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We prove two embedding and extension theorems in the context of the constructive theory of metric spaces. The
first states that Cantor space embeds in any inhabited complete separable metric space (CSM) without isolated
points, X, in such a way that every sequentially continuous function from Cantor space toZ extends to a
sequentially continuous function fromX toR. The second asserts an analogous property for Baire space relative
to any inhabited locally non-compact CSM. Both results rely on having careful constructive formulations of the
concepts involved.

As a first application, we derive new relationships between “continuity principles” asserting that all functions
between specified metric spaces are pointwise continuous. In particular, we give conditions that imply the
failure of the continuity principle “all functions fromX to R are continuous”, whenX is an inhabited CSM
without isolated points, and whenX is an inhabited locally non-compact CSM. One situation in which the latter
case applies is in models based on “domain realizability”, in which the failure of the continuity principle for
any inhabited locally non-compact CSM,X, generalizes a result previously obtained by Escardó and Streicher
in the special caseX = C[0, 1].

As a second application, we show that, when the notion of inhabited complete separable metric space without
isolated points is interpreted in a recursion-theoretic setting, then, for any such spaceX, there exists a Banach-
Mazur computable function fromX to the computable real numbers that is not Markov computable. This
generalizes a result obtained by Hertling in the special case thatX is the space of computable real numbers.
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1 Introduction

In computable and constructive analysis, it sometimes happens that pathological properties of Baire space are
reflected by similar pathologies holding for “continuous” spaces of the sort that arise in analysis. Two examples
of such phenomena have appeared in the recent literature.

The first occurs in the context of so-calleddomain realizability, i.e. in realizability toposes constructed over
domain-theoretic models of the untypedλ-calculus. In many such models, the internalcontinuity principle“all
functions from Baire space toN are continuous” is known to be false, even though externally all morphisms
from Baire space toN are continuous, because it conflicts with choice principles valid in the models. Recently,
Escard́o and Streicher showed that similarly the internal statement “all functions fromC[0, 1] to R are continuous”
is false [7]. Once again, externally, all morphisms fromC[0, 1] to R are continuous.

The second example arises in the context of differentiating between computability in the sense of Markov and
computability in the sense of Banach and Mazur. It is an old result of Friedberg [8] that there exists a Banach-
Mazur-computable function, mapping computable sequences of natural numbers (the computable version of Baire
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space) toN, that is not Markov computable (whereas every Markov computable function is trivially Banach-
Mazur computable). Recently, Hertling answered a longstanding open question by proving that, similarly, there
exists a Banach-Mazur-computable function on the computable real numbers that is not Markov computable [10].

In neither example above [7, 10] is the pathological behaviour in the analytic world derived from the analogous
result for Baire space. Instead, direct proofs are given, borrowing ideas from the known proofs for Baire space,
but adapting them, with added complexity, to apply to the spaces under consideration. In this paper, we provide
instead a method of deriving such results directly as consequences of the corresponding results for Baire space,
and we show that the results of [7, 10] both follow from applications of our method.

Working within the context of Bishop’s Constructive Mathematics [5], we identify two properties of complete
separable metric spaces (CSMs), namely beingwithout isolated pointsandlocal non-compactness. Despite the
negative terminology, as befits the constructive setting, these concepts are formulated as positive properties of
spaces. Our first main result, Theorem 2.4, states that Cantor space, which is itself without isolated points,
embeds in any inhabited CSM without isolated points,X, in such a way that every sequentially continuous
function from Cantor space toZ extends to a function fromX to R. A second result, Theorem 2.5, gives an
analogous property for Baire space relative to any inhabited locally non-compact CSM. These results are proved
in Section 3.

In Section 4, we apply Theorem 2.5 to derive Escardó and Streicher’s result that the continuity principle “all
functions fromC[0, 1] to R are continuous” is false in domain realizability [7]. This is a simple consequence of
the known result for Baire space, together with the fact thatC[0, 1] is easily shown to be locally non-compact.
Furthermore, our approach establishes a more general result that, for any inhabited locally non-compactX,
the statement “all functions fromX to R are continuous” is false in any constructive setting in which certain
choice and sequential-continuity principles are valid. Realizability toposes built from domain-theoretic models
of λ-calculus validate these principles. More generally, we establish various relationships between different
continuity principles, including the failure of continuity principles involving inhabited CSMs without isolated
points, in certain situations in which Theorem 2.4 applies.

In Section 5, we derive Hertling’s result, [10], that there exists a Banach-Mazur computable function on the
computable real numbers that is not Markov computable, as a consequence of Friedberg’s result [8]. More
generally, we show that, for any inhabited CSMX without isolated points (understood recursion-theoretically),
there exists a Banach-Mazur computable function fromX to the computable reals that is not Markov computable.

We believe that Theorems 2.4 and 2.5 may have other applications in computable and constructive analysis,
as they appear to provide general tools for extending properties of the Cantor and Baire spaces to other spaces.

2 Two constructive embedding-extension theorems

Following Bishop [4, 5], we do mathematics using intuitionistic logic, and we assume the principle ofcountable
choiceAC0, namely choice for statements of the form∀n∈N .∃x∈X .ϕ. We shall not need dependent choice.
In fact, we mostly require only number-number choice,AC0,0, i.e. countable choice in the special caseX = N.
However, in Lemmas 3.7 and 3.16, we make use of the stronger principleAC0,1, i.e. countable choice in the case
X = NN. We also assume extensionality for functions: iff(x) = g(x) for all x thenf = g, and ifx = y then
f(x) = f(y). (This is needed in Proposition 4.7 and in Corollary 4.8.) For the development that follows, it does
not matter whether real numbersR are taken to be Cauchy sequences of rationals, with equality as an equivalence
relation over them, or whether real numbers are taken to be equivalence classes of Cauchy sequences. The former
is Bishop’s approach to real numbers, the latter is the natural approach when reasoning in the internal logic of an
elementary topos, where, because we assumeAC0,0, the objectR of equivalence classes of Cauchy sequences is
isomorphic to the favoured object of Dedekind reals.

We assume familiarity with the constructive notions of metric space, Cauchy sequence (n.b. constructively a
Cauchy sequence is required to have an associated modulus function) and convergence. Because we consider
several notions of continuity, we spell out each one of them. A functionf : X → Y between metric spaces is:

– uniformly continuouswhen for everyε > 0 there existsδ > 0 such that, for allx, x′ ∈ X, if d(x, x′) < δ
thend(f(x), f(x′)) < ε.
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– pointwise continuous atx ∈ X when for everyε > 0 there existsδ > 0 such that, for allx′ ∈ X,
d(x, x′) < δ implies d(f(x), f(x′)) < ε. A function which is pointwise continuous at every point is
pointwise continuous.

– sequentially continuouswhen it preserves limits of convergent sequences: if(ai)i∈N converges toa in X
then(f(ai))i∈N converges tof(a) in Y .

Obviously, uniform continuity implies pointwise continuity, which in turn implies sequential continuity. Con-
structively, the converses need not hold, even for closed totally bounded spaces. Indeed, in Recursive Mathe-
matics there exists a pointwise continuous function[0, 1] → R which is unbounded and hence not uniformly
continuous [20,§6.4.4]. Also, in the setting of Example 4.12 below, all functions[0, 1] → R are sequentially
continuous, but not all such functions are pointwise continuous.

For a metric space(X, d), we writeB(x, r) for theopen ballcentered atx ∈ X with radiusr > 0. We say that
(X, d) is separableif it contains a countable dense subspace; and that it iscompleteif every Cauchy sequence
converges. As is customary we abbreviatecomplete separable metric spaceasCSM.

For reference we list several standard examples of complete separable metric spaces. The set of real numbersR
equipped with the usual metricd(x, y) = |x− y| is a CSM, and so is the set of real sequencesRN with the metric
defined by

d(x, y) =
∞∑

k=0

min(1, |xk − yk|) · 2−(k+1) .

Baire spaceis defined as the subspaceZN of RN consisting of all integer sequences, andCantor space2N is the
subspace2N ⊆ ZN of binary sequences:

2N = {α ∈ ZN | ∀ i∈N . (αi = 0 ∨ αi = 1)} .

Theone-point compactification ofN is the subspaceN+ of 2N defined by

N+ = {α ∈ 2N | ∀ i∈N . (αi = 0 =⇒ ∀ j > i . αj = 0)} .

N is a subspace ofN+ where a numbern is represented by the sequenceκn whose firstn terms are1, and all
others are0. The spaceN+ also contains thepoint at infinityκ∞ which is the constant1 sequence.

An ε-net in a metric spaceX is a finite subsetN ⊆ X such that, for everyx ∈ X, there existsy ∈ N for
whichd(x, y) < ε. A CSM is said to becomplete totally bounded (CTB)if it has anε-net for everyε > 0. Cantor
space, closed intervals[a, b] = {x ∈ R | a ≤ x ≤ b} and the spaceN+ are easily seen to be CTB. The notion
of CTB space provides one possible constructive formulation of compactness, though, in general, it cannot be
shown constructively that CTB spaces have the Heine-Borel property. Indeed, it is consistent for the Heine-Borel
property to fail for Cantor space and[0, 1].

We next define the concepts needed to formulate our main results. A pointx ∈ X is acluster pointif every
open ball centered atx contains a point distinct fromx. In the presence ofAC0,0 this is equivalent tox being the
limit of an injective sequence(ai)i∈N, which is a sequence for whichd(an, am) > 0 whenevern 6= m.

Definition 2.1 A metric space iswithout isolated pointsif every point is a cluster point.

We say that a sequence(ai)i∈N in a metric space(X, d) is without accumulation pointwhen, for everyx ∈ X,
there existε > 0 andm ∈ N such thatd(x, ai) > ε for all i ≥ m.

Definition 2.2 A metric space(X, d) is locally non-compact atx ∈ X if for everyε > 0 the open ballB(x, ε)
contains a sequence without accumulation point inX. It is locally non-compactif it is locally non-compact at
everyx.

Examples of spaces without isolated points are metric vector spaces, locally non-compact spaces, and dense
subspaces of spaces without isolated points.

Any infinite-dimensional separable Hilbert space is a locally non-compact CSM, for example the space`2 of
square-summable sequences; or the spaceCu[0, 1] of uniformly continuous maps[0, 1] → R, equipped with the
supremum norm. The latter example generalizes as follows. IfX is a CTB space andf : X → R is uniformly
continuous, then its supremum norm‖f‖∞ = sup {f(x) | x ∈ X} is well defined, and soCu(X) is a normed
vector space. Then we have the following proposition.
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Proposition 2.3 If (X, d) is a CTB space which contains a cluster point thenCu(X) equipped with the supre-
mum norm is locally non-compact.

P r o o f. AsCu(X) is a normed vector space, it suffices to find inCu(X) a single bounded injective sequence
(fi)i∈N without accumulation point. Letb ∈ X be a cluster point and(ai)i∈N an injective sequence which
converges tob. Without loss of generality we may assume thatd(b, an) > 0 for all n ∈ N. For eachn ∈ N let
fn : X → R be defined byfn(x) = max(0, 1−2d(x, an)/d(b, an)). Clearly,‖fn‖∞ = 1 and‖fn− fm‖∞ > 0
if n 6= m. It remains to be shown that(fi)i∈N is without accumulation point. Consider any uniformly continuous
mapg : X → R. If |g(b)| > 1/3 then‖g−fn‖∞ ≥ |g(b)−fn(b)| = |g(b)| > 1/3 for all n ∈ N. If |g(b)| < 2/3
then there existsε > 0 such that|g(x)| < 2/3 for all x ∈ B(b, ε). Because(ai)i∈N converges tob there is
m ∈ N such thatan ∈ B(b, ε) for all n ≥ m. Therefore forn ≥ m we get‖g − fn‖∞ ≥ |g(an) − fn(an)| =
|g(an)− 1| > 1/3.

Two other important examples of locally non-compact CSMs are the spaceRN of infinite sequences of real
numbers and Baire spaceZN.

In the presence of the formalized Church’s Thesis,CT0 [20, §4.3], the real lineR and the closed interval
[0, 1] give surprising examples of locally non-compact spaces. This is becauseCT0 implies the existence of
strong Specker sequences[20, §6.4.7], which are nothing but bounded monotone sequences of reals without
accumulation point. This shows that, constructively, it is consistent to have a CSM that is simultaneously CTB
and locally non-compact.

We now state the two main embedding-extension results of this paper. The proofs are deferred to Section 3.

Theorem 2.4 If X is an inhabited CSM without isolated points then there existse : 2N → X such that:

1. The mape is a uniformly continuous embedding with closed image.

2. For every sequentially continuousf : 2N → Z, there exists a sequentially continuousf : X → R such that
f(x) = f(e(x)) for all x ∈ X.

Theorem 2.5 If X is an inhabited and locally non-compact CSM then there existse : ZN → X such that:

1. The mape is a uniformly continuous embedding with closed image.

2. For every sequentially continuousf : ZN → Z, there exists a sequentially continuousf : X → R such that
f(x) = f(e(x)) for all x ∈ X.

In classical mathematics, the second statement of each theorem follows from the first, as a consequence of the
Tietze extension theorem [6, Theorem 7.5.1]. However, existing constructive versions of the Tietze Theorem, see
e.g. [4, 5], are too restrictive to imply the results above.

Another difference from the classical setting is that, constructively, the different notions of continuity need not
agree. Thus one can imagine analogues of the above results in which sequential continuity is replaced with other
(stronger) forms of continuity. In fact, we have verified that our proofs of Theorems 2.4 and 2.5 adapt to show
that, when thef above are pointwise continuous then so are the associatedf . Nevertheless, in the present paper,
we restrict attention to the sequentially continuous versions stated above. Not only are the sequential versions the
ones needed for our applications later on, but also their proofs turn out to be harder than the proofs when stronger
notions of continuity are used.

3 The Proof of Theorems 2.4 and 2.5

The proofs of Theorems 2.4 and 2.5 are very similar. We therefore treat the (more interesting) case of Theorem 2.5
in detail, and afterwards outline how the proof may be adapted to deal with the (much easier) case of Theorem 2.4.
We break Theorem 2.5 into two separate propositions.

Proposition 3.1 For any inhabited locally non-compact CSMX, there exist a uniformly continuous embed-
ding e : ZN → X with closed image and a pointwise continuous mapg : X → RN such that the left-hand
diagram below commutes.
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X
g // RN

ZN

e

``AAAAAAAAAAA ?�

OO RN h // R

ZN
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f
// Z
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Proposition 3.2 For every sequentially continuousf : ZN → Z there exists a sequentially continuous function
h : RN → R such that the right-hand diagram above commutes.

Theorem 2.5 follows immediately from Propositions 3.1 and 3.2, with the mapf = h◦g as the required extension
of f alonge.

3.1 Proof of Proposition 3.1

Throughout this section we assume thatX is an inhabited locally non-compact CSM with a countable dense
subsetS ⊆ X. For the construction ofg we will need the “cone” and “hill” functions, which we define now. For
x ∈ X and0 < q < r let cone(x, r) : X → R andhill(x, r, q) : X → R be defined as

cone(x, r)(y) = max(0, 1− r−1 · d(x, y))) ,

hill(x, q, r)(y) = max(0, 1− (r − q)−1 ·max(0, d(x, y)− q)) .

Lemma 3.3 If (ai)i∈N and (bi)i∈N satisfylimi→∞ d(ai, bi) = 0 and if (ai)i∈N is a sequence without accu-
mulation point then so is(bi)i∈N.

P r o o f. Consider an arbitraryx ∈ X. There existsε > 0 and m ∈ N such thatd(x, ai) > ε for all
i ≥ m. There existsn ∈ N such thatd(ai, bi) < ε/2 for all i ≥ n. Then for alli ≥ max(m,n) we have
d(x, bi) ≥ d(x, ai)− d(ai, bi) > ε/2.

Lemma 3.4 Every open ball inX contains an injective sequence inS without accumulation point inX.

P r o o f. LetB(x, r) be an open ball inX. By assumptionX is locally non-compact, so there exists a sequence
(ai)i∈N in B(x, r/2) without accumulation point. ByAC0,0 there exists a sequence(bi)i∈N in S such that
d(ai, bi) < r/2i+1 for everyi ∈ N. By Lemma 3.3 the sequence(bi)i∈N is without accumulation point. It is
contained inB(x, r) becaused(x, bi) ≤ d(x, ai) + d(ai, bi) < r/2 + r/2i+1 ≤ r.

By AC0,0 there is a choice functionf : N → N which chooses for eachn ∈ N somef(n) > n such that there
existsε > 0 for which d(bn, bm) > ε for all m ≥ f(n). Now the sequence(ci)i∈N defined bycn = bfn(0) is
injective. Because it is a subsequence of(bi)i∈N it has no accumulation points and is contained in bothS and
B(x, r), as required.

We say that a sequence(εi)i∈N of positive realsconvergently spacesa sequence(ai)i∈N in X if limi→∞ εi = 0
and i 6= j implies d(ai, aj) > 2(εi + εj). Clearly, if (εi)i∈N convergently spaces(ai)i∈N then(ai)i∈N is an
injective sequence. For sequences without accumulation point, there is a converse.

Lemma 3.5 If (ai)i∈N is an injective sequence without accumulation point, then for anyε > 0, there exists a
sequence(εi)i∈N of positive rationals< ε that convergently spaces(ai)i∈N.

P r o o f. We show that, for alli, there exists a positive rationalεi < min(2−i, ε) such that, for allj 6= i, it
holds thatεi < d(ai, aj)/4. The lemma then follows immediately byAC0,0.

As (ai)i∈N is without accumulation point, for eachi there existsmi andζi > 0 such that, for allj ≥ mi, it
holds thatd(ai, aj) > ζi. Because(ai)i∈N is injective, the valueξi = min{d(ai, aj) | j < mi∧j 6= i} is positive.
Thus there exists a positive rationalεi < min(2−i, ε, ζi/4, ξi/4), and this has the required properties.

Lemma 3.6 If (ai)i∈N is without accumulation point and(εi)i∈N convergently spaces(ai)i∈N then, for all
x ∈ X, (i) there exists a uniquek such thatd(x, ak) < 2εk, or (ii) for all i, it holds thatd(x, ai) > εi.
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P r o o f. As(ai)i∈N is without accumulation point, there existm andζ > 0 such that, for allj ≥ m it holds
thatd(x, aj) > ζ. As limi→∞ εi = 0, there existsm′ such that, for allj ≥ m′, it holds thatεj < ζ. Thus, for all
j ≥ max(m,m′), we haved(x, aj) > εj . For eachi < max(m,m′), d(x, ai) < 2εi or d(x, ai) > εi. As there
are only finitely manyi < max(m,m′)} (i) there exitsk < max(m,m′) such thatd(x, ak) < 2εk; or (ii) for all
i < max(m,m′), it holds thatd(x, ai) > εi. In the first case, thek such thatd(x, ak) < 2εi is unique because
(εi)i∈N convergently spaces(ai)i∈N. In the second case,d(x, ai) > εi for all i.

If (εi)i∈N convergently spaces(ai)i∈N, then we say that((ai)i∈N, (εi)i∈N) is well insideB(v, η) if, for all i,
it holds thatd(v, ai) < η/3 andεi < η/3.

Let N∗ be the set of finite sequences of integers. Ifa ∈ N∗ andj ∈ N, we writeaj for the sequencea followed
by j. The empty sequence is denoted by[ ] and the length ofa is denoted by|a|. We writeα�n for the prefix in
Nn of an infinite sequenceα ∈ NN.

Lemma 3.7 There exist a family(w(a))a∈N∗ in S and a family(δ(a))a∈N∗ of positive rational numbers such
that, for everya ∈ N∗:

1. the sequence(w(ai))i∈N is without accumulation point;

2. the sequence(δ(ai))i∈N convergently spaces(w(ai))i∈N ; and

3. ((w(ai))i∈N, (δ(ai))i∈N) is well insideB(w(a), δ(a)).

P r o o f. Givenv ∈ S and rationalη > 0, we have by Lemmas 3.4 and 3.5 that there there exist an injective
sequence(vi)i∈N in S ∩ B(v, η/3) without accumulation point, and a sequence(ηi)i∈N of positive rationals
< η/3 that convergently spaces(vi)i∈N. As S is countable, byAC0,1, we obtain a function mapping each pair
(v, η) to such a pair of sequences((vi)i∈N, (ηi)i∈N).

To prove the lemma, start off by fixingw([ ]) to be any member ofS andδ([ ]) = 1. Then(w(ai), δ(ai)) is
defined by applying the above function to the pair(w(a), δ(a)), and extracting thei-indexed components of the
resulting sequences. It is immediate from the definition that this gives rise to families(δ(a))a∈N∗ and(w(a))a∈N∗

satisfying the required properties.

Lemma 3.8 Let (w(a))a∈N∗ and(δ(a))a∈N∗ be as in Lemma 3.7. Ifa ∈ N∗ is a proper prefix ofb ∈ N∗ then
B(w(b), δ(b)) ⊆ B(w(a), 2δ(a)/3).

P r o o f. This follows easily from property 3 of Lemma 3.7.

Lemma 3.9 Let (w(a))a∈N∗ and(δ(a))a∈N∗ be as in Lemma 3.7. For alla, b ∈ Nn with a 6= b, it holds that
d(w(a), w(b)) > 2(δ(a) + δ(b)).

P r o o f. We can writea 6= b asa = cia′ andb = cjb′, wherec is the common prefix andi 6= j. The proof is
by induction on|a′| = |b′|. When|a′| = 0 the lemma is immediate from property 2 of Lemma 3.7. For|a′| > 0,
we havea′ = a′′m andb′ = b′′n. The induction hypothesis givesd(w(cia′′), w(cjb′′)) > 2(δ(cia′′) + δ(cjb′′)).
Also, by Lemma 3.8, we haved(w(a), w(cia′′)) < 2δ(cia′′)/3 andd(w(b), w(cjb′′)) < 2δ(cjb′′)/3. Thus
d(w(a), w(b)) > 4(δ(cia′′) + δ(cjb′′))/3. However, by property 3 of Lemma 3.7,δ(a) < δ(cia′′)/3 and
δ(b) < δ(cjb′′)/3. Sod(w(a), w(b)) > 4(δ(a) + δ(b)) > 2(δ(a) + δ(b)).

Lemma 3.10 Let (w(a))a∈N∗ and(δ(a))a∈N∗ be as in Lemma 3.7. For everyn ∈ N andx ∈ X, there exists
a uniqueb ∈ Nn such thatd(w(b), x) < 2δ(b), or for all a ∈ Nn it holds thatd(w(a), x) > δ(a).

P r o o f. By induction onn ∈ N. Whenn = 0 the lemma states thatd(w([ ]), x) < 2δ([ ]) or d(w([ ]), x) >
δ([ ]), which of course holds. Supposen > 0. By Lemma 3.8, for alla′ ∈ Nn−1, if d(x,w(a′)) > δ(a)
thend(x, w(a′i)) > δ(a′i) for all i. By the induction hypothesis, there exists a uniqueb′ ∈ Nn−1 such that
d(x, w(b′)) < 2δ(b′), or, for all a′ ∈ Nn−1, it holds thatd(x, w(a′)) > δ(a′). In the second case, we are
done by the previous observation. Thus supposeb′ ∈ Nn−1 is the unique such thatd(x, w(b′)) < 2δ(b′). By
uniqueness, fora′ ∈ Nn with a′ 6= b′, it holds thatd(x,w(a′)) > δ(a′). Hence, by the observation above,
d(x, w(a′i)) > δ(a′i), for all a′ 6= b′ ∈ Nn−1 andi. So, if alsod(w(b′j), x) > δ(b′j) for all j, then indeed
d(w(a), x) > δ(a) for all a ∈ Nn. By Lemma 3.6, the only other possibility is that there exists (a unique)k such
thatd(w(b′k), x) < 2δ(b′k). By Lemma 3.9, this is the uniqueb ∈ Nn with d(w(b), x) < 2δ(b).
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We now prove Proposition 3.1. Let(w(a))a∈N∗ and (δ(a))a∈N∗ be as in (the proof of) Lemma 3.7, with
δ([ ]) = 1. Using any bijection betweenZ andN, we rewrite these families as(w(a))a∈Z∗ and (δ(a))a∈Z∗ .
Define the mape : ZN → X by

e(α) = lim
i→∞

w(α�i) .

This is well defined because, by statement 3 of Lemma 3.7,δ(a) ≤ 3−|a| for all a ∈ Z∗, and so, by Lemma 3.8,
the sequence(w(α�i))i∈N is Cauchy. Also by Lemma 3.8,d(e(α), w(α�i)) ≤ 2δ(α�i)/3 < δ(α�i) ≤ 3−i. Thuse
is uniformly continuous because, for anyε > 0, takeδ = 2−k, wherek is such that3−k < ε/2. If d(α, β) < δ
thenα�k = β�k, so indeedd(e(α), e(β)) ≤ d(e(α), w(α�k)) + d(e(β), w(β�k)) ≤ 2 · 3−k < ε.

To defineg : X → RN, we first define functionsgi : X → R, for eachi ∈ N, by:

gi(x) =

{
ai · hill(w(a), 2δ(a)/3, δ(a))(x) if there exists uniquea ∈ Zi+1 with d(w(a), x) < 2δ(a),
0 if d(w(a), x) > δ(a) for all a ∈ Zi+1,

where we write anya ∈ Zi+1 asa0a1 . . . ai. The functiongi is well defined because when both clauses apply
they agree thatgi(x) = 0, and, by Lemma 3.10, at least one of the cases always applies. Easily, when the first
clause applies, thengi(y) = ai · hill(w(a), 2δ(a)/3, δ(a))(y) for all y ∈ B(x, 2δ(a) − d(w(a), x)). Similarly,
when the second clause applies,gi(y) = 0 for all y ∈ B(x, d(w(a), x)− δ(a)). Thus the functiongi is pointwise
continuous. Now defineg : X → RN by g(x) = (gi(x))i∈N. This is also pointwise continuous because the
metric onRN definesRN as a countable product with respect to pointwise continuous maps.

By Lemma 3.8, for anyα = α0α1 . . . ∈ ZN, we haved(w(α�i+1), e(α)) ≤ 2δ(α�i+1)/3 < 2δ(α�i+1), so
gi(e(α)) = αi · hill(w(α�i+1), 2δ(α�i+1)/3, δ(α�i+1))(e(α)) = αi. Thereforeg(e(α)) = α.

It remains to show thate is injective and that its image is closed. It is injective becauseg ◦e is injective. To see
that the image is closed, consider a sequence(αi)i∈N in ZN such that(e(αi))i∈N converges tox ∈ X. Becauseg
is pointwise continuous the sequence(g(e(αi)))i∈N = (αi)i∈N converges tog(x), whereg(x) ∈ ZN becauseZN

is a closed subspace ofRN. Therefore,x ande(g(x)) are both limits of(e(αi))i∈N, hence equal, and sox is in
the image ofe. This concludes the proof of Proposition 3.1.

3.2 Proof of Proposition 3.2

For the proof of Proposition 3.2, assume given a sequentially continuousf : ZN → Z. We construct a function
h : RN → R extendingf .

Forγ ∈ RN andβ ∈ ZN, define a sequence(hβ
i (γ))i∈N of real numbers by:

hβ
0 (γ) = f(0ω) ,

hβ
i+1(γ) = hβ

i (γ) + (f(β�i+10ω)− hβ
i (γ)) ·

i∏
j=0

(
cone(βj , 1/4)(γj)

)2i−j

.

We say thatβ is adequate forγ if, for all i ∈ N,

βi − 2/3 < γi < βi + 2/3 .

By AC0,0, for everyγ ∈ RN, there existsβ ∈ ZN adequate forγ.

Lemma 3.11 If β andβ′ are both adequate forγ thenhβ
i (γ) = hβ′

i (γ).

P r o o f. The proof proceeds by induction oni. Clearlyhβ
i (γ) = hβ′

i (γ) in the case thatβj = β′j , for all j < i.
Otherwise, without loss of generality, there existsj < i such thatβj < β′j . Then, as bothβ andβ′ are adequate
for γ, it holds thatγj − 2/3 < βj < β′j < γj + 2/3. Thusβ′j = βj + 1 andβj + 1/3 < γj < β′j − 1/3,

so cone(βj , 1/4)(γj) = 0 = cone(β′j , 1/4)(γj). By induction hypothesis,hβ
i (γ) = hβ

i−1(γ) = hβ′

i−1(γ) =

hβ′

i (γ).
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10 A. Bauer and A. Simpson: Two Constructive Embedding-Extension Theorems with Applications

The above lemma justifies the definition

hi(γ) = hβ
i (γ), for anyβ adequate forγ .

The following technical lemma is in preparation for Lemma 3.13 below.

Lemma 3.12 Let(ξi)i∈N be a sequence in[0, 1] satisfyingξi+1 ≤ ξ2
i , for all i ∈ N, and letPi =

∏i−1
j=0(1−ξj).

Thenm ≥ n implies|Pn − Pm| ≤ (2/3)n, and so the infinite product
∏∞

j=0(1− ξj) = limi→∞ Pi converges.

P r o o f. We show thatm ≥ n impliesPn − Pm ≤ (2/3)n (and also obviously0 ≤ Pn − Pm). There are two
cases. First, ifξi > 1/3 for all i < n, then

Pn − Pm ≤ Pn ≤ (2/3)n .

In the second case there existsk < n such thatξk < 1/2 andξi > 1/3 for all i < k. Then, for alli ≥ k,
Pi ≤ Pk ≤ (2/3)k andξi < (1/2)2

i−k

, so

Pi − Pi+1 = Pi · ξi < (2/3)k · (1/2)2
i−k

≤ (2/3)k · (1/2)1+i−k .

From this we derive

Pn − Pm < (2/3)k ·
m−1∑
i=n

(1/2)1+i−k < (2/3)k · (1/2)n−k ≤ (2/3)n .

Lemma 3.13 For everyγ ∈ RN, the sequence(hi(γ))i∈N converges.

P r o o f. Letβ be adequate forγ. We must show that(hβ
i (γ))i∈N converges. Asf is sequentially continuous,

there existsn such thatf(β�m0ω) = f(β) for all m ≥ n. Then, form ≥ n, the equality

hβ
m(γ) = f(β) + (hβ

n(γ)− f(β)) ·
m−1∏
i=n

(
1−

i∏
j=0

(
cone(βj , 1/4)(γj)

)2i−j
)

(1)

is easily shown by induction onm. Define

ξk(β, γ) =
n+k∏
j=0

(
cone(βj , 1/4)(γj)

)2n+k−j

. (2)

By Lemma 3.12,ξ(β, γ) =
∏∞

k=0(1 − ξk(β, γ)) exists, and so the sequence(hβ
i (γ))i∈N converges tof(β) +

(hβ
n(γ)− f(β)) · ξ(β, γ)

We defineh to be the function

h(γ) = lim
i→∞

hi(γ) . (3)

By the proof of the above lemma, ifβ is adequate forγ andn is such thatf(β�m0ω) = f(β) for all m ≥ n, then

h(γ) = f(β) + (hβ
n(γ)− f(β)) · ξ(β, γ) . (4)

Lemma 3.14 For all α ∈ ZN, it holds thath(α) = f(α).

P r o o f. Trivially, β = α is the only sequence adequate forα. We must show thatlimm→∞ hα
m(α) = f(α).

Let n be such that, for allm ≥ n, it holds thatf(α�m0ω) = f(α). Then, by (1), we havehα
m(γ) = f(α) for all

m > n, becausecone(αj , 1/4)(αj) = 1 for all j.
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It remains to show thath is sequentially continuous. This result is not needed for Sections 4 and 5. The readers
who are mostly interested in the last two sections may wish to skip the following proof.

Observe that the functionsξk : ZN × RN → R defined in (2) are uniformly continuous because they are finite
products of cone functions. By Lemma 3.12, the productξ(β, γ) =

∏∞
k=0(1 − ξk(β, γ)) converges uniformly.

Therefore,ξ : ZN × RN → R is a pointwise continuous function. Similarly, for anyi ∈ N andβ ∈ ZN, the
functionhβ

i : RN → R is uniformly continuous, because it is a polynomial of cone functions. However,h need
not be pointwise continuous, because its defining limit (3) is not necessarily uniform.

Lemma 3.15 Suppose(γi)i∈N is a sequence inRN converging toγ. There exists a sequence(βi)i∈N in ZN

converging toβ such thatβ is adequate forγ andβi is adequate forγi for everyi ∈ N.

P r o o f. ByAC0,0 there existsβ ∈ ZN such that, for alli ∈ N,

βi − 5/9 < γi < βi + 5/9 .

By AC0,1 there exists a sequence(δi)i∈N in ZN such thatδi is adequate forγi, for all i ∈ N. UsingAC0,0 and the
fact that(γi

j)i∈N converges toγj , we obtain a functionm : N → N such that for allj ∈ N andi ≥ m(j) it holds
that|γi

j − γj | < 1/9. Now define the sequenceβi by

βi
j =

{
βj if i ≥ m(j),
δi
j otherwise.

We claim that eachβi is adequate forγi. Indeed, ifi < m(j) thenβi
j = δi

j , and if i ≥ m(j) then

|βi
j − γi

j | = |βj − γi
j | ≤ |βj − γj |+ |γi

j − γj | < 5/9 + 1/9 = 2/3 .

Finally, limi→∞ βi = β becauseβ agrees withβi in the firstj terms wheni ≥ max(m(0), . . . ,m(j − 1)).

Lemma 3.16 Suppose(βi)i∈N converges toβ in ZN. There existsk ∈ N such that, for allm,n ≥ k,

f(βm�n0ω) = f(βm) = f(β�n0ω) = f(β) .

P r o o f. Forj ∈ N defineLj ⊆ N × N to beLj = {(m, j) | m ≥ j} ∪ {(j, n) | n ≥ j}. By sequential
continuity off there exists̀ ∈ N such that, for allj ≥ `, f(β) = f(βj) = f(β�j0ω). We claim that, for all
j ≥ `, either

∀ (m,n)∈Lj . f(βm�n0ω) = f(β) (5)

or

∃ (m,n)∈Lj . f(βm�n0ω) 6= f(β) . (6)

To see this, use sequential continuity off to obtainj′ ≥ j such that, for allm,n ≥ j′, f(βm�j0ω) = f(β�j0ω) =
f(β) andf(βj�n0ω) = f(βj) = f(β). By inspecting the finitely many values{(m,n) ∈ Lj | m,n < j′} it can
now be determined whether (5) or (6) holds.

Next we define sequences(m(j))j≥` and(n(j))j≥` as follows:

(m(j), n(j)) =

{
(j, j) if (5) holds forj,

(m,n) the lexicographically smallest(m,n) ∈ Lj for which (6) holds.

The sequence(βm(j)�n(j)0ω)j≥` converges toβ in ZN becausem(j) ≥ j andn(j) ≥ j. By the sequential
continuity of f , there existsk ≥ ` such that, for allj ≥ k, f(βm(j)�n(j)0ω) = f(β). By the definition of
(m(j), n(j)), we must have (5) for allj ≥ k. Therefore, ifm,n ≥ k thenf(βm�n0ω) = f(βm) = f(β�n0ω) =
f(β) because(m,n) ∈ Lmin(m,n) andmin(m,n) ≥ k ≥ `.
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12 A. Bauer and A. Simpson: Two Constructive Embedding-Extension Theorems with Applications

At last we show thath is sequentially continuous. Let(γi)i∈N be a sequence inRN converging toγ. By
Lemma 3.15 there exists a sequence(βi)i∈N in ZN converging toβ, such thatβ is adequate forγ and eachβi is
adequate forγi. By Lemma 3.16 there existsk ∈ N such thatf(βm�n0ω) = f(βm) = f(β�n0ω) = f(β) for all
m,n ≥ k. By (4), for allm ≥ k,

h(γm) = f(βm) + (hβm

k (γm)− f(βm)) · ξ(βm, γm)

= f(β) + (hβm

k (γm)− f(β)) · ξ(βm, γm) .

There existsk′ ∈ N such that, for allm ≥ k′, β andβm agree in the firstk terms. Thus, form ≥ k′, it holds that
hβm

k (γm) = hβ
k(γm), hence for allm ≥ max(k′, k) it is the case that

h(γm) = f(β) + (hβ
k(γm)− f(β)) · ξ(βm, γm) .

We observed above that the functionsξ andhβ
k are pointwise continuous, so

lim
m→∞

h(γm) = lim
m→∞

(f(β) + (hβ
k(γm)− f(β)) · ξ(βm, γm))

= f(β) + (hβ
k(γ)− f(β)) · ξ(β, γ)

= h(γ) ,

where the last equality follows from (4), usingf(β�n0ω) = f(β) for all n ≥ k.
This completes the proof of Proposition 3.2. Observe that, in addition to showing the existence ofh givenf ,

the proof constructs a function mapping any sequentially continuous functionf : ZN → Z to a corresponding
sequentially continuous extensionhf : RN → R.

Remark 3.17 Under the stronger assumption thatf is uniformly continuous on CTB subspaces ofZN (this is
the main notion of continuity used by Bishop [4]) there is an easier construction of an extension functionh. For,
anyx ∈ R define the probability distributionpx : Z → [0, 1] by px(a) = max(0, 1−max(1, |x− a|)). For any
γ ∈ RN defineµγ to be the product measure onZN whosei-th component is the measure onZ determined by
pγi . Then define

h(γ) =
∫

f dµγ .

Constructively, the assumption thatf is uniformly continuous on CTB subspaces is needed to ensure that the
integral is well defined. A generalization of this approach to extending functionals has been worked out in a
classical setting by Normann, who has embedded the entire continuous type hierarchy overN in the continuous
type hierarchy overR, see [17].

Remark 3.18 It should be possible to avoid the technical proof thath is sequentially continuous, by prov-
ing a meta-theorem guaranteeing that, becauseh is defined constructively from functions that are themselves
sequentially continuous, it holds automatically thath is sequentially continuous too. One possible approach to
formalizing such a meta-theorem would be to develop a constructive analogue of Johnstone’s “topological topos”
T of sheaves for the canonical Grothendieck topology on the monoid of continuous endomorphisms onN+ [12].
Then the relativization of the construction ofh to T would result in a sequentially continuous function being
produced. It would be interesting to see this worked out in detail.

Remark 3.19 The proof of Lemma 3.16 can be generalized to show that every sequentially continuousf :
N+×N+ → N is uniformly continuous. For further connections between sequential continuity and the spaceN+,
see Section 4 below.

In Section 5, we shall use a couple of straightforward consequences of the proof of Proposition 3.2, rather than
the result itself. To formulate these, we say thatG ⊆ RN andB ⊆ ZN form anadequate subdomain pairif:

1. for all γ ∈ G there existsβ ∈ B with β adequate forγ, and
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2. for all β ∈ B andn ∈ N it holds thatβ0 . . . βn−10ω ∈ B.

Given suchG andB and sequentially continuousf : B → Z, the proof of Proposition 3.2 clearly constructs a
functionh(G,B,f) : G → R.

Lemma 3.20 If G andB are an adequate subdomain pair andf : B → Z is sequentially continuous then
h(G,B,f) : G → R satisfiesh(G,B,f) = f(α) for all α ∈ G ∩B.

P r o o f. Identical to the proof of Lemma 3.14.

Lemma 3.21 If G, B and G′, B′ are adequate subdomain pairs, andf : B → Z and f ′ : B′ → Z are
sequentially continuous functions satisfyingf(α) = f ′(α) for all α ∈ B∩B′, thenh(G,B,f)(γ) = h(G′,B′,f ′)(γ′)
for all γ ∈ G ∩G′.

P r o o f. Supposeγ ∈ G ∩ G′. Let β ∈ B andβ′ ∈ B′ be adequate forγ. Write hf,β
i (γ) for the convergent

sequence determiningh(G,B,f)(γ) andhf ′,β′

i (γ) for that determiningh(G′,B′,f ′)(γ′). Note, of course, that the

functionf is used in the recursive definition ofhf,β′

i (γ), whereasf ′ is used in the definition ofhf ′,β′

i (γ). We

show by induction oni thathf,β
i (γ) = hf ′,β′

i (γ).
Supposeβj = β′j , for all j < i. Thenβ�i0ω = β′�i0ω ∈ B∩B′, sof(β�i0ω) = f ′(β′�i0ω). Thus, by applying

the induction hypothesis to the definitions ofhf,β
i (γ) andhf ′,β′

i (γ), we obtainhf,β
i (γ) = hf ′,β′

i (γ).
Otherwise, without loss of generality, there existsj < i such thatβj < β′j . As in the proof of Lemma 3.11,

cone(βj , 1/4)(γj) = 0 = cone(β′j , 1/4)(γj). So, by induction hypothesis,hf,β
i (γ) = hf,β

i−1(γ) = hf ′,β′

i−1 (γ) =

hf ′,β′

i (γ).

3.3 Proof of Theorem 2.4

We conclude this section with a summary of the proof of Theorem 2.4. The main difference is to replace Propo-
sition 3.1 with the analogous result below.

Proposition 3.22 Let X be an inhabited CSM without isolated points. There exists a uniformly continuous
embeddinge : 2N → X with a closed image and a pointwise continuous mapg : X → RN such thatg(e(α)) = α
for all α ∈ 2N.

The proof follows along the same general lines as that of Proposition 3.1, but is significantly simpler. In the
proof of Proposition 3.1, a family(B(w(a), δ(a)))a∈N∗ of open balls inX is defined withB(w(b), δ(b)) ⊆
B(w(a), 2δ(a)/3) whenevera is a proper prefix ofb, and such that each sequence(w(ai))i∈N is without accu-
mulation point. To prove Proposition 3.22, one more easily constructs a family(B(w(a), δ(a)))a∈2∗ of open
balls, again withB(w(b), δ(b)) ⊆ B(w(a), 2δ(a)/3) whenevera is a proper prefix ofb, but such that each
sequencew(a0) 6= w(a1). The required functiong can then be defined in much the same way as before, but
nowhere in the proof is there any need for analogues of Lemmas 3.3–3.6 and 3.10, which are all specific to
sequences without accumulation point.

Finally, Theorem 2.4 is easily derived from a combination of Propositions 3.22 and 3.2. Indeed, given a
sequentially continuousf : 2N → Z, this easily extends to a sequentially continuousf ′ : ZN → Z, and hence
Proposition 3.2 applies to yield a sequentially continuoush : RN → R. Then the compositef = h ◦ g, whereg
is given by Proposition 3.22, gives the extension required by Theorem 2.4.

4 Applications to Continuity Principles

Continuity principlesare statements asserting that all functions between certain spaces are continuous. Nontrivial
continuity principles are inconsistent with classical mathematics, but play an important rôle in Brouwer’s intu-
itionistic mathematics. They are also a feature of the internal logic of many toposes. In this section we apply
Theorems 2.4 and 2.5 to derive new relationships between different continuity principles.
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14 A. Bauer and A. Simpson: Two Constructive Embedding-Extension Theorems with Applications

For metric spacesX andY we consider the two continuity principles:

CPpt(X, Y ) : All functionsf : X → Y are pointwise continuous,

CPseq(X, Y ) : All functionsf : X → Y are sequentially continuous.

The sequence of propositions below, which is mostly folklore, summarizes basic relationships between the
main continuity principles. In them, we writeAC1,0 for the the principle of choice for statements of the form
∀ f ∈NN .∃n∈N . ϕ.

Proposition 4.1 Consider the following statements.

1. CPpt(ZN, N).

2. CPpt(X, N), for all CSMsX.

3. CPpt(ZN, R).

4. CPpt(X, Y ), for all CSMsX and metric spacesY .

Then1 ⇐⇒ 2 ⇐= 3 ⇐⇒ 4. Moreover, ifAC1,0 holds then1 =⇒ 3.

P r o o f. The implication2 =⇒ 1 is immediate, and 4 implies the other statements. In [21,§7.2.7], it is
shown that every CSM is a quotient (with respect to pointwise continuous maps) ofZN. This gives the implication
1 =⇒ 2. Similarly, if 3 holds then so doesCPpt(X, R) for all CSMsX. To see that this implies 4, consider
anyf : X → Y and elementx ∈ X. By CPpt(X, R), the functionx′ 7→ d(f(x), f(x′)) : X → R is pointwise
continuous. Hence, for anyε > 0 there existsδ such that, for allx′ ∈ B(x, δ), we haved(f(x), f(x′)) < ε.
Thusf is continuous at everyx, hence pointwise continuous. Finally if both 1 andAC1,0 hold then so does the
principleWC-N, see [20,§4.6.3]. It is shown in [21,§7.2.7] thatWC-N and 4 together implyCPpt(X, Y ), for all
CSMsX and separable metric spacesY . Thus, in particular, 3 holds.

Recall, from Section 2, the notion of CTB space. We say that a metric spaceX is locally CTBif every point inX
has a CTB neighbourhood.

Proposition 4.2 Consider the following statements.

1. CPpt(2N, N).

2. CPpt(X, N), for all locally CTB CSMsX.

3. CPpt(2N, R).

4. CPpt(X, Y ), for all locally CTB CSMsX and metric spacesY .

Then1 ⇐⇒ 2 ⇐= 3 ⇐⇒ 4. Moreover, ifAC1,0 holds then1 =⇒ 3.

P r o o f. Similar to the proof of Proposition 4.1, making use of the fact that2N is itself CTB (and hence locally
CTB), and of the fact that every CTB space is a quotient of2N, which is established in [21,§7.4.4].

Proposition 4.4 below is an analogue of the preceding propositions for sequential continuity principles. First
we show that, for maps out of the spaceN+ defined in Section 2, the sequential and pointwise continuity principles
coincide.

Proposition 4.3 For any metric spaceY , the following are equivalent.

1. CPpt(N+, Y ).

2. CPseq(N+, Y ).

3. For all f : N+ → Y andε > 0 there existsm ∈ N such that, for alln ≥ m, we haved(f(κn), f(κ∞)) < ε.
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P r o o f. Trivially, 1 =⇒ 2 =⇒ 3. Suppose then that 3 holds. We must establishCPpt(N+, Y ). Consider
any f : N+ → Y , α ∈ N+ and ε > 0. By 3, there existsm ∈ N such that, for alln ≥ m, it holds that
d(f(κn), f(κ∞)) < ε/4. We prove that, forδ = 2−(m+1) andα′ ∈ B(α, δ) it holds thatd(f(α), f(α′)) < ε.

If i < m is the least such thatαi = 0 thenα = κi, andB(α, 2−m+1) ⊆ B(α, 2−i+1) = {α}. Thus, for all
α′ ∈ B(α, 2−i+1) we haved(f(α), f(α′)) = 0 < ε.

Otherwise,αi = 1 for all i < m. Defineg : N+ → N+ by g(β)i = αi · βi. Then, for anym′ ≥ m, we have
g(κm′) = κn for a uniquen with m ≤ n ≤ m′. Also, trivially, g(κ∞) = α. So, by applying 3 tog ◦ f , there
existsm′ ∈ N such that, for alln′ ≥ m′, we haved(f(g(κn′)), f(α)) < ε/4. Then,g(κmax(m,m′)) = κn for
somen with m ≤ n ≤ max(m,m′). So,d(f(κn), f(α)) < ε/4, but alsod(f(κn), f(κ∞)) < ε/4, because
n ≥ m. Thusd(f(α), f(κ∞)) < ε/2.

Now consider anyα′ ∈ B(α, 2−(m+1)). Thenα′i = 1 for all i < m. By the same argument as above,
d(f(α′), f(κ∞)) < ε/2. Thusd(f(α), f(α′)) < ε, as required.

Proposition 4.4 Consider the following statements.

1. CPseq(N+, N).

2. CPseq(X, N), for all CSMsX.

3. CPseq(N+, R).

4. CPseq(X, Y ), for all CSMsX and metric spacesY .

Then1 ⇐⇒ 2 ⇐= 3 ⇐⇒ 4. Moreover, ifAC1,0 holds then1 =⇒ 3.

P r o o f. Trivially 2 =⇒ 1, and 4 implies the other statements. To show that 1 implies 2, suppose that 1
holds, and consider anyf : X → N. Let (xi)i∈N be a Cauchy sequence inX, with limit x∞. Defineg : N+ → X
by g(α) = limn→∞ h(α, n) whereh(α, n) = x if α�n = 1n andh(α, n) = xm if α�n = 1m0n−m. By definition,
g(κ∞) = x∞ andg(κi) = xi. By 1, f ◦ g is sequentially continuous. So, for anyε > 0, there existsm such
that, for alln ≥ m, it holds thatd(f(g(κn)), f(g(κ∞))) < ε, i.e. d(f(xn), f(x∞)) < ε. Thusf is indeed
sequentially continuous. A similar argument establishes that3 implies CPseq(X, R), for all CSMsX. From
this 4 follows by using, for any(xi)i∈N converging tox in X, andf : X → Y , the sequential continuity of the
functionx′ 7→ d(f(x), f(x′)) : X → R, as in the proof of Proposition 4.1. It remains to show that1 =⇒ 3,
given AC1,0. We establishCPseq(N+, R) using the condition of Proposition 4.3.3. Consider anyf : N+ → R
andε > 0. BecauseN+ is a retract ofNN, it follows from AC1,0 that there existsg : N+ → {0, 1} such that
g(α) = 0 impliesd(f(α), f(κ∞)) < ε, andg(α) = 1 impliesd(f(α), f(κ∞)) > ε/2. Thusg(κ∞) = 0 and, by
CPseq(N+, N), there existsm such that, for alln ≥ m, it holds thatg(κn) = 0. Then, for alln ≥ m, we have
d(f(κn), f(κ∞)) < ε, as required.

The next result observes that Propositions 4.1, 4.2 and 4.4 analyse a sequence of successively weaker continuity
principles.

Proposition 4.5 CPpt(ZN, N) =⇒ CPpt(2N, N) =⇒ CPseq(N+, N).

P r o o f. The first implication holds because2N is a retract ofZN. The second one follows from Proposition 4.3
and the fact thatN+ is a retract of2N.

We now present our application of Theorems 2.4 and 2.5 to continuity principles. In the presence of the
sequential continuity principle of Proposition 4.4, the general continuity principles of Propositions 4.1 and 4.2
are implied by many of their instances.

Theorem 4.6 Suppose thatCPseq(N+, N) holds.

1. If X is an inhabited CSM without isolated points andCPpt(X, R) holds then so doesCPpt(2N, N).

2. If X is a locally non-compact inhabited CSM andCPpt(X, R) holds then so doesCPpt(ZN, N).
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16 A. Bauer and A. Simpson: Two Constructive Embedding-Extension Theorems with Applications

P r o o f. To prove the first part, consider any functionf : 2N → Z. By Proposition 4.4, it is sequentially
continuous. By Theorem 2.4 there existsf : X → R such thatf = f ◦ e. By assumption,f is pointwise
continuous, thereforef = f ◦ e is too. The second part is proved analogously as a consequence of Theorem 2.5.

One application of the above theorem is to establish the failure of interesting instances of continuity princi-
ples, by establishing the failure ofCPpt(2N, N) or CPpt(ZN, N). For example, there is a well-known condi-
tion under whichCPpt(ZN, N) fails. We writeAC2,0 for the the principle of choice for statements of the form

∀ f ∈NNN
.∃n∈N . ϕ.

Proposition 4.7 If AC2,0 holds thenCPpt(ZN, N) does not.

P r o o f. See Section 9.6.10 of [21].

Corollary 4.8 If bothCPseq(N+, N) andAC2,0 hold then, for any inhabited locally non-compact CSMX, the
continuity principleCPpt(X, R) is not true.

P r o o f. If all functionsX → R were continuous, then by the second part of Theorem 4.6,CPpt(ZN, N) would
hold, but by Proposition 4.7 this would contradictAC2,0.

We remark that Proposition 4.7 and Corollary 4.8 rely on the extensionality of functions.
We now step back from the preceding development within constructive mathematics, and survey a few of the

familiar and less familiar constructive scenarios in which various of the continuity principles discussed above
either hold or fail.

Example 4.9 In Brouwer’s intuitionism bothCPpt(ZN, N) andAC1,0 are valid. So the full power of Proposi-
tion 4.1.4 is available. This situation is mimicked within the internal logic of the realizability toposRT(K2) over
Kleene’s second algebraK2 [13, 1].

Example 4.10 In Markov’s Recursive Mathematics,CPpt(ZN, R) is valid (althoughAC1,0 fails), and hence
Proposition 4.1.4 is again available. This situation is mimicked within the internal logic of Hyland’seffective
topos, Eff , [11].

Example 4.11 In the realizability toposesRT(Pω) andRT(D), whereD is a universal Scott domain, the
continuity principleCPpt(2N, N) holds, as a consequence of the existence of a continuous modulus of uniform
continuity on Cantor space2N. (In fact a stronger continuity principle holds: all functions from2N to N are
uniformlycontinuous.) Also choice holds between arbitrary “finite types” [2, 1], in particularAC1,0 andAC2,0

hold. Thus, by Proposition 4.2,CPpt(X, Y ) holds, for every locally CTB CSMX and metric spaceY . On the
other hand, by Corollary 4.8,CPpt(X, R) fails, for any inhabited locally non-compact CSMX. In particular,
CPpt(Cu[−1, 1], R) fails, for, by Proposition 2.3,Cu[−1, 1] is an inhabited locally non-compact CSM. Thus we
have generalized the main result of [7], which established the failure ofCPpt(Cu[−1, 1], R) in RT(D). (Actu-
ally, [7], work with the setC[−1, 1] of pointwise continuous functions from[−1, 1]. In RT(D), it holds that
C[−1, 1] = Cu[−1, 1], usingAC1,0 and the uniform continuity of functions from2N to N.)

Example 4.12 In theextensional effective topos[18, 22], by construction, choice holds for all “finite types”; in
particular,AC1,0 andAC2,0 hold. Peter Lietz [14, Chapter II] shows thatCPseq(N+, N) holds, but thatCPpt(2N, N)
fails. By Proposition 4.4, it follows thatCPseq(X, Y ) holds for every CSMX and metric spaceY ; however, by
Theorem 4.6.1,CPpt(X, R) fails for any inhabited CSMX without isolated points. In particular,CPpt(R, R)
fails. This shows that constructivelyCPseq(R, R) does not implyCPpt(R, R).

5 An Application to Banach-Mazur computability

In this section, we switch to ordinary classical mathematics.1 Our aim is to prove a general (classical) result,
Theorem 5.2, that differentiates between computability in the sense of Markov, which is the most widely recog-
nised notion of computability, and computability in the sense of Banach and Mazur. To achieve this, we apply

1 Theorem 5.2, which states the existence of functions that are not Markov computable, is obviously not provable using only constructive
principles consistent with Church’s Thesis,CT0 [20, §4.3].
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the results of Section 3, making crucial use of their constructivity in order to use them as statements valid in the
internal logic of Hyland’seffective topos, Eff , [11].

5.1 Numbered sets, Markov computability and computable metric spaces

Following [9, 10], we introduce the notion of Markov and Banach-Mazur computability in the setting of com-
putable metric spaces presented as numbered sets.

A numbered set, also known asmodest set, is a structureX = (|X|, νX) whereX is a set, andνX is a partial
surjection fromN ontoX. This is a widely used generalization of Eršov’s notion of numbered set. Indeed, an
Eršov numbered setis just a numbered setX for whichνX is a total function.

We shall be interested in different notions of morphism between numbered setsX, Y . A functionf : X → Y
is simply a (set-theoretic) functionf : |X| → |Y |. A function f : X → Y is said to beMarkov computable
(henceforth simplycomputable) if there exists a partial-recursive functionr : N ⇀ N such thatf ◦ νX = νY ◦ r;
in this situation we say thatr realizesf .

The category of numbered sets and computable functions is cartesian closed. Finite products are easily defined
using a pairing function(−,−) on natural numbers. The function spaceY X has the set of computable functions
from X to Y as its underlying set, andνY X is the unique partial surjection for whichν−1

Y X (f) is the set of indices
(in some standard enumeration) of all partial recursive functions realizingf . Furthermore, the numbered set
N = (N, idN) is a natural numbers object in the category. We write2 for the set{0, 1} numbered by the (partial)
identity. And we writeZ for Z numbered by a computable bijection fromN to Z.

Numbered sets come with an associated intuitionistic logic for reasoning about them, derived from their em-
bedding within Hyland’seffective topos, Eff , [11]. Indeed, the category of numbered sets and computable func-
tions between embeds fully as the category ofeffective objects, or modest sets, in Eff , see [11, Section 7]. The
induced logic allows a theory of computable metric spaces (and other aspects of constructive mathematics) to
be developed in an entirely routine way, by merely interpreting the standard constructive definitions within the
internal logic of the topos. Although, in effect, this is the route we now follow, we shall present all definitions
in concrete form, in order to make them accessible to readers who are not familiar with the effective topos. At
the same time, we also state the equivalent logical definitions, in order to avoid making the paper unnecessarily
impenetrable to those whoare familiar with the topos-theoretic approach.

The computable real numbers are defined as a numbered setRc in a standard way, see e.g. [9]. Acomputable
metric spaceis given by a numbered setX together with a computable distance functiond : X ×X → Rc, satis-
fying the usual axioms. A(computable) Cauchy sequencein a computable metric space is given by a computable
sequence, i.e. a computable functionx(−) : N → X for which there exists a computablemodulusfunction
µ : N → N satisfyingd(xi, xj) < 2−n for all n andi, j ≥ µ(n). The limit, if it exists, of a Cauchy sequence
x(−) with modulusµ, is the unique elementx ∈ X satisfyingd(xi, x) ≤ 2−n for all n and i ≥ µ(n). The
numbered setCauchy(X) of Cauchy sequences inX is defined by settingν−1(x(−)) to be the set of all pairs
(e, e′) wheree is an index for the sequencex(−) ande′ is an index for a modulusµ. A computable metric space
is said to becompleteif every Cauchy sequence has a limit, and the limit-finding functionCauchy(X) → X is
computable. It is said to beseparableif there exists a computable sequences(−) in X and there exists a partial
recursive functionc : N× N ⇀ N such that, for alle ∈ dom(νX) andn ∈ N, it holds thatc(e, n) is defined and
d(νX(e), sc(e,n)) < 2−n. A computable CSMis a complete and separable computable metric space.

The above definitions arise naturally in the context of the effective topos. The objectRc is just the object of
Cauchy (equivalently Dedekind) reals inEff . A numbered set with computable distance function is a computable
metric space if, and only if, the corresponding effective object and distance function inEff form a metric space
in the internal logic ofEff . Furthermore, the numbered set is a computable CSM if, and only if, the effective
object is internally a CSM. These facts are simply consequences of the explicit definitions for computable metric
spaces above being direct unwindings of the corresponding internal definitions. Incidentally, it even holds that
the separable metric spaces inEff are (up to isomorphism) exactly the computable separable metric spaces as
defined above. This is so because every separable metric space is a double-negation separated subquotient ofNN,
which is in turn a subquotient ofN, and the effective objects are (up to isomorphism) just the double-negation
separated subquotients ofN.

A computable metric spaceX is said to bewithout isolated pointsif there exists a partial recursive function
p : N × N ⇀ N satisfying, for alle ∈ dom(νX) andn ∈ N, it holds thatp(e, n) ∈ dom(νX) and 0 <
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d(νX(e), νX(p(e, n))) < 2−n. A computable sequencex(−) in a computable metric spaceX is said to be
without accumulation pointif there exist partial recursive functionsp : N ⇀ N andq : N ⇀ N satisfying,
for all e ∈ dom(νX), it holds thatp(e) andq(e) are defined andd(νX(e), xm) > 2−q(e) for all m ≥ p(e).
A witnessfor a computable sequence without accumulation point is given by a triple(e1, e2, e3) wheree1 is an
index for the recursive function realizingx(−), ande2, e3 are indices for the partial recursive functions realizingp
andq respectively. A computable metric spaceX is said to belocally non-compactif there is a partial recursive
function r : N × N ⇀ N such that, for alle ∈ dom(νX) andn it holds thatr(e, n) is defined and equal to
(e1, e2, e3) where this triple witnesses that a (thereby determined) sequencex(−) is without accumulation point,
and where, furthermore, for alli ∈ N it holds thatd(νX(e), xi) < 2−n.

Once again, the above definitions are simple unwindings of the corresponding internal definitions inEff .
Thus a computable metric space is without isolated points (respectively locally non-compact) if and only if the
corresponding effective object is internally without isolated points (respectively locally non-compact) according
to the definitions in Section 2. Trivially the computable CSM of computable real numbers,Rc, is without isolated
points. Moreover, because Church’s ThesisCT0 holds inEff , see [11], it follows from the remark in Section 2
thatRc is also locally non-compact.

Question 5.1 Is every computable CSM without isolated points locally non-compact?

5.2 Banach-Mazur computability

The main result of this section is concerned with a second notion of computable function between numbered
sets, due to Banach and Mazur. A functionf : X → Y , is said to beBanach-Mazur computable, henceforth
BM-computable, if, for every computable sequences : N → X, it holds that the sequencef ◦ s : N → Y is
computable.

It is obvious that every computable function is BM-computable. Conversely, ifX is an Eřsov numbered set
then it is easily seen that every BM-computable function is computable (and this result generalizes to anyX
isomorphic to an Eřsov numbered set by way of computable isomorphisms). However, many of the interesting
objects of computable analysis are not isomorphic to Eršov numbered sets. Although, for such spaces, there is
no reason for all BM-computable functions to be computable, it is not easy to find counterexamples. A first (and
sophisticated) such example was produced by Friedberg, who showed that there exists a BM-computable function
from NN to N that is not computable [8]. A general discussion of the relationship between the two notions
is contained in Hertling’s recent paper [10], where, as the main result, a BM-computable but non-computable
function fromRc to Rc is constructed. The main theorem of this section generalizes Hertling’s result to a wide
class of computable metric spaces.

Theorem 5.2 If X is an inhabited computable CSM without isolated points then there exists a BM-computable
function fromX to Rc that is not computable.

The proof of Theorem 5.2 is given in Section 5.3 below. An interesting feature of the proof is that we obtain
our result as a direct consequence of Friedberg’s [8], whereas Hertling’s non-computable but BM-computable
function fromRc to Rc was constructed from first principles [10].

In preparation for the proof, we present three propositions asserting positive properties of BM-computable
functions between numbered sets and computable metric spaces. The first states that the objectXN, which is
an exponential in the category of numbered sets and computable maps, is also an exponential in the category of
BM-computable maps (thus the objectN is exponentiable in the category of BM-computable maps).

Proposition 5.3 Suppose thatX, Y are numbered sets.

1. If f : N×X → Y is BM-computable, then its transposẽf : x 7→ λn. f(n, x) is a BM-computable function
fromX to Y N.

2. Conversely, ifg : X → Y N is BM-computable, then so is the functiong : (n, x) 7→ g(x)(n) : N×X → Y .

P r o o f. For statement 1, suppose thatf : N × X → Y is BM-computable. We must first verify that, for
any x ∈ |X|, it holds thatf̃(x) ∈ |Y N|, i.e., thatn 7→ f(n, x) : N → Y is computable. Buts : n 7→
(n, x) : N → N ×X is a computable sequence, so by BM-computabilityf ◦ s is computable, i.e.n 7→ f(n, x)
is indeed computable. To show thatf̃ is BM-computable, consider any computablex(−) : N → X. Then
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(n, m) 7→ (n, xm) : N × N → N × X is computable. By BM-computability off , it holds that(n, m) 7→
f(n, xm) : N×N → Y is computable. Thus, by cartesian closure,m 7→ λn. f(n, xm) : N → Y N is computable,
i.e.m 7→ f(xm) is computable, as required.

We omit the similar proof of statement 2. (Anyway, the result is not used below.)

Mazur [15] proved that every BM-computable function fromRc to Rc enjoys the property that, for any com-
putable Cauchy sequence(xn)n with limit x∞, it holds that(f(xn))n, considered as a sequence of ordinary
(though, of course, computable) real numbers, is a Cauchy sequencein the ordinary sensewith limit f(x∞).
The next proposition is an improvement on this result due to Hertling, [9]. The improvement both generalizes
Mazur’s result to the setting of computable metric spaces, and also strengthens it to show that the derived se-
quence(f(xn))n is even a computable Cauchy sequence in the computable sense.

Proposition 5.4 (Hertling) If X, Y are computable metric spaces, withX complete, andf : X → Y is
BM-computable then, for any computable Cauchy sequence(xn)n with limit x∞, it holds that(f(xn))n is a
computable Cauchy sequence with limitf(x∞).

P r o o f. This is proved as Theorem 17 of [9], where, in fact, the proof is given for a more general notion of
“BM-computable metric space”.

The next proposition concerns the numbered setN+, representing the one-point compactification ofN in Eff ,
whose underlying set is{κn | n ∈ N}∪{κ∞}, where, fori ∈ N∪{∞}, the sequenceκi ∈ 2N satisfiesκi(n) = 1
if and only if n < i. The setν−1(κi) is inherited from2N.

Proposition 5.5 If X is a computable complete metric space then every BM-computable function fromN+ to
X is computable.

P r o o f. Supposeg : N+ → X is BM-computable. The sequence(κn)n in N+ is computable, and also a
Cauchy sequence with limitκ∞. As g is BM-computable, the sequence(g(κn))n is computable. By Proposi-
tion 5.4, it is Cauchy with limitg(κ∞).

We show below that there is a partial-recursive functionp : N × N ⇀ N satisfying: (i) for allα ∈ N+

and(n, m) with m ∈ ν−1
N+(α), it holds thatd(νX(p(n, m)), g(α)) ≤ 2−n; and (ii) m,m′ ∈ ν−1

N+(α) implies
νX(p(n, m)) = νX(p(n, m′)). Given such ap, we have thatp realizes a computable functionh : N×N+ → X,
whose transposẽh : N+ → XN maps everyα in N+ to a Cauchy sequence inX with limit g(α). Because limits
of Cauchy sequences are found computably, it follows thatg is computable.

It remains to definep. This is given by the following algorithm. Given(n, m), first computek = µ(n),
whereµ is the computable modulus function for the sequence(g(κi))i (that is, for allj, j′ ≥ µ(n), it holds that
d(g(κj), g(κj′)) ≤ 2−n). Next, examine the values{m}(0), . . . , {m}(k). If any of these values is undefined, or
≥ 2, or if a 0 occurs before a1 thenm cannot be in any setν−1

N+(α), andp(n, m) is left undefined. Otherwise,
let i be the smallest number with0 ≤ i ≤ k such that{m}(i) = 0, if such ani exists, or leti be k, if
{m}(0), . . . , {m}(k) are all1. Finally, definep(n, m) to be the element ofν−1

X (g(κi)), which can be computed
using the realizer of the computable sequence(g(κn))n.

It is immediate from the definition thatp satisfies property (ii). We must show that it also satisfies (i). Suppose
then thatα ∈ N+ andm ∈ ν−1

N+(α). Then, for anyn, definek = µ(n) as above. There are three cases. First,
if α = κj for somej ≤ k, then thei defined above isj and soκi = α. It follows thatp(n, m) ∈ ν−1

X (g(α)),
sod(νX(p(n, m)), g(α)) = 0 < 2−n. Second, ifα = κj , for somej > k, then thei defined above isk. So
d(νX(p(n, m)), g(α)) = d(κk, κj) ≤ 2−n, by the modulus property ofk = µ(n). Third, if α = κ∞ theni is
againk, sod(νX(p(n, m)), g(α)) = d(κk, κ∞) ≤ 2−n, by the definition of limit and the modulus property of
k = µ(n).

5.3 Proof of Theorem 5.2

Our proof of Theorem 5.2 applies the results of Section 3 within the context of the effective topos,Eff . In order to
fully understand the proof as written, it is necessary for the reader to have some knowledge of the workings of the
internal logic ofEff . However, we also provide concrete descriptions of the numbered sets involved in the proof,
so that a reader with no knowledge ofEff should nevertheless be able to fill in the various recursion-theoretic
details that are otherwise taken care of automatically by the internal logic ofEff .
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The main additional tool we need in the proof is the following adaptation of Proposition 3.2 to a statement
about BM-computable functions between numbered sets. Leti : Z → Rc be the inclusion of the numbered setZ
in the computable reals.

Lemma 5.6 For every BM-computablef : ZN → Z there exists a BM-computableh : Rc
N → Rc satisfying

h ◦ iN = i ◦ f : ZN → Rc.

Before giving the proof, we show that Theorem 5.2 is indeed a consequence of the lemma.
Suppose thatX is an inhabited computable CSM without isolated points. ThusX is an effective object ofEff ,

which is a CSM without isolated points in the internal logic ofEff . It is now an immediate consequence of
Proposition 3.22 that there exist computable functionse : 2N → X andg : X → Rc

N such thatg ◦ e = jN :
2N → Rc

N, wherej : 2 → Rc is the inclusion of the numbered set{0, 1} in the computable reals.
By Friedberg’s theorem [8], there exists a BM-computable function fromNN to N that is not computable.

Moreover, the numbered sets2N andNN are computably isomorphic (indeed pointwise homeomorphic) [3, IV.13].
Therefore there exists a BM-computablefF : 2N → N that is not computable. By Lemma 5.6, using that2 is a
computable retract ofZ, there exists a BM-computablehF : Rc

N → Rc such thathF ◦ jN = i ◦ fF : 2N → Rc.
Thusi◦fF = hF ◦g ◦e. Becauseg ande are computable andi is the inclusion ofZ in Rc, it follows that ifhF ◦g
were computable thenfF would be too, which is not the case. ThushF ◦ g : X → Rc is indeed BM-computable
but not computable. This completes the proof of Theorem 5.2, given Lemma 5.6.

It remains to prove Lemma 5.6. This cannot be derived directly by interpreting Proposition 3.2 inEff , because
BM-computable functions only live insideEff when they happen to be computable. Instead, we constructh using
the extension property for adequate subdomain pairs, as defined at the end of Section 3, using Lemmas 3.20
and 3.21 to show that the definition has the required properties. In order to effect the required construction, we
need to make use of the lemma below.

Lemma 5.7 Every BM-computable function fromN× N+ to N is computable.

P r o o f. Letf : N × N+ → N be BM-computable. By Proposition 5.3.1, the transposef̃ : N+ → NN is
BM-computable, and hence, by Proposition 5.5, computable. Thus, by the cartesian closure of the category of
numbered sets and computable maps,f is indeed computable.

We now prove Lemma 5.6. Henceforth, letf : ZN → Z be any BM-computable function. We must define the
h : Rc

N → Rc required by Lemma 5.6. First, we defineh as a function.
Given anyγ ∈ Rc

N, let β ∈ ZN be adequate forγ. Such a computableβ exists, because the existence ofβ is
true inEff . DefineBβ to be the subobject ofZN defined inEff by:

Bβ = {α ∈ ZN | ∀n∈N . (αn 6= βn =⇒ ∀m ≥ n . αn = 0)} . (7)

(As a numbered set,Bβ is given concretely as the evident subset ofZN with numbering defined byν−1
Bβ

(α) =
ν−1
ZN (α).) We writeι : Bβ → ZN for the inclusion.

We now define mapsrβ : N+ → Bβ andsβ : Bβ → N+ as follows:

rβ(α) = λn : N .

{
β(n) if ∀m ≤ n . α(m) = 1,

0 otherwise,

sβ(α) = λn : N .

{
1 if ∀m ≤ n . α(m) = β(m),
0 otherwise.

It is easily seen thatrβ ◦ sβ is the identity onBβ . ThusBβ is a computable retract ofN+ and hence ofN× N+.
So, by Lemma 5.7, every BM-computable function fromBβ to Z ∼= N is computable.

DefineGγ to be the singleton subobject ofRc
N containingγ. By (7), it holds thatGγ , Bβ together form an

adequate subdomain pair in the sense of Section 3.2. Also, the functionf ◦ ι : Bβ → Z is BM-computable
hence, as observed above, computable. Thusf ◦ ι is a morphism inEff . As CPpt(N+, N) holds inEff , see [11],
CPseq(N+, N) holds as well by Proposition 4.3. SinceBβ as a subspace ofZN is a CSM by (7), it follows from
Proposition 4.4 thatf ◦ ι is sequentially continuous in the internal logic ofEff . Therefore, the construction of
Section 3.2 producesh(Gγ ,Bβ ,f◦ι) : Gγ → Rc. Defineh(γ) = h(Gγ ,Bβ ,f◦ι)(γ).
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We have now defined a functionh : Rc
N → Rc. It is immediate from Lemma 3.21 thath◦iN = i◦f : ZN → Rc.

To complete the proof of Lemma 5.6, it remains to be shown thath is BM-computable.
Let (γn)n : N → Rc

N be a computable sequence. We must show that the sequence(h(γi))i : N → Rc is
computable. Let(βn)n : N → ZN be a computable sequence such that eachβn is adequate forγn. The existence
of (βn)n is easily shown using countable choice in the internal logic ofEff . DefineB(βn)n

to be the subobject of
ZN defined inEff by:

B(βn)n
= {α ∈ ZN | ∃n∈N . α ∈ Bβn

} .

(Concretely,B(βn)n
is the evident subset ofZN with numbering defined by

ν−1
B(βn)n

(α) = {(n, m) | α ∈ |Bβn
| ∧m ∈ ν−1

Bβn
(α)} ,

for α ∈ B(βn)n
.) Let ε : B(βn)n

→ ZN be the inclusion.
Defineρ : N× N+ → B(βn)n

by

ρ(n, α) = rβn(α) ,

making use of the retractionrβn : N+ → Bβn defined above. Reasoning internally inEff , consider anyα ∈
B(βn)n

. Then there existsn such thatα ∈ Bβn . So α = rβn(sβn(α)) = ρ(n, sβn(α)). Thus there exists
(n, α′) ∈ N × N+ such thatα = ρ(n, α′). This shows that the functionρ is epi inEff . It follows that, for any
numbered setZ and functionu : |B(βn)n

| → |Z|, if u ◦ ρ is computable then so isu. We have thatf : ZN → Z is
BM-computable. Thusf ◦ε◦ρ : N×N+ → Z is BM-computable, hence, by Lemma 5.7, computable. Therefore
f ◦ ε : B(βn)n

→ Z is computable.
Let G(γn)n

be the subobject ofRc
N defined by:

G(γn)n
= {γ ∈ Rc

N | ∃n∈N . γ = γn} .

(As a numbered set, this has the obvious underlying set, and the numbering can be taken to beν−1
G(γn)n

(γ) =
{n | γ = γn}.) By these definitions, it follows thatG(γn)n

, B(βn)n
form an adequate subdomain pair. As

f ◦ ε : B(βn)n
→ Z is a morphism inEff and thus sequentially continuous, the construction of Section 3.2

produces a computableh(G(γn)n ,B(βn)n ,f◦ε) : G(γn)n
→ Rc. Moreover, by Lemma 3.21 and the definition ofh,

for anyγ ∈ G(γn)n
, it holds thath(G(γn)n ,B(βn)n ,f◦ε)(γ) = h(γ). Thus the total recursive function showing that

h(G(γn)n ,B(βn)n ,f◦ε) is computable witnesses the computability of the sequence(h(γi))i : N → Rc. This shows
thath is indeed BM-computable, and so concludes the proof of Lemma 5.6.

Remark 5.8 The above combination of internal and external reasoning is essential to our proof because the
BM-computable functions do not live insideEff . An interesting alternative would be to instead apply Theorem 2.4
directly in the context of Mulry’s “recursive topos” [16], in which the morphisms (between certain objects) are
exactly the BM-computable functions. Such an approach may be possible, but it is non-trivial because the internal
logic of Mulry’s topos is awkward to use; for example, it is necessary to work with a non-standard object of natural
numbers, for which only restricted forms of induction are available, see [19]. Indeed, we do not know whether
the proof of Theorem 2.4 goes through in this setting.
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