally CTBif every point in X
has a CTB neighbourhood.

Proposition 4.2 Consider the following statements.

Y"), for all locally CTB CSMsX and metric space¥.

Thenl <= 2 <=3 <= 4. Moreover, ifAC;  holds thenl — 3.

Proof. Similar to the proof of Proposition 4.1, making use of the factahas itself CTB (and hence locally
CTB), and of the fact that every CTB space is a quotier® gfwhich is established in [2%7.4.4]. O

Proposition 4.4 below is an analogue of the preceding propositions for sequential continuity principles. First
we show that, for maps out of the spa¢e defined in Section 2, the sequential and pointwise continuity principles
coincide.

Proposition 4.3 For any metric spacé’, the following are equivalent.

1. CP,(N*,Y).

2. CPeq(NTY).

3. Forall f: N* — Y ande > 0 there existsn € N such that, for all > m, we havel(f(k,), f(kw)) < €.
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Proof. Trivially, 1 = 2 = 3. Suppose then that 3 holds. We must estaliliBh (N*,Y). Consider
any f: Nt — Y, a € Nt ande > 0. By 3, there existsn € N such that, for all. > m, it holds that
d(f(kn), f(keo)) < £/4. We prove that, fob = 2~ (m*1 anda’ € B(a, d) it holds thatd(f(«a), f(a')) < e.

If i < m isthe least such that; = 0 thena = «;, andB(a, 27" %) C B(a,27!) = {a}. Thus, for all
o' € B(a,271) we haved(f (o), f(a')) =0 < e.

Otherwise; = 1 for all i < m. Defineg: N* — N* by g(8); = «; - ;. Then, for anym’ > m, we have
9(km') = Ky, for a uniquen with m < n < m’. Also, trivially, g(k~) = «. So, by applying 3 tg o f, there
existsm’ € N such that, for alk’ > m’, we haved(f(g(kn)), f(@)) < /4. Then,g(kmax(m,m/)) = fn fOr
somen with m < n < max(m,m’). So,d(f(kn), f(a)) < /4, but alsod(f(k.), f(ko)) < £/4, because
n > m. Thusd(f(a), f(keo)) < €/2.

Now consider anyy’ € B(a,2(™+1), Thena, = 1 for all i < m. By the same argument as above,
d(f(d)), f(keo)) < /2. Thusd(f(a), f(a')) < &, as required. O

Proposition 4.4 Consider the following statements.
1. CPq(NT,N).
2. CPyq(X,N), for all CSMsX.

CPseq(NT,R).

4. CPyq(X,Y), for all CSMsX and metric spacey'.

Thenl <= 2 <=3 <= 4. Moreover, ifAC; o holds thenl = 3.

Proof. Trivially2 = 1, and 4 implies the other statements. To show that 1 implies 2, suppose that 1
holds, and consider any: X — N. Let(z;);cy be a Cauchy sequencelf, with limit .. Defineg: N* — X
by g(a) = lim,,_ o0 h(ar, n) Whereh(a,n) = zif af,, = 1™ andh(a, n) = x,, if af, = 1™0" ™. By definition,
9(keo) = Too @ndg(k;) = z;. By 1, f o g is sequentially continuous. So, for any> 0, there existsn such
that, for alln. > m, it holds thatd(f(g(xn)), f(9(kx))) < €, .e.d(f(z,), f(ze0)) < €. Thusf is indeed
sequentially continuous. A similar argument establishes 3hatplies CPsq (X, R), for all CSMsX. From
this 4 follows by using, for anyz;);cn converging tar in X, andf: X — Y, the sequential continuity of the
functionz’ — d(f(z), f(2)): X — R, as in the proof of Proposition 4.1. It remains to show that= 3,
givenAC, o. We establistCPs.q(NT, R) using the condition of Proposition 4.3.3. Consider gnyN* — R
ande > 0. Because&\* is a retract ofNY, it follows from AC; ( that there existg: N* — {0, 1} such that
g(a) = 0impliesd(f(a), f(kso)) < €, andg(a) = 1 impliesd(f(c), f(kso)) > €/2. Thusg(ks) = 0 and, by
CPsq(NT,N), there existsn such that, for allh > m, it holds thatg(x,,) = 0. Then, for alln > m, we have
d(f(kn), f(keo)) < €, as required. O

The next result observes that Propositions 4.1, 4.2 and 4.4 analyse a sequence of successively weaker continuity
principles.

Proposition 4.5 CPy (ZY,N) = CPy(2V,N) = CPyq(NT,N).

Proof. Thefirstimplication holds becau®éis a retract oZ". The second one follows from Proposition 4.3
and the fact thalN* is a retract oR". O

We now present our application of Theorems 2.4 and 2.5 to continuity principles. In the presence of the
sequential continuity principle of Proposition 4.4, the general continuity principles of Propositions 4.1 and 4.2
are implied by many of their instances.

Theorem 4.6 Suppose thafP.q(NT, N) holds.
1. If X is an inhabited CSM without isolated points a@B, (X, R) holds then so doeGP,, (2", N).

2. If X is a locally non-compact inhabited CSM aG&,; (X, R) holds then so doeGP,(Z", N).
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16 A. Bauer and A. Simpson: Two Constructive Embedding-Extension Theorems with Applications

Proof. To prove the first part, consider any functifn N Z. By Proposition 4.4, it is sequentially
continuous. By Theorem 2.4 there exigts X — R such thatf = f oe. By assumption,f is pointwise
continuous, thereforg = f o ¢ is too. The second part is proved analogously as a consequence of Theorem 2.5.

O

One application of the above theorem is to establish the failure of interesting instances of continuity princi-
ples, by establishing the failure &P,.(2V,N) or CP,(ZY,N). For example, there is a well-known condi-
tion under whichCPpt(ZN,N) fails. We writeACs o for the the principle of choice for statements of the form

VfeNY IneN.o.
Proposition 4.7 If ACz,o holds thenCP,,(Z", N) does not.

Proof. See Section 9.6.10 of [21]. O

Corollary 4.8 If both CPsq(N*,N) andAC, o hold then, for any inhabited locally non-compact CSMthe
continuity principleCP, (X, R) is not true.

Proof. IfallfunctionsX — R were continuous, then by the second part of Theorem@§(Z", N) would
hold, but by Proposition 4.7 this would contradiss ;. O

We remark that Proposition 4.7 and Corollary 4.8 rely on the extensionality of functions.

We now step back from the preceding development within constructive mathematics, and survey a few of the
familiar and less familiar constructive scenarios in which various of the continuity principles discussed above
either hold or fail.

Example 4.9 In Brouwer’s intuitionism botiCP,,(Z", N) andAC;  are valid. So the full power of Proposi-
tion 4.1.4 is available. This situation is mimicked within the internal logic of the realizability tBid¥,) over
Kleene’s second algebrd, [13, 1].

Example 4.10 In Markov's Recursive Mathematic&P,:(Z", R) is valid (althoughAC, ; fails), and hence
Proposition 4.1.4 is again available. This situation is mimicked within the internal logic of Hyleffdstive
topos &ff, [11].

Example 4.11 In the realizability toposeBT(Pw) andRT (D), whereD is a universal Scott domain, the
continuity principleCP,: (2", N) holds, as a consequence of the existence of a continuous modulus of uniform
continuity on Cantor spac2”. (In fact a stronger continuity principle holds: all functions fr@mto N are
uniformly continuous.) Also choice holds between arbitrary “finite types” [2, 1], in particktar, andAC; o
hold. Thus, by Proposition 4.ZP,(X,Y) holds, for every locally CTB CSMX and metric spac®. On the
other hand, by Corollary 4.8 P, (X, R) fails, for any inhabited locally non-compact CSK. In particular,
CPu(Cu[—1, 1], R) fails, for, by Proposition 2.37,[—1, 1] is an inhabited locally non-compact CSM. Thus we
have generalized the main result of [7], which established the failufeP@{C,[—1, 1], R) in RT(D). (Actu-
ally, [7], work with the setC[—1, 1] of pointwise continuous functions frofr-1,1]. In RT(D), it holds that
C[-1,1] = C4[-1, 1], usingAC; o and the uniform continuity of functions frog' to N.)

Example 4.12 In theextensional effective topfik8, 22], by construction, choice holds for all “finite types”; in
particular AC; o andAC, o hold. Peter Lietz [14, Chapter I1] shows th&.(N*, N) holds, butthaCPpt(2N, N)
fails. By Proposition 4.4, it follows thafPs.q (X, Y") holds for every CSMX and metric spac®’; however, by
Theorem 4.6.1CP,:(X,R) fails for any inhabited CSMX without isolated points. In particula€P, (R, R)
fails. This shows that constructivefP.q (R, R) does not implyCP, (R, R).

5 An Application to Banach-Mazur computability

In this section, we switch to ordinary classical mathemati@ur aim is to prove a general (classical) result,
Theorem 5.2, that differentiates between computability in the sense of Markov, which is the most widely recog-
nised notion of computability, and computability in the sense of Banach and Mazur. To achieve this, we apply

1 Theorem 5.2, which states the existence of functions that are not Markov computable, is obviously not provable using only constructive
principles consistent with Church’s ThesST [20, §4.3].
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the results of Section 3, making crucial use of their constructivity in order to use them as statements valid in the
internal logic of Hyland'sffective toposEff, [11].

5.1 Numbered sets, Markov computability and computable metric spaces

Following [9, 10], we introduce the notion of Markov and Banach-Mazur computability in the setting of com-
putable metric spaces presented as humbered sets.

A numbered setlso known asnodest setis a structureX = (| X |, vx) whereX is a set, andx is a partial
surjection fromN onto X. This is a widely used generalization of¥6x’s notion of numbered set. Indeed, an
ErSov numbered sét just a numbered séf for which v is a total function.

We shall be interested in different notions of morphism between numbered sgtsA functionf : X — Y
is simply a (set-theoretic) functiofi : | X| — |Y]. A function f : X — Y is said to beMarkov computable
(henceforth simplgomputablif there exists a partial-recursive function N — N such thatf o vy = vy or;
in this situation we say thatrealizesf.

The category of numbered sets and computable functions is cartesian closed. Finite products are easily defined
using a pairing functioi—, —) on natural numbers. The function spacé has the set of computable functions
from X to Y as its underlying set, and, x is the unique partial surjection for Whi@@}( (f) is the set of indices
(in some standard enumeration) of all partial recursive functions realjzingurthermore, the numbered set
N = (N, idy) is a natural numbers object in the category. We w&ifer the set{0, 1} numbered by the (partial)
identity. And we writeZ for Z numbered by a computable bijection fré¥rto Z.

Numbered sets come with an associated intuitionistic logic for reasoning about them, derived from their em-
bedding within Hyland'sffective topostff, [11]. Indeed, the category of numbered sets and computable func-
tions between embeds fully as the categorgfbéctive objectsor modest setdn &ff, see [11, Section 7]. The
induced logic allows a theory of computable metric spaces (and other aspects of constructive mathematics) to
be developed in an entirely routine way, by merely interpreting the standard constructive definitions within the
internal logic of the topos. Although, in effect, this is the route we now follow, we shall present all definitions
in concrete form, in order to make them accessible to readers who are not familiar with the effective topos. At
the same time, we also state the equivalent logical definitions, in order to avoid making the paper unnecessarily
impenetrable to those whare familiar with the topos-theoretic approach.

The computable real numbers are defined as a number&d sea standard way, see e.g. [9].cdmputable
metric spaces given by a numbered st together with a computable distance functibnX x X — R, satis-
fying the usual axioms. Acomputable) Cauchy sequerinea computable metric space is given by a computable
sequence, i.e. a computable functiony : N — X for which there exists a computabfeodulusfunction
p = N — N satisfyingd(x;, z;) < 27" for all n andi,j > p(n). Thelimit, if it exists, of a Cauchy sequence
x(—y with modulusy, is the unique element ¢ X satisfyingd(x;,z) < 27" for all n andi > u(n). The
numbered se€Cauchy(X) of Cauchy sequences if is defined by settin@*l(m(_)) to be the set of all pairs
(e, e’) wheree is an index for the sequeneg_) ande’ is an index for a modulug. A computable metric space
is said to becompletdf every Cauchy sequence has a limit, and the limit-finding func@lanchy (X) — X is
computable. Itis said to beeparablef there exists a computable sequenge) in X and there exists a partial
recursive functiorr : N x N — N such that, for alk € dom(vx) andn € N, it holds thaic(e, n) is defined and
d(vx(e),sc(emy) < 27". A computable CSN a complete and separable computable metric space.

The above definitions arise naturally in the context of the effective topos. The &yjéxiust the object of
Cauchy (equivalently Dedekind) realsdff. A numbered set with computable distance function is a computable
metric space if, and only if, the corresponding effective object and distance funcifigh fiorm a metric space
in the internal logic offff. Furthermore, the numbered set is a computable CSM if, and only if, the effective
object is internally a CSM. These facts are simply consequences of the explicit definitions for computable metric
spaces above being direct unwindings of the corresponding internal definitions. Incidentally, it even holds that
the separable metric spacesdff are (up to isomorphism) exactly the computable separable metric spaces as
defined above. This is so because every separable metric space is a double-negation separated sulddfiptient of
which is in turn a subquotient di, and the effective objects are (up to isomorphism) just the double-negation
separated subquotients éf

A computable metric spac¥ is said to bewithout isolated pointé#f there exists a partial recursive function
p : N x N — N satisfying, for alle € dom(vy) andn € N, it holds thatp(e,n) € dom(vx) and0 <
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d(vx(e),vx(p(e,n))) < 27". A computable sequence_, in a computable metric spack is said to be
without accumulation poinif there exist partial recursive functions: N — N andqg : N — N satisfying,
for all e € dom(vy), it holds thatp(e) andq(e) are defined and(vx (e), z,,) > 279 for all m > p(e).
A witnessfor a computable sequence without accumulation point is given by a {eples, es) wheree; is an
index for the recursive function realizing_,, ande,, e3 are indices for the partial recursive functions realizing
andq respectively. A computable metric spa¥eis said to bdocally non-compacif there is a partial recursive
functionr : N x N — N such that, for alk € dom(vx) andn it holds thatr(e, n) is defined and equal to
(e1,e2, e3) where this triple witnesses that a (thereby determined) sequgngés without accumulation point,
and where, furthermore, for alle N it holds thatd(vx (e), z;) < 27".

Once again, the above definitions are simple unwindings of the corresponding internal definit&ffis in
Thus a computable metric space is without isolated points (respectively locally non-compact) if and only if the
corresponding effective object is internally without isolated points (respectively locally non-compact) according
to the definitions in Section 2. Trivially the computable CSM of computable real nuntheiis,without isolated
points. Moreover, because Church’'s TheSig holds in&ff, see [11], it follows from the remark in Section 2
thatR. is also locally non-compact.

Question 5.1 Is every computable CSM without isolated points locally non-compact?

5.2 Banach-Mazur computability

The main result of this section is concerned with a second notion of computable function between numbered
sets, due to Banach and Mazur. A functipn X — Y/, is said to beBanach-Mazur computahl&enceforth
BM-computableif, for every computable sequengee N — X, it holds that the sequengéo s : N — Y is
computable.

It is obvious that every computable function is BM-computable. Conversel,ig an EBov numbered set
then it is easily seen that every BM-computable function is computable (and this result generalizeskto any
isomorphic to an Eov numbered set by way of computable isomorphisms). However, many of the interesting
objects of computable analysis are not isomorphic oEmumbered sets. Although, for such spaces, there is
no reason for all BM-computable functions to be computable, it is not easy to find counterexamples. A first (and
sophisticated) such example was produced by Friedberg, who showed that there exists a BM-computable function
from NN to N that is not computable [8]. A general discussion of the relationship between the two notions
is contained in Hertling’s recent paper [10], where, as the main result, a BM-computable but non-computable
function fromR, to R. is constructed. The main theorem of this section generalizes Hertling’s result to a wide
class of computable metric spaces.

Theorem 5.2 If X is an inhabited computable CSM without isolated points then there exists a BM-computable
function fromX to R. that is not computable.

The proof of Theorem 5.2 is given in Section 5.3 below. An interesting feature of the proof is that we obtain
our result as a direct consequence of Friedberg’s [8], whereas Hertling’s non-computable but BM-computable
function fromR. to R. was constructed from first principles [10].

In preparation for the proof, we present three propositions asserting positive properties of BM-computable
functions between numbered sets and computable metric spaces. The first states that the"pbjdith is
an exponential in the category of numbered sets and computable maps, is also an exponential in the category of
BM-computable maps (thus the objétis exponentiable in the category of BM-computable maps).

Proposition 5.3 Suppose thak, Y are numbered sets.

1. If f: N x X — Y is BM-computable, then its transpoge = — An. f(n,z) is a BM-computable function
fromX toY'N.

2. Conversely, ify : X — YN is BM-computable, then so is the functign (n, z) — g(x)(n) : N x X — Y.

Proof. For statement 1, suppose tifat N x X — Y is BM-computable. We must first verify that, for
anyz € |X]|, it holds thatf(z) € |YN|, i.e,, thatn — f(n,z) : N — Y is computable. But : n
(n,xz) : N = N x X is a computable sequence, so by BM-computabijfitys is computable, i.en — f(n,z)
is indeed computable. To show thAtis BM-computable, consider any computabie ) : N — X. Then
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(n,m) — (n,z,) : Nx N — N x X is computable. By BM-computability of, it holds that(n, m) —
f(n,z,) : Nx N — Y is computable. Thus, by cartesian closures— An. f(n, z,,) : N — YN is computable,
i.e.m — f(z,,)is computable, as required.

We omit the similar proof of statement 2. (Anyway, the result is not used below.) O

Mazur [15] proved that every BM-computable function fr&nto R. enjoys the property that, for any com-
putable Cauchy sequen¢e,, ), with limit z., it holds that(f(z,))., considered as a sequence of ordinary
(though, of course, computable) real numbers, is a Cauchy seqirettee ordinary sensevith limit f(z).

The next proposition is an improvement on this result due to Hertling, [9]. The improvement both generalizes
Mazur’s result to the setting of computable metric spaces, and also strengthens it to show that the derived se-
quence( f(x,)). is even a computable Cauchy sequence in the computable sense.

Proposition 5.4 (Hertling) If X,Y are computable metric spaces, with complete, andf : X — Y is
BM-computable then, for any computable Cauchy sequéngg, with limit z, it holds that(f(z,)), is a
computable Cauchy sequence with liffjt: . ).

Proof. This is proved as Theorem 17 of [9], where, in fact, the proof is given for a more general notion of
“BM-computable metric space”. O

The next proposition concerns the numbered\setrepresenting the one-point compactificatiorNoih £ff,
whose underlying set i, | n € N}U{x }, where, fori € NU{oo}, the sequence; € 2" satisfies:;(n) = 1
if and only if n < 4. The setv~1(k;) is inherited fron2N.

Proposition 5.5 If X is a computable complete metric space then every BM-computable functioN fram
X is computable.

Proof. Supposg : Nt — X is BM-computable. The sequen¢e,), in N* is computable, and also a
Cauchy sequence with limit,,. As g is BM-computable, the sequen¢g(x,,)),, is computable. By Proposi-
tion 5.4, it is Cauchy with limiy (ko ).

We show below that there is a partial-recursive function N x N — N satisfying: (i) for alla. € N*
and(n,m) with m € VN_+1 (), it holds thatd(vx (p(n,m)),g(«)) < 27™; and (ii)) m,m’ € u,@l(a) implies
vx(p(n,m)) = vx(p(n,m’)). Given such @, we have thap realizes a computable functidn: N x N* — X,
whose transposk: N* — X maps everyy in N* to a Cauchy sequence i with limit g(«). Because limits
of Cauchy sequences are found computably, it follows ghiatcomputable.

It remains to defing. This is given by the following algorithm. Givetn, m), first computek = p(n),
wherep is the computable modulus function for the sequefade;)); (that is, for allj, j* > u(n), it holds that
d(g(k;), g(k;)) < 27™). Next, examine the valugsn}(0),..., {m}(k). If any of these values is undefined, or
> 2, or if a0 occurs before d thenm cannot be in any set! (), andp(n,m) is left undefined. Otherwise,
let i be the smallest number with < i < k such that{m}(i) = 0, if such ani exists, or let; be k, if
{m}(0),...,{m}(k) are alll. Finally, definep(n, m) to be the element ofy*(g(x;)), which can be computed
using the realizer of the computable sequefice.,)) ...

It is immediate from the definition thatsatisfies property (ii). We must show that it also satisfies (i). Suppose
then thate € N* andm € V,\Ti(a). Then, for anyn, definek = p(n) as above. There are three cases. First,
if o = r; for somej < k, then thei defined above ig and sox; = a. It follows thatp(n, m) € vy (g(a)),
sod(vx(p(n,m)),g(a)) = 0 < 27™. Second, ife = «;, for some;j > k, then thei defined above i&. So
d(vx (p(n,m)), g(a)) = d(kk, k;) < 277", by the modulus property df = p(n). Third, if @ = ko theni is
againk, sod(vx (p(n,m)), g(a)) = d(kk, keo) < 27", by the definition of limit and the modulus property of
k= p(n). O

5.3 Proof of Theorem 5.2

Our proof of Theorem 5.2 applies the results of Section 3 within the context of the effective&gpdne,order to

fully understand the proof as written, it is necessary for the reader to have some knowledge of the workings of the
internal logic offf. However, we also provide concrete descriptions of the numbered sets involved in the proof,
so that a reader with no knowledge &f should nevertheless be able to fill in the various recursion-theoretic
details that are otherwise taken care of automatically by the internal logjg .of
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The main additional tool we need in the proof is the following adaptation of Proposition 3.2 to a statement
about BM-computable functions between numbered setsi 1 8t— R. be the inclusion of the numbered Zet
in the computable reals.

Lemma 5.6 For every BM-computabl¢ : ZN — Z there exists a BM-computable: R.N — R. satisfying
hoiN=4io0f:ZN - R..

Before giving the proof, we show that Theorem 5.2 is indeed a consequence of the lemma.

Suppose thak is an inhabited computable CSM without isolated points. TKus an effective object offf,
which is a CSM without isolated points in the internal logic&f. It is now an immediate consequence of
Proposition 3.22 that there exist computable function2¥ — X andg : X — RN such thatyo e = jN :
2N — RN, wherej : 2 — R. is the inclusion of the numbered Sét, 1} in the computable reals.

By Friedberg’s theorem [8], there exists a BM-computable function fd¥nto N that is not computable.
Moreover, the numbered se&¥ andNN are computably isomorphic (indeed pointwise homeomorphic) [3, IV.13].
Therefore there exists a BM-computalfle : 2N — N that is not computable. By Lemma 5.6, using thas a
computable retract df, there exists a BM-computable- : RN — R. such thath ojN =iofr:2N = R..

Thusio fr = hpogoe. Becausg ande are computable ands the inclusion o in R, it follows thatif hp o g
were computable thefi- would be too, which is not the case. Thuso g : X — R is indeed BM-computable
but not computable. This completes the proof of Theorem 5.2, given Lemma 5.6.

It remains to prove Lemma 5.6. This cannot be derived directly by interpreting Proposition&gf2lecause
BM-computable functions only live insidgf when they happen to be computable. Instead, we congtusing
the extension property for adequate subdomain pairs, as defined at the end of Section 3, using Lemmas 3.20
and 3.21 to show that the definition has the required properties. In order to effect the required construction, we
need to make use of the lemma below.

Lemma 5.7 Every BM-computable function froh x N* to N is computable.

Proof. Letf : N x Nt — N be BM-computable. By Proposition 5.3.1, the transppseN™ — NN is
BM-computable, and hence, by Proposition 5.5, computable. Thus, by the cartesian closure of the category of
numbered sets and computable mapis indeed computable. O

We now prove Lemma 5.6. Henceforth, jet ZN — Z be any BM-computable function. We must define the
h: RN — R. required by Lemma 5.6. First, we defihes a function.

Given anyy € RN, let 3 € ZN be adequate foy. Such a computablé exists, because the existencei
true in&ff. Define B; to be the subobject ™ defined in&ff by:

Bs={acZV|VneN.(a, # 0, = Ym>n.a, =0)}. (7)

(As a numbered sef3; is given concretely as the evident subseZ8fwith numbering defined bygsl(a) =
Vo (@).) We writew : Bz — ZN for the inclusion.
We now define maps; : Nt — Bg andsg : Bg — N* as follows:

ro(a) = An:N. B(n) ifVm § n.a(m) =1,
0 otherwise,

s[j(a)—)\n:N.{l IfVm?n.a(m):ﬁ(m),
0 otherwise.

Itis easily seen thats o s is the identity onBs. ThusBj is a computable retract & and hence ol x N+,
So, by Lemma 5.7, every BM-computable function fréip to Z = N is computable.

Define G, to be the singleton subobject BEN containingy. By (7), it holds thai7,, B together form an
adequate subdomain pair in the sense of Section 3.2. Also, the furfction: Bz — Z is BM-computable
hence, as observed above, computable. Thus is a morphism ir€ff. As CP,(N*,N) holds in&ff, see [11],
CPyq(N*,N) holds as well by Proposition 4.3. Siné®; as a subspace @\ is a CSM by (7), it follows from
Proposition 4.4 thaf o ¢ is sequentially continuous in the internal logic&ff. Therefore, the construction of
Section 3.2 produces . B, fou) : Gy — Re. Defineh(y) = ha. By, o) (7)-
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We have now defined a functidn: R.N — R.. Itisimmediate from Lemma 3.21 thabiN = iof : ZN — R..
To complete the proof of Lemma 5.6, it remains to be shown/thatBM-computable.

Let (vu)n : N — RN be a computable sequence. We must show that the sequeficg); : N — Rcis
computable. Lets,),, : N — ZN be a computable sequence such that e¢acis adequate fof,,. The existence
of (8.)n is easily shown using countable choice in the internal logigfpf Define 34, to be the subobject of
ZN defined ingff by:

By, ={a€ZVN|3neN.ae Bg,}.

(Concretely,B3,,), is the evident subset @ with numbering defined by

VgL (a)={(n,m)|a€|By|Ame vy (@),

fora € Bg,),.) Lete : Bg,, — ZN be the inclusion.
Definep : N x N* — Bg, ) by

p(n, O‘) =TB, (O‘) ’

making use of the retractiory, : Nt — Bg, defined above. Reasoning internallydff, consider anyx €
Bg,),- Then there exists such thata € Bg,. Soa = rg,(sg,(a)) = p(n,ss,(a)). Thus there exists
(n,a’) € N x NT such thate = p(n, o’). This shows that the functiomis epi in&ff. It follows that, for any
numbered se¥ and functionu : |B(g, ), | — |Z], if uo pis computable then so is We have tha : ZN — Zis
BM-computable. Thugocop: N x Nt — Z is BM-computable, hence, by Lemma 5.7, computable. Therefore
foe: B, — Zis computable.
LetG,,), be the subobject RN defined by:
Gy =17 € RN [3neN.y=7,}.

(As a numbered set, this has the obvious underlying set, and the numbering can be take@(]go)bey) =

{n | v = }.) By these definitions, it follows that ., ), , Bs,), form an adequate subdomain pair. As
foe: Bg,), — Zis amorphism ingff and thus sequentially continuous, the construction of Section 3.2
produces a computablec . | B ). .foe) : G(r,), — Rc. Moreover, by Lemma 3.21 and the definition/gf
foranyy € G(,,),, itholds thathc | B, ,. .foe)(7) = h(7). Thus the total recursive function showing that
WGy BisnynFoE) is computable witnesses the computability of the sequéhEg)); : N — R.. This shows
thath is indeed BM-computable, and so concludes the proof of Lemma 5.6.

Remark 5.8 The above combination of internal and external reasoning is essential to our proof because the
BM-computable functions do not live insidig . An interesting alternative would be to instead apply Theorem 2.4
directly in the context of Mulry’s “recursive topos” [16], in which the morphisms (between certain objects) are
exactly the BM-computable functions. Such an approach may be possible, but it is non-trivial because the internal
logic of Mulry’s topos is awkward to use; for example, it is necessary to work with a non-standard object of natural
numbers, for which only restricted forms of induction are available, see [19]. Indeed, we do not know whether
the proof of Theorem 2.4 goes through in this setting.
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