
Propositions as [Types]

Steve Awodey

Department of Philosophy

Carnegie Mellon University, USA

awodey@cmu.edu

Andrej Bauer

Department of Mathematics and Physics

University of Ljubljana, Slovenia

Andrej.Bauer@andrej.com

Abstract

Image factorizations in regular categories are stable under pullbacks,
so they model a natural modal operator in dependent type theory. This
unary type constructor [A] has turned up previously in a syntactic form as
a way of erasing computational content, and formalizing a notion of proof
irrelevance. Indeed, semantically, the notion of a support is sometimes
used as surrogate proposition asserting inhabitation of an indexed family.

We give rules for bracket types in dependent type theory and provide
complete semantics using regular categories. We show that dependent
type theory with the unit type, strong extensional equality types, strong
dependent sums, and bracket types is the internal type theory of regular
categories, in the same way that the usual dependent type theory with de-
pendent sums and products is the internal type theory of locally cartesian
closed categories.

We also show how to interpret first-order logic in type theory with
brackets, and we make use of the translation to compare type theory with
logic. Specifically, we show that the propositions-as-types interpretation
is complete with respect to a certain fragment of intuitionistic first-order
logic, in the sense that a formula from the fragment is derivable in intu-
itionistic first-order logic if, and only if, its interpretation in dependent
type theory is inhabited. As a consequence, a modified double-negation
translation into type theory (without bracket types) is complete, in the
same sense, for all of classical first-order logic.

MSC2000 Classification: 03G30, 03B15, 18C50
Keywords: modal logic, category theory, type theory, regular categories, intu-
itionistic logic, bracket types

1

1 Introduction

According to one conception of the theory of types, propositions and types are
identified:

Propositions = Types .

This idea is well-known under the slogan “propositions as types”, and has been
developed by Martin-Löf [ML84] and others [How80, Tai]. In this paper we
distinguish propositions and types, but stay within a type-theoretic framework.
We regard some types to be propositions, but not necessarily all of them. Ad-
ditionally, each type A has an associated proposition [A]. This gives us a corre-
spondence

Propositions
Â

Ä //
Types

[−]
oo

which is in fact an adjunction. Since it will turn out that [P] = P for any
proposition P , the propositions are exactly the types in the image of the bracket
constructor [−]. We call these types [A] the bracket types. The picture is then
simply

Propositions = [Types] .

These ideas are not new. Our work originated with Frank Pfenning’s bracket
types for erasing computational content [Pfe01]. Speaking somewhat vaguely,
the idea is to use a bracket type for hiding computational content of a type. As
a simple example, consider the computational content of a term p of type

∏

n:N

(

∑

m:NEq(2m,n) +
∑

m:NEq(2m+ 1, n)

)

.

Given a natural number n, then pn = 〈i,m〉, where i ∈ {0, 1} and m ∈ N, such
that n = 2m+ i. By bracketing the two dependent sums, we obtain the type

∏

n:N

([

∑

m:NEq(2m,n)

]

+

[

∑

m:NEq(2m+ 1, n)

])

.

A term q of this type hides the information that is provided by the dependent
sums so that qn is either 0 or 1, depending on whether n is even or odd. In the
extreme case, a term r of type

[

∏

n:N

(

∑

m:NEq(2m,n) +
∑

m:NEq(2m+ 1, n)

)]

does not carry any computational content at all—it just witnesses the fact that
every number is even or odd.

Our work builds on and overlaps with that of several other people, as we will
now try to briefly indicate. Parallel to our work, and with some collaboration,
Pfenning [Pfe01] also investigates a modal operator for erasing computational
content, closely related to our bracket operation. The bracket types that we

2

consider are essentially the same as the “squash types” of Mendler [Men90].
Our rules in Section 2 can be shown equivalent to those given in ibid., which
are there derived from rules for quotient types. Mendler intends these quotient
types to be interpreted in categories with coequalizers, but does not consider the
special case (corresponding to our setting) of squash types in regular categories.

The work of Maietti [Mai98b, Mai98a] is similar to that of Mendler in that
general quotient types are interpreted in categories with (certain) coequalizers.
Mendler’s squash types also occur as “mono types”. A significant advance in the
work of Maietti, however, is the soundness and completeness of a certain type
theory including such quotient types, with respect to suitable categories, namely
Heyting pretoposes. Indeed, a stronger “internal language” theorem is given.
In this setting, our Completeness Theorem 3.4 can be regarded as showing that
Maietti’s mono-types alone suffice for an analogous “internal language” result
for regular categories.

Our axiomatization of image factorization as a logical operation from Propo-
sition 4.1 is probably new, but the general idea of such an operation has been
around for some time. Palmgren [Pal04] gives a “BHK interpretation” of intu-
itionistic logic and relates it to the standard category-theoretic interpretation of
propositions as subobjects using image factorizations. The idea of using image
factorization to translate fragments of predicate logic into type theory is also
implicit in the work of some of the authors already mentioned, but probably
originates with Lawvere’s Dialectica article [Law69]. None of these, however,
explicitly uses a bracket-style modal operator in dependent type theory as a
translation of full predicate logic, as in our Section 5. A related system, called
“logic-enriched type theory,” is given by Aczel and Gambino [AG02], in which
the logic is strictly separated from the type theory.

Finally, in Section 6, the application of the bracket translation to the long-
standing question of the conservativity of the propositions-as-types interpre-
tation of Martin-Löf type theory over intuitionistic first-order logic is entirely
new. The only other investigations into this question have used entirely different
methods, namely proof-theoretic ones. Moreover, our partial conservativity the-
orem is a significant improvement over previous results, which only concerned
the fragment involving Π and ⇒.

The paper is organized as follows. In Section 2 we introduce the bracket
types. In Section 3 we give the semantics of bracket types in regular categories,
and prove its soundness and completeness. In Section 4 we study some prop-
erties of bracket types. In Section 5 we show how bracket types are used in
conjunction with other dependent types to define the logical connectives and
quantifiers within type theory. In Section 6 we use bracket types to compare
two interpretations of logic: the standard “propositions as types” interpretation,
and the usual first-order one.

3

2 Bracket Types

We consider a Martin-Löf style dependent type theory [ML84, ML98]. As is
customary when a type operation is defined, the formulation of bracket types
does not refer to dependent sums or products, although we sometimes assume
that they are present in the type theory. We work in a type theory with strong
and extensional equality and strong dependent sums. For reference, we list the
rules in Appendix A and refer the reader to [Jac99] for full details.

Among the types, there are some that satisfy the following condition of
“proof irrelevance”:

Γ ` P type Γ ` p : P Γ ` q : P

Γ ` p = q : P
(1)

In words, this means that any two terms p and q of such a type P are (ex-
tensionally) equal. We call the types satisfying proof irrelevance propositions.
(They were called “mono types” by Maietti [Mai98b], and “squash types” by
Mendler [Men90].)

If P and Q are propositions in this sense, then clearly so are

1, P ×Q, P → Q,
∏

x:AP

where in the last expression P may depend on an arbitrary type A. In logical
terms, this means that propositions are already closed under the following logical
operations:

T, P ∧Q, P ⇒Q, ∀x:A.P .

In Section 5 we will see how to define the remaining first-order logical operations.
Because of proof irrelevance, if a proposition P is inhabited, then it is so by

precisely one term (up to extensional equality). Thus, a typing judgment

Γ ` p : P

is like a statement of P ’s truth,

Γ ` P true

as p does not play any role other than uniquely witnessing the fact that P holds.
We introduce a new type constructor [−] which associates to each type A

a proposition [A], called the associated proposition of A. The axioms given in
Figure 1 were designed with the following adjunction in mind, for any type A
and proposition P :

x : A ` p : P

x′ : [A] ` p′ : P
(2)

The equivalence states that the bracket operation is left adjoint to the inclusion
of propositions into types. We will derive this correspondence in the semantics
of bracket types in Section 4. Using the rules provided in Figure 1, we can take

4

Bracket types

Γ ` A type

Γ ` [A] type
formation

Γ ` a : A

Γ ` [a] : [A]
intro

Γ ` q : [A] Γ ` B type Γ, x:A ` b : B Γ, x:A, y:A ` b = b{y/x} : B

Γ ` b where [x] = q : B
elim

Γ ` p : [A] Γ ` q : [A]

Γ ` p = q : [A]
equality

Conversions

b where [x] = [a] =β b{a/x}

b{[x]/u} where [x] = q =η b{q/u}

Free variables

FV([A]) = FV(A)

FV([a]) = FV(a)

FV(b where [x] = q) = (FV(b) \ {x}) ∪ FV(q)

Substitution

[A]{t/x} = [A{t/x}]

[a]{t/x} = [a{t/x}]

(b where [x] = q){t/y} = b{t/y} where [x] = (q{t/y})

(provided x 6= y and capture of x in t is avoided)

Congruence rules

A = A′ ⇒ [A] = [A′]

a = a′ ⇒ [a] = [a′]

b = b′ ∧ q = q′ ⇒ (b where [x] = q) = (b′ where [x] = q′)

Figure 1: Bracket types

5

p′ = (p where [x] = x′), since the equality condition on p : P for elimination is
satisfied by proof irrelevance (1). See remark in Section 7 for consideration of
alternate formulations of bracket types.

As an example, let us show that the term forming operation [−] is ‘epic’ in
the following sense:

Γ, x:A ` s{[x]/u} = t{[x]/u} : B

Γ, u:[A] ` s = t : B
(3)

If we think of a term Γ, x:A ` r : B as an arrow A → B in the slice category
over Γ, as we will in Section 3, then we have the following situation over Γ:

A
[−] // [A]

s //
t

// B

Now (3) says that s◦ [−] = t◦ [−] implies s = t for arbitrary s, t : A→ B, which
means that [−] is epic. To prove (3), observe first that by the equality rule we
have

Γ, x:A, y:A ` [x] = [y] : [A]

therefore
Γ, x:A, y:A ` s{[x]/u} = s{[y]/u} : [A]

which means that we can form the term s{[x]/u} where [x] = u. Similarly, we
can form the term t{[x]/u} where [x] = u. Now we get

s =η (s{[x]/u} where [x] = u) = (t{[x]/u} where [x] = u) =η t .

The second equality follows from the assumption s{[x]/u} = t{[x]/u} and the
congruence rule for where terms.

A consequence of (3) is the following conversion, called exchange:

b where [x] = (p where [y] = q) = (b where [x] = p) where [y] = q .

The rule is valid when y 6= x and y 6∈ FV(b). By (3) it suffices to verify the
exchange rule for the case q = [z] where z:A is a fresh variable. We then get

(b where [x] = p) where [y] = [z] =β b{z/y} where [x] = (p{z/y})

= b where [x] = (p{z/y})

=β b where [x] = (p where [y] = [z])

In the second equality we took into account the fact that y does not occur freely
in b, and in the third equality we applied the η rule to the subterm p{z/y},
which we can do because of the congruence rules.

3 Categorical Semantics of Bracket Types

In this section we present a semantics for bracket types in regular categories,
see e.g. [Bor94] for the latter. The rules in Figure 1 are sound and complete for
such semantics.

6

Definition 3.1 A regular category C is a category with finite limits in which

1. every kernel pair has a coequalizer, and

2. the pullback of a regular epimorphism is a regular epimorphism.

The first condition states that in a regular category we can form quotients
by equationally defined equivalence relations, and the second condition requires
such quotients to behave well with respect to finite limits.

Let us first briefly recall how to interpret dependent type theory with de-
pendent sums

∑

and strong extensional equality Eq in a category with finite
limits (cf. [Joh02, D4.4] for full details). We use the semantic bracket [[X]] to
denote the interpretation of X, where X could be a type, a term, a context,
or a judgment. When no confusion can arise, we omit the semantic brackets,
especially in diagrams, in order to improve readability. We usually denote the in-
terpretation of a context x1:A1, . . . , xn:An simply as (A1, . . . , An) instead of the
“official” [[x1:A1, . . . , xn:An]], especially when the particular variables x1, . . . , xn

do not play a significant role. This device is used solely to improve readability
in diagrams, and has no semantic significance.

The empty context is interpreted as the terminal object 1. The interpretation
of a type in a context

Γ ` A type

is given in the slice category C/[[Γ]] by an arrow, called a display map,

[[Γ, x:A]]

[[Γ`A]]

²²
[[Γ]]

where we here abbreviated the name of the arrow. Its domain is the interpre-
tation of the context Γ, x:A.

A term in a context
Γ ` t : A

is interpreted by a point of (Γ, A) in the slice C/[[Γ]]

(Γ)
[[Γ`t:A]] //

=
ÃÃB

BB
BB

BB
B

(Γ, A)

[[Γ`A]]||yy
yy

yy
yy

(Γ)

In other words, a term Γ ` t : A is interpreted as a section of the interpretation
of Γ ` A type. Normally, we write just [[t]] or t instead of [[Γ ` t : A]].

The interpretation of a variable in a context, [[Γ, xi:Ai, . . . , xn:An ` xi : Ai]],
is the composition of morphisms

(Γ, Ai, . . . , An) // (Γ, Ai, . . . , An−1) // · · · // (Γ, Ai)

7

where the morphism (Γ, Ai, . . . , Ak+1) → (Γ, Ai, . . . , Ak) is the interpretation of
the type Ak+1.

We interpret substitution of a term a for a variable x,

Γ ` a : A Γ, x:A ` B type

Γ ` B{a/x} type

Γ ` a : A Γ, x:A ` t : B

Γ ` t{a/x} : B{a/x}

as indicated in the following pullback diagram, formed in the slice over (Γ):

(Γ)

t{a/x}

$$IIIIIIIIIIIIII

a //

=

##

(Γ, x:A)

t

&&LLLLLLLLLLLLLLLLL

(Γ, B{a/x}) //

Γ`B{a/x}

²²

_
Â (Γ, x:A,B)

Γ,x:A`B

²²
(Γ)

a
// (Γ, A)

Observe that the outer pentagon commutes because t is a section of the right-
hand vertical arrow. Since the lower right square is a pullback, the arrow
[[t{a/x}]] is uniquely determined by its universal property.

The interpretation of a dependent sum formed as

Γ, x:A ` B type

Γ `
∑

x:AB type

is the composition of the arrows

(Γ, A,B)

Γ,A`B

²²
Γ`

P

A
B

££

(Γ, A)

Γ`A

²²
(Γ)

This gives us a connection between the interpretation of contexts and dependent
sums, because it must be the case that [[Γ, A,B]] = [[Γ,

∑

x:AB]].
The interpretation of an equality type formed as

Γ ` s : A Γ ` t : A

Γ ` EqA(s, t) type

is the equalizer of s and t, as in the following diagram:

(Γ,EqA(s, t))
[[Γ`Eq

A
(s,t)]] // (Γ)

s //

t
// (Γ, A)

8

When s and t are the same term, the equalizer is trivial and we have

[[Γ,EqA(t, t)]] = [[Γ]]

From this we obtain the interpretation of a ‘reflexivity’ term

Γ ` t : A

Γ ` r(t) : EqA(t, t)

simply as the identity arrow

(Γ)
[[r(t)]] = 1[[Γ]] // (Γ) = (Γ,EqA(t, t))

Next, we give the interpretation of the first and the second projection from a
dependent sum. Consider the terms

Γ ` p :
∑

x:AB

Γ ` π1(p) : A

Γ ` p :
∑

x:AB

Γ ` π2(p) : B{π1(p)/x}

We interpret π1(p) as the composition of arrows

(Γ)
p // (Γ, A,B)

Γ,A`B // (Γ, A)

and π2(p) as indicated in the following diagram:

(Γ)

[[π2(p)]]

&&MMMMMMMMMMM p

&&

=

''

(Γ, B{π1(p)/x}) //

²²

_
Â (Γ, x:A,B)

Γ,A`B

²²
(Γ)

π1(p)
// (Γ, A)

The arrow [[π2(p)]] is the unique arrow obtained from the universal property of
the displayed pullback diagram. A dependent pair formed as

Γ ` a : A Γ, x:A ` B type Γ ` b : B{a/x}

Γ ` 〈a, b〉 :
∑

x:AB

is interpreted as the composition of b with the top arrow in the diagram

(Γ, B{a/x}) //

Γ`B{a/x}

²²

_
Â (Γ, A,B)

Γ,A`B

²²
(Γ)

a
//

b

DD

(Γ, A)

This completes the outline of the interpretation of dependent type theory with
∑

and Eq types in a finitely complete category.

9

Remark 3.2 It is well known that certain coherence problems arise when one
interprets dependent type theory in slice categories as above. The problems
are caused by the fact that, in general, the result of successive pullbacks along
arrows g : B → C and f : A → B is only isomorphic to the pullback along the
composition g ◦ f , whereas for a completely water-tight interpretation equality
is required instead.

There are several standard ways of resolving this problem, most notably by
interpreting the type theory in a suitable, equivalent fibered category [Jac99],
and then applying technical results pertaining to these [Hof95]. We do not wish
to obscure matters by employing such technical devices here (in this respect
we also follow [Joh02, D4.4]). The reader familiar with such matters will have
no difficulty translating the following presentation of the semantics of bracket
types into a suitable fibered setting (which works in virtue of [Jac99, theorem
4.4.4]). Corresponding changes are possible for the other familiar remedies, such
as making a coherent choice of pullbacks, or collapsing the slice categories into
skeletal ones. (For the syntactic category in Section 3, such pullbacks can be
chosen simply as substitutions.)

We now proceed with the interpretation of bracket types. A regular cate-
gory C has stable regular epi–mono image factorizations. Every arrow f : A→ B
can be factored uniquely up to isomorphism as a regular epi followed by a mono

A
f //

"" ""DD
DD

DD
DD

B

Im(f)

<<

<<zzzzzzz

The factorization is obtained by taking the coequalizer q of the kernel pair (π1, π2)
of f , as in the following diagram:

A×B A
π1 //
π2

// A
f //

q !! !!DD
DD

DD
DD

B

Im(f)

== i

==zzzzzzz

The arrow i : Im(f) → B exists and is unique with i◦q = f because f coequalizes
its own kernel pair. It can moreover be shown that i is always monic.

A bracket type
Γ ` A type

Γ ` [A] type

10

is interpreted as the image of [[Γ ` A]]:

(Γ, A)
[−] // //

Γ`A

''OOOOOOOOOOOOOOOOO
[[Γ, [A]]] = Im(Γ ` A)

²²

[[Γ`[A]]]

²²
(Γ)

The regular epi part of the factorization is used in the interpretation of term
bracketing

Γ ` a : A

Γ ` [a] : [A]

The interpretation of [a] is the composition

(Γ)
a // (Γ, A)

[−] // // (Γ, [A])

It remains to interpret the where terms. Consider

Γ ` q : [A] Γ, x:A ` b : B Γ, x:A, y:A ` b = b{y/x} : B

Γ ` b where [x] = q : B

The various terms and types occurring above are interpreted in the slice over [[Γ]],
as shown in the following diagram:

(Γ, x:A, y:A)
x //
y

// (Γ, A)

b

$$IIIIIIIIIIII

[−] // // (Γ, [A])

b

²²

(Γ)
qoo

(b where [x]=q)

{{wwwwwwwwwwww

(Γ, A,B)

By assumption, the arrow labelled b coequalizes the two projections. The regu-
lar epi [−] is the coequalizer of those two projections, therefore Γ, A ` b factors
uniquely through [−] via b. The interpretation of (b where [x] = q) is the com-
position b ◦ q.

We omit the routine proof of soundness of the interpretation of dependent
sums and equality types, and concentrate on the interpretation of bracket types.
We need to verify the equality rule, two conversion rules, the substitution rules
and the congruence rules.

Theorem 3.3 The interpretation of bracket types in regular categories is sound.

11

Proof. When the equality rule is translated into the semantics, it states that
the arrows p and q in the following diagram are equal:

(Γ)
p //
q

//

=

""EEEEEEEEEEEEEE
(Γ, [A])

²²

Γ`[A]

²²
(Γ)

Since p and q are sections of the mono [[Γ ` [A]]] they must be equal. Next,
consider the β-rule

b where [x] = [a] =β b{a/x} .

The relevant diagram is

(Γ, A)

[−]

²²²²
b

$$JJJJJJJJJJJJJ
(Γ)

aoo

(b where [x]=[a])

²²
(Γ, [A])

b

// (Γ, A,B)

The arrow b is the unique factorization of b through [−]. By construction, the
lower-left triangle commutes, and the right-hand arrow is defined to be the
composition b ◦ [−] ◦ a, which implies that the upper-right triangle commutes.
This is precisely what the β-rule states.

To verify the η-rule

b{[x]/u} where [x] = q =η b{q/u}

we consider the following diagram:

(Γ, x:A)

b{[x]/u}
%%JJJJJJJJJJJJJ

[−] // // (Γ, u:[A])

b

²²

(Γ)
qoo

(b{[x]/u} where [x]=q)
{{wwwwwwwwwwww

(Γ, A,B)

The arrow b{[x]/u} is the composition of [−] and b. There is a unique fac-
torization b{[x]/u} of b{[x]/u} through [−], and the interpretation of the term
b{[x]/u} where [x] = q is the composition b{[x]/u}◦ q. But b{[x]/u} also factors
through [−] via b, so it must be that b{[x]/u} = b. Now the η-rule follows,
because the arrow b ◦ q is the interpretation of b{q/u}.

The substitution rules are valid because the regular epi–mono factorizations
are stable under pullbacks. The congruence rules are valid simply because we
interpreted the bracket types and terms by well defined categorical operations
(which therefore preserve equality).

12

Theorem 3.4 Semantics of extensional type theory D with 1,
∑

, Eq, and [−]
types in regular categories is complete, in the sense that two terms are provably
equal in D if their interpretations in regular categories are always equal.

Proof. In order to prove the theorem we build a syntactic category S from
the dependent type theory D. We then show that S is a regular category, and
that the interpretation of D in S validates precisely all the provable equations
between terms.

We shall not go into all the details involved in such a construction, which
can be quite involved, but focus on the novelties associated with the bracket
types. For details of the general case, we refere the reader to [Jac99, 10.3] and
the further references cited there.

The objects of S are the closed types of D (modulo provable equality). The
arrows from a closed type A to a closed type B are represented by terms

x:A ` t : B

where two such terms s and t represent the same arrow if, and only if, D proves
that they are equal x:A ` s = t : B (since we are working with extensional
equality it does not matter which sense of ‘equal’ we take). Furthermore, two
terms in a context will be considered equal if we can obtain one from the other
by renaming bound and free variables in a capture-avoiding way.

The composition of arrows x : A ` t : B and y : B ` s : C is the arrow
x : A ` s{t/y}. That composition is well-defined and associative follows from
the properties of substitution. The identity arrow on A is represented by x :
A ` x : A.

Since terms representing the same arrow must be provably equal, it suffices
to show that S is regular. Let us prove first that it has finite limits. The
terminal object is 1. Indeed, for any type A we have an arrow x:A ` ? : 1, and
for any other arrow x:A ` t : 1 we have x:A ` t = ? : 1 by the equality axiom
for the unit type. It is fairly easy to verify that S has binary products: the
product of A and B is the type A×B =

∑

x:AB.
The equalizer of arrows x : A ` s : B and x : A ` t : B is constructed as

follows:
∑

x:AEqB(s, t)
π1 // A

s //

t
// B

Proving that the arrow π1 equalizes s and t amounts to proving that

v :
∑

x:AEqB(s, t) ` s{π1(v)/x} = t{π1(v)/x} : B .

This follows from the extensionality of equality since π2(v) is a term of type

EqB(s{π1(v)/x}, t{π1(v)/x}) .

Suppose z : C ` h : A equalizes s and t:

z : C ` s{h/x} = t{h/x} : B

13

Then we can form the term witnessing the equality

z : C ` r(s{h/x}) : EqB(s{h/x}, t{h/x})

and from that the factorization of h through the equalizer:

z : C ` 〈h, r(s{h/x})〉 :
∑

x:AEqB(s, t)

This arrow is unique because any two terms of a (strong extensional) Eq type
are equal. Therefore, S has all finite limits.

It remains to show that S has stable coequalizers of kernel pairs. Before
proceeding with the proof of regularity of S, let us spell out the interpretation
of dependent types with 1,

∑

and Eq in S.
Dependent contexts are interpreted by nested dependent sums

[[1]] = 1

[[x1:A1, . . . , xn:An]] =
∑

x1:A1

∑

x2:A2
· · ·

∑

xn−1:An−1
An

In order to keep the notation simple we denote such a nested sum by (A1, . . . , An).
A type in a context, Γ ` A type, is interpreted by a suitable display map

(Γ, A)

Γ`A

²²
(Γ)

More precisely, if Γ is y1:B1, . . . , yn:Bn, then the display map Γ ` A is the term

p : (B1, . . . , Bn, A) ` 〈π1(p), π1(π2(p)), . . . , π1(π
n−1
2 (p))〉 : (B1, . . . , Bn) .

With this notation, we get a good match between the syntax of dependent types
and their interpretation in S. For example, a dependent sum in a dependent
context

Γ, x:A ` B type

Γ `
∑

x:AB

is interpreted essentially “by itself” as the arrow

(Γ,
∑

x:AB)
Γ`

P

x:A B
// (Γ)

Similarly, an equality type in a dependent context is interpreted essentially by
itself, except that we must form the nested dependent sums in order to interpret
the dependent context in which the type is placed.

Consider an arrow x : A ` t : B in S. We can form the dependent type

y : B `
∑

x:AEqB(t, y) type

and re-interpret it in S. Its interpretation is the display map

p :
∑

y:B

∑

x:AEqB(t, y) ` π1(p) : B

14

This display map is isomorphic in S/B to the arrow x : A ` t : B that we started
with. Indeed, A is isomorphic to

∑

y:B

∑

x:AEqB(t, y) via the isomorphisms

x : A ` 〈t, 〈x, r(t)〉〉 :
∑

y:B

∑

x:AEqB(t, y)

and
p :

∑

y:B

∑

x:AEqB(t, y) ` π1(π2(p)) : A

It is easy to check that these two isomorphisms commute with the arrows t
and π1. This shows that every arrow in S is isomorphic to the interpretation of
a dependent type in a context of the form z : C ` D type. Thus, in order to show
that S has coequalizers of kernel pairs, we only need to find the coequalizers of
the kernel pairs of arrows that are interpretations of such types, namely those
of the form

p :
∑

z:CD ` π1(p) : C (4)

Because any p :
∑

z:CD can be written uniquely as a pair 〈z, w〉 with z : C and
w : D, we shall write (4) more readably as

z : C,w : D ` z : C (5)

This way we avoid the use of nested projections later on, when we have to deal
with nested dependent sums. The kernel pair of (5) is easily seen to be

(z:C, v:D,w:D)
〈z,v〉 //

〈z,w〉
// (C,D) (6)

We can get its coequalizer by applying bracket types:

(z:C, v:D,w:D)
〈z,v〉 //

〈z,w〉
// (z:C, u:D)

〈z,[u]〉 // (C, [D]) (7)

Indeed, 〈z, [u]〉 coequalizes the kernel pair by the equality rule for bracket types:

z:C, v:D,w:D ` [v] : [D] z:C, v:D,w:D ` [w] : [D]

z:C, v:D,w:D ` [v] = [w] : [D]

To see that it is the coequalizer, suppose we have an arrow

z:C, u:D ` t : B

that coequalizes the kernel pair, which means that

z:C, v:D,w:D ` t{v/u} = t{w/u} : B

Then we can form the factorization of t through [u] as the where term

z:C, y:[D] ` t where [u] = y : B

15

The situation is depicted in the following diagram:

(z:C, v:D,w:D)
〈z,v〉 //

〈z,w〉
// (z:C, u:D)

〈z,[u]〉 &&MMMMMMMMMMM

t // (B)

(C, y:[D])

(t where [u]=y)

::uuuuuuuuu

The triangle commutes because

t where [u] = [u] = t

by the β-rule for bracket types. The factorization is unique, because [−] is epic,
as we showed in Section 2.

Lastly, let us show that in S regular epis are stable under pullbacks. Since
every arrow in S is isomorphic to one of the form (5), every kernel pair is
isomorphic to one of the form (6) and so every regular epi is isomorphic to one
of the form (7). Let us then compute, without loss of generality, a pullback of
such a coequalizer along an arrow of the form (5):

(y:B, z:C, u:D)
〈z,u〉 //

〈y,z,[u]〉

²²

_
Â (z:C, u:D)

〈z,[u]〉

²²
(y:B, z:C, v:[D])

〈z,v〉
// (C, [D])

It is evident that the left-hand arrow is a regular epi, because it is of the form (7).
It is also clear that the diagram commutes. To see that it is a pullback, observe
that it appears as the upper half of the following commutative diagram:

(y:B, z:C, u:D)
〈z,u〉 //

〈y,z,[u]〉

²²

_
Â (z:C, u:D)

〈z,[u]〉

²²
(y:B, z:C, v:[D])

〈z,v〉
//

〈y,z〉

²²

(z:C, [D])

z

²²
(B, z:C)

z
// (C)

The outer rectangle and the lower square are obviously pullbacks, hence the
upper square is as well.

16

We can express the regular epi–mono factorization of an arrow x : A ` t : B
as

A
t //

q !! !!DD
DD

DD
DD

B

Im(t)

== m

==zzzzzzz

with

Im(t) =
∑

y:B [
∑

x:AEqB(t, y)]

m = z : Im(t) ` π1(z) : B

q = x : A ` 〈t, [〈x, r(t)〉]〉 : Im(t) .

4 Properties of Bracket Types

As a consequence of the complete semantics of the previous section we can prove
facts about bracket types by arguing in a general regular category C. Thus we
identify types with objects and terms in contexts with arrows. We use this
technique in the present section to establish some of the basic properties of
bracket types.

First observe that, in any context Γ, the types satisfying proof irrelevance (1),
are exactly the cartesian idempotents:

P prop ⇐⇒ P = P ×Γ P (8)

where here and in what follows, = between types means that they are canonically
isomorphic. For example, in (8) the canonical isomorphisms are the diagonal
and the projection. If P and Q are propositions in the context Γ then the
corresponding display maps (Γ, P) → (Γ) and (Γ, Q) → (Γ) are monos, so that
we can think of P and Q as subobjects of Γ. In particular, we can write P ≤ Q
when there exists a (necessarily unique) arrow P → Q in the slice over Γ.

The bracket operation determines an endofunctor [−] : C/Γ → C/Γ on the
slice category over any context Γ. A type Γ ` A is mapped to Γ ` [A], and an
arrow Γ, x : A ` t : B is mapped to the bottom arrow in the following diagram
in C/Γ:

x:A
t //

[−]

²²²²

B

[−]

²²²²
u:[A]

[t] where [x]=u
// [B]

Functoriality is ensured by uniqueness of image factorizations in C. The action
of the functor [−] on the arrow t is not to be confused with the arrow t ◦ [−] =
[t] : A→ [B], which does not even have the correct domain.

17

Substitution rules for bracket types, cf. Figure 1, imply that the functor
is stable, in the sense that it commutes with pullbacks. The first two clauses
of the following proposition say that bracket acts like a diamond operation, in
the sense of modal logic, in a system with dependent types. As such, it is an
example of quantified modal logic.

Proposition 4.1 For any types A, B in a context Γ:

1. There is a canonical arrow A→ [A], natural in A.

2. [[A]] = [A].

3. A = [A] ⇐⇒ A = A×Γ A.

4. 1 = [1].

5. [A×Γ B] = [A] ×Γ [B].

Moreover, (1)–(3) characterize [−] uniquely among stable endofunctors on C/Γ.

Proof. The proposition is proved easily. By way of example, we prove that
[[A]] = [A]. In the diagram

A //

²²²²

Γ

[A]

==

=={{{{{{{{{{

// // [[A]]

OO

OO

the arrow [A] → [[A]] is the regular epi part of an image factorization of the
mono [A] → Γ, therefore it is an isomorphism. Image factorization is evidently
the unique stable endofunctor on C/Γ with properties (1)–(3).

Let us see how the adjunction (2) is validated, for any type A and a proposi-
tion P , by which we mean that P satisfies (8): given any arrow (term) A→ P ,
we apply the functor [−] to get a unique one [A] → [P], but [P] = P since P is
a proposition. Conversely, given [A] → P , we precompose with A → [A] to get
A→ P .

To see how [−] and
∑

interact, consider the types [
∑

AB] and [
∑

A[B]] in a
context Γ, obtained by applying the

∑

and [−] formation rules in two different

18

orders, as indicated in the following diagram.

(Γ, A,B)

²²²²

// //

P

A
B

ÀÀ;
;

;
;

;
;

;
;

;
;

;
;

;
;

;
;

;
;

;
;

;
;

;
;

;
;

(Γ, [
∑

AB])
²²

[
P

A
B]

²²

(Γ, A, [B])

P

A
[B]

&&MMMMMMMMMMMMMMMMM

²²²²
(Γ, [

∑

A[B]]) //
[
P

A
[B]]

// (Γ)

Since the two ways around the diagram from (Γ, A,B) to (Γ) are both regular
epi–mono factorizations of the same arrow, by uniqueness of images we have:

[
∑

A[B]] = [
∑

AB]

For equality types EqA, the elimination rule,

Γ ` e : EqA(a, b)

Γ ` e = r(a) : EqA(a, b)

implies that EqA(a, b) × EqA(a, b) = EqA(a, b), whence:

[EqA(a, b)] = EqA(a, b) .

Together with [1] = 1, that summarizes the properties of [−] on its own.
Things become more interesting in the presence of other type-forming opera-
tions,

0, A+B,
∏

AB, A→ B, ¬A ,

where ¬A stands for A→ 0.
For finite sums we get

[0] = 0 , [A+B] = [[A] + [B]] .

by an argument similar to that for
∑

.
For

∏

we have (
∏

A[B]) × (
∏

A[B]) =
∏

A([B] × [B]) =
∏

A[B], so that

[
∏

A[B]] =
∏

A[B] ,

and one sees easily that
[
∏

AB] ≤
∏

A[B] (9)

where, as defined above, P ≤ Q iff there is a (necessarily unique) arrow P → Q.
When we specialize this to a function type A→ B we get

[A→ [B]] = A→ [B] , [A→ B] ≤ A→ [B] . (10)

19

The inequality results similarly in any formally analogous situation; e.g. if F (X)
is the free group on a set X, then for any sets A and B there is a natural map

ϑ : F (BA) → F (B)A

defined on the generators f : A→ B by ϑ(f)(a) = f(a).
For brackets on the left, it is easy to see that

A→ [B] = [A] → [B] = [[A] → [B]] . (11)

Taking B = 0 therefore yields the noteworthy

¬A = ¬[A] = [¬A] . (12)

Since ¬A is thus always a proposition it is natural to ask whether perhaps:

[A] = ¬¬A ?

The answer is in general negative, since there are many simple models in reg-
ular lccc’s in which double negation closure is not trivial on monos. Consider
for instance the arrow category Set→ of functions between sets, and take the
monomorphism s½ 1 where s : 0 → 1, as pictured below.

0 // //
²²

s

²²

1
²²

1

²²
1 // // 1

Since s→ 1 is monic, [s] = s. But since 0, s, 1 are obviously the only subobjects
of 1, the Heyting algebra Sub(1) is the three-element one. Thus ¬¬s = 1.

5 First Order Logic via Bracket Types

In dependent type theory with the type-forming operations,

0, 1, [A], A+B, EqA,
∑

x:AB,
∏

x:AB ,

the propositions in every context model first-order logic, under the following
definitions:

> = 1

⊥ = 0

ϕ ∧ ψ = ϕ× ψ

ϕ ∨ ψ = [ϕ+ ψ]

ϕ⇒ψ = ϕ→ ψ

¬ϕ = ϕ→ 0

x =A y = EqA(x, y)

∀x:A.ϕ =
∏

x:Aϕ

∃x:A.ϕ = [
∑

x:Aϕ]

(13)

20

The bracket is thus used to rectify the operations + and
∑

because they lead
out of propositions.

Operations defined in (13) satisfy the usual rules for intuitionistic first-order
logic, and the resulting system is a dependent type theory with first-order logic
over each type. It can be described categorically as the internal logic of a regular
lccc with finite sums. This formulation is equivalent to the more customary one
using both type theory and predicate logic, despite the fact that the first-order
logical operations on the propositions are here defined in terms of the operations
on types, rather than taken as primitive.

In addition to first-order logic, one can use brackets to define subset types.
For any type Γ, x:A ` B type, the associated subset type

Γ ` {x : A | B} type

is defined by
{x : A | B} =

∑

x:A[B(x)].

These can be compared to the toolbox for subset types by Sambin [SV98].
By way of example, we remark that the category Equ of equilogical spaces [Sco96,

BBS04] is a regular lccc, and so supports all of the logical operations considered
above. For X ∈ Equ, the bracket of an X-indexed family of equilogical spaces

(Ex)x∈X

is of course the regular epi–mono image factorization of the corresponding dis-
play map

p : E → X .

The domain of the image [E] ½ X is constructed from the same underlying
space |E| as E = (|E|,∼E), but with the new equivalence relation, given by

e ∼[E] e
′ ⇐⇒ pe = pe′ .

The fact that Equ has this much internal logic without being a topos, or even a
pretopos, was the original observation from which the present work grew [BBS04].

6 First Order Logic vs. Propositions-as-Types

As an application of bracket types, we can compare the conventional inter-
pretation of first-order logic with the propositions-as-types interpretation, and
relate first-order provability to provability in dependent type theory (without
brackets).

Suppose we have a single-sorted first-order theory T, consisting of constants,
function and relation letters, and axioms given as closed formulas. The standard
propositions-as-types interpretation ∗ of T into type theory,

T
∗ // DTT (14)

21

is determined by fixing the interpretations of the basic sort, the constants, func-
tion and relation symbols. The rest of the interpretation is determined induc-
tively in the evident way, using the type-forming operations in place of the
corresponding logical ones, cf. [ML98]. For example,

(∀x∃y.R(x, y) ∨ P (x))∗ =
∏

x:I∗

∑

y:I∗(R
∗(x, y) + P ∗(x)) ,

where I∗ is a new basic type interpreting the domain of individuals I, and the
dependent types x : I∗ ` P ∗(x) and x : I∗, y : I∗ ` R∗(x, y) interpret the
relation symbols P and R.

If we add a constant a : α∗ for each axiom α, the translation ϕ∗ of a prov-
able closed formula ϕ becomes inhabited by a term that is obtained from a
straightforward translation of the proof of ϕ into type theory. Thus,

IFOL(T) ` ϕ implies DTT(T) ` ϕ∗ , (15)

where by DTT(T) ` ϕ∗ we mean that the type ϕ∗ is inhabited in the depen-
dent type theory enriched with the basic types and constants needed for the
translation ∗, and with constants inhabiting the translations of axioms of T.

The question we want to consider is the converse implication: if ϕ∗ is inhab-
ited in DTT(T), must ϕ be provable in the intuitionistic first-order theory T?
Note that functions of higher types may be used in a term inhabiting ϕ∗, so this
is not merely a matter of tracing out proofs in first-order logic.

Proofs of partial converses of (15) for different fragments of first-order logic
have been given by Martin-Löf (∀, ⇒ in [ML98]) and, recently, Tait (∃, ∧, ∀,
⇒, ¬ in [Tai]). These results are for type theory with either no equality types,
or intensional equality types, and proceed from normalization. We give a result
below that applies to type theory with extensional equality for a large fragment
of first-order logic.

Definition 6.1 A first-order formula ϑ is stable when it does not contain ∀
and ⇒, but negation ¬ is allowed as a special case of ⇒. A first-order formula ϕ
is left-stable when in every subformula of the form ϑ⇒ψ, the formula ϑ is stable.

Theorem 6.2 If ϕ is left-stable then

DTT(T) ` ϕ∗ implies IFOL(T) ` ϕ .

Proof. There is a regular lccc E with finite coproducts and a conservative,
first-order interpretation y of T into E , schematically:

T
Â

Ä y // E (16)

A formula ϕ with free variables x1, . . . , xn is translated into a subobject y(ϕ) ∈
Sub(y(I)n), where y(I) is the interpretation of the sort of individuals. A sen-
tence ϕ is translated into a subobject y(ϕ) ∈ Sub(1) of the terminal object, and
the conservativity of y means that

y(ϕ) = 1 implies IFOL(T) ` ϕ . (17)

22

For E we can take the first-order classifying topos for the theory T, in the sense
of [BJ98] (sheaves on the syntactic logos generated by T).

Since E is locally cartesian closed and has finite coproducts, we can interpret
dependent type theory with disjoint sums in it. If we compose this interpretation
with the translation (14), where we set I∗ = y(I), and R∗ = y(R), f∗ = y(f) for
the basic relation and function symbols, then we obtain another interpretation ?
of T into E , schematically:

T
? // E

Clearly if DTT(T) ` ϕ∗, then in E there exists a point

1 // ϕ? (18)

namely the interpretation of the term inhabiting ϕ∗.
Because E is regular, it has bracket types. The composition [−] ◦ ? gives

an interpretation of T into the “propositional” logic of E in each slice E/(I?)n.
More precisely, every formula ϕ with free variables x1, . . . , xn is first interpreted
as a type ϕ? in the slice E/(I?)n, and then the bracket of that type gives us a
subobject of (I?)n,

[ϕ?] // // (I?)n

We will prove the theorem by comparing the subobjects [ϕ?] and y(ϕ), for which
we need the following two lemmas.

Lemma 6.3 If ϑ is stable, then [ϑ?] = y(ϑ).

Proof. This follows from the equations (13) in the previous section, together
with the fact that the indicated definitions agree with the first-order operations
in any topos, as is easily seen. Specifically, since the two interpretations plainly
agree on the atomic formulas and y preserves the first-order operations, we can
proceed by straightforward induction. For instance, the case of disjunctions
goes as follows:

[(ϕ ∨ ψ)?] = [ϕ? + ψ?] = [[ϕ?] + [ψ?]] = [ϕ?] ∨ [ψ?]

= y(ϕ) ∨ y(ψ) = y(ϕ ∨ ψ) .

This completes the proof of the lemma.
If we tried to prove the previous lemma for formulas that contain universal

quantifiers and implications, we would get stuck because (9) and (10) are only
inequalities. Negation works, however, thanks to (12).

Lemma 6.4 If ϕ is left-stable, then [ϕ?] ≤ y(ϕ).

Proof. As in the previous lemma, we proceed by induction and use equa-
tions (13). The stable cases follow from Lemma 6.3. For universal quantifiers

23

we have:

[(∀x.ϕ)?] = [
∏

x:I? ϕ
?]

≤
∏

x:I? [ϕ?] (by (9))

= ∀x:I?. [ϕ?]

≤ ∀x:I?. y(ϕ) (ϕ left-stable)

= ∀x : y(I). y(ϕ)

= y(∀x. ϕ)

For implication we have:

[(ϑ⇒ψ)?] = [ϑ? → ψ?]

≤ ϑ? → [ψ?] (by (10))

= [ϑ?] → [ψ?] (by (11))

= [ϑ?]⇒[ψ?]

= y(ϑ)⇒[ψ?] (ϑ stable)

≤ y(ϑ)⇒ y(ψ) (ψ left-stable)

= y(ϑ⇒ψ)

This concludes the proof of the lemma.

To finish the proof of Theorem 6.2, let ϕ be a left-stable sentence such that
DTT(T) ` ϕ∗. Then, continuing from (18) above, in E we have maps:

1 → ϕ? → [ϕ?] ≤ y(ϕ) ≤ 1 .

So y(ϕ) = 1, and therefore IFOL(T) ` ϕ by (17).

Observe that every first-order formula ϕ is classically equivalent to one ϕs

that is stable. The formula ϕs, which we call the stabilized translation of ϕ, is
obtained by replacing in ϕ every ∀x. ϑ and ϑ⇒ψ by ¬∃x.¬ϑ and ¬(ϑ ∧ ¬ψ),
respectively. The equivalence ϕ ⇐⇒ ϕs holds intuitionistically if ϕ = ψ¬¬ is
the double-negation translation of a formula ψ. Therefore, the stabilized double-
negation translation

(ϕ¬¬)s

takes a formula ϕ of classical first-order logic (CFOL) to a stable one in IFOL,
with the property

CFOL ` ϕ if, and only if, IFOL ` (ϕ¬¬)s

If we compose the ¬¬s translation with the propositions-as-types translation ∗,
we obtain a translation

ϕ+ = ((ϕ¬¬)s)∗

which takes formulas of (classical) first-order logic into dependent type theory,
in such a way that every formula ϕ is classically equivalent to one covered by
Theorem 6.2.

24

Corollary 6.5 The translation ϕ 7→ ϕ+ of classical first-order logic into de-
pendent type theory has the following property:

CFOL ` ϕ if, and only if, DTT ` ϕ+

Here DTT ` ϕ+ means that the type ϕ+ is inhabited.

Remark 6.6 The following formula was suggested to us by Thierry Coquand:

(∀x∃y.R(x, y))⇒∀x, x′ ∃y, y′. (R(x, y) ∧R(x′, y′) ∧ (x = x′ ⇒ y = y′)) .

It is not provable in intuitionistic first-order logic, but its ∗-translation is in-
habited in dependent type theory, by an application of the axiom of choice.
Theorem 6.2 therefore cannot be extended to full intuitionistic first-order logic.

Remark 6.7 For the special case of intuitionistic propositional logic (IPC, with
connectives >, ∧, ⇒, ⊥, ∨) completeness with respect to dependent type the-
ory (DTT) it is easily seen to hold for all formulas. Briefly, first we use the
Curry-Howard correspondence between proofs in IPC and terms in simply-typed
λ-calculus with disjoint sums and the empty type (STT) to conclude that

IPC ` ϕ if, and only if STT ` ϕ∗ .

Then we use the well-known correspondence between STT and bicartesian closed
categories (BiCCC),1 to conclude that the completeness of IPC with respect to
DTT follows from the fact that every BiCCC has a full and faithful BiCCC em-
bedding into a locally cartesian closed category with finite coproducts (namely
its topos of sheaves for the finite coproduct topology).

7 Concluding Remarks

The addition of bracket types to dependent type theory not only provides a
more expressive system of types useful for reasoning about proof irrelevance
and formally similar phenomena; it also provides an example of how a modal
operator can be used to form a bridge between two different systems, in this
case dependent type theory and first-order logic. The use of modal operators
in type theory seems to be a fruitful area for further research, and semantic
methods will surely aid in such investigations.

More specifically, the fact that the traditional propositional modal operators
are simple examples of (co)monads, in the categorical sense, suggests studying
such structures on (locally) cartesian closed categories, as the natural semantics
for modal operators in (dependent) type theory. Our investigation here was just
one particular example (a monad) of this general scheme. The resulting appli-
cation to the conservativity of type theory can serve as a sample and pattern of

1Finite coproducts are required to be stable under pullbacks here, otherwise substitution

rules are unsound.

25

the sort of results that one might expect in general (indeed, a formally similar
result was achieved by related methods in [ABS02]).

A number of other topics related to the current work deserve mention, but
did not find space for elaboration. We record them here, and hope to deal with
them at greater length in the future.

Interdefinability. In certain systems of logic, the bracket operation is de-
finable. For instance, in the presence of first-order existential quantifiers, we
have

[A] = ∃x:A. (x = x) .

In a topos, we also have the option:

[A] =
∏

p:Ω(A→ {u:1 | p}) → {u:1 | p}

where {u:1 | p}½ 1 is the extension of p. A similar definition works in systems
of type theory with universes. See [Acz01] for a study of related operations.

Classical type theory. In the context of (13), consider the further rules

(a) [A] = ¬¬A and (b) [
∏

AB] =
∏

A[B] .

In toposes (a) is Excluded Middle and (b) is the Axiom of Choice, which is
strictly stronger. In type theory, therefore, (b) cannot be proved from (a) (con-
sider a permutation model), while the converse inference is plausible, but un-
verified. See [Awo95, Pal04] for related results.

Alternate formulations. We can also consider a formulation of bracket types
in which we have a new judgment “Γ ` P prop”, expressing the fact that P is a
proposition. The rules would then be as follows:

Γ ` A type

Γ ` [A] prop

Γ ` P prop

Γ ` P type

Γ ` a : A

Γ ` [a] : [A]

Γ ` q : [A] Γ, x:A ` p : P Γ ` P prop

Γ ` p where [x] = q : P

Γ ` p : P Γ ` q : P Γ ` P prop

Γ ` p = q : P

This formulation is better from the type-theoretic point of view because it does
not involve an equality judgment as a premise for the elimination rule. As stated
so far, however, the rules permit many different interpretations, including the
trivial interpretation in which the only proposition is the unit type 1, and [A] = 1

for all A. One could additionally assert that certain types are propositions:

Γ ` 0 prop Γ ` 1 prop

Γ ` P prop Γ ` Q prop

Γ ` P ×Q prop

Γ ` P prop Γ ` Q prop

Γ ` P → Q prop

Γ, x:A ` P prop

Γ `
∏

x:AP prop

Γ ` s : A Γ ` t : A

Γ ` EqA(s, t) prop

26

This still leaves room for alternative interpretations. For example, nothing
prevents interpreting propositions as regular monos and the bracket types as
the epi–regular mono factorizations.

Acknowledgement. We gratefully acknowledge the support of the Institut
Mittag-Leffler, the Royal Swedish Academy of Sciences, where this research was
conducted. We also thank Peter Aczel, Lars Birkedal, Thierry Coquand, Nicola
Gambino, Milli Maietti, Per Martin-Löf, Grigori Mints, Erik Palmgren, Frank
Pfenning, Dana Scott, Anton Setzer, and Bill Tait for their contributions. This
work is part of the Logic of Types and Computation project at Carnegie Mellon
University under the direction of Dana Scott.

A Dependent Sums and Equality Types

For completeness, we list the rules for dependent type theory with the unit type,
strong dependent sums and strong extensional equality, cf. [Jac99]. We do not
show rules which relate judgmental equality and substitution (“substitution of
equals for equals”).

Formation rules:

Γ ` 1 type

Γ, x:A ` B type

Γ `
∑

x:AB type

Γ ` A type

Γ, x:A, y:A ` EqA(x, y) type

Introduction and elimination rules:

Γ ` ? : 1

Γ ` t : A

Γ ` r(t) : EqA(t, t)

Γ ` a : A Γ, x:A ` B type Γ ` b : B{a/x}

Γ ` 〈a, b〉 :
∑

x:AB

Γ ` p :
∑

x:AB

Γ ` π1(p) : A

Γ ` p :
∑

x:AB

Γ ` π2(p) : B{π1(p)/x}

In
∑

x:AB, variable x is bound in A. Equality rules:

Γ ` t : 1

Γ ` t = ? : 1

Γ ` e : EqA(s, t))

Γ ` s = t : A

Γ ` e : EqA(s, t)

Γ ` e = r(s) : EqA(s, t)

Conversions:

π1(〈a, b〉) = a

π2(〈a, b〉) = b

〈π1(p), π2(p)〉 = p

27

References

[ABS02] S. Awodey, L. Birkedal, and D.S. Scott. Local realizability toposes and
a modal logic for computability. Mathematical Structures in Computer
Science, 12:319–334, 2002.

[Acz01] P. Aczel. The Russell-Prawitz modality. Mathematical Structures in
Computer Science, 11(4):541–554, August 2001.

[AG02] P. Aczel and N. Gambino. Collection principles in dependent type
theory. In P. Callaghan, Z. Luo, J. McKinna, and R. Pollack, edi-
tors, Types for Proofs and Programs, International Workshop, TYPES
2000, Durham, UK, December 8-12, 2000, Selected Papers, volume
2277 of Lecture Notes in Computer Science, pages 1–23. Springer,
2002.

[Awo95] S. Awodey. Axiom of choice and excluded middle in categorical logic.
Bulletin of Symbolic Logic, 1:344, 1995. Abstract of unpublished
manuscript.

[BBS04] A. Bauer, L. Birkedal, and D.S. Scott. Equilogical spaces. Theoretical
Computer Science, 315(1):35–59, 2004.

[BJ98] C. Butz and P.T. Johnstone. Classifying toposes for first-order theo-
ries. Annals of Pure and Applied Logic, 91:35–58, 1998.

[Bor94] F. Borceux. Handbook of Categorical Algebra, volume 2. Cambridge
University Press, 1994.

[Hof95] M. Hofmann. On the interpretation of type theory in locally cartesian
closed categories. In L. Pacholski and J. Tiuryn, editors, Computer
Science Logic 1994, volume 806 of Lecture Notes in Computer Science.
Springer, 1995.

[How80] W. A. Howard. The formulae-as-types notion of construction. In J. R.
Seldin and J. P. Hindley, editors, To H. B. Curry: Essays on Combi-
naory Logic, Lambda Calculus, and Formalism. Academic Press, 1980.

[Jac99] B. Jacobs. Categorical Logic and Type Theory. Elsevier Science, 1999.

[Joh02] P.T. Johnstone. Sketches of an Elephant: A Topos Theory Com-
pendium, volume 2, volume 44 of Oxford Logic Guides. Oxford Uni-
versity Press, 2002.

[Law69] F. W. Lawvere. Adjointness in foundations. Dialectica, 23:281–296,
1969.

[Mai98a] M. Maietti. The internal type theory of an heyting pretopos. In
E. Giménez and C. Paulin-Mohring, editors, Types for Proofs and

28

Programs, International Workshop TYPES’96, Aussois, France, De-
cember 15-19, 1996, Selected Papers, volume 1512 of Lecture Notes in
Computer Science, pages 216–235. Springer, 1998.

[Mai98b] M.E. Maietti. The Type Theory of Categorical Universes. PhD thesis,
Università Degli Studi di Padova, 1998.

[Men90] N. P. Mendler. Quotient types via coequalizers in Martin-Löf type
theory. In G. Huet and G. Plotkin, editors, Informal Proceedings of
the First Workshop on Logical Frameworks, Antibes, May 1990, pages
349–360, 1990.

[ML84] P. Martin-Löf. Intuitionistic Type Theory. Notes by Giovanni Sambin
of a series of lectures given in Padua, June 1980. Bibliopolis, Napoli,
1984.

[ML98] P. Martin-Löf. An intuitionistic theory of types. In G. Sambin and
J. Smith, editors, Twenty-Five Years of Constructive Type Theory.
Oxford University Press, August 1998. Proceedings of a Congress
held in Venice, Italy, October 1995.

[Pal04] E. Palmgren. A categorical version of the Brouwer-Heyting-
Kolmogorov interpretation. Mathematical Structures in Computer
Science, 14:57–72, 2004.

[Pfe01] F. Pfenning. Intensionality, extensionality, and proof irrelevance in
modal type theory. In Proceedings of the 16th Annual IEEE Sym-
posium on Logic in Computer Science (LICS’01), page 221. IEEE
Computer Society, June 2001.

[Sco96] D.S. Scott. A new category? Unpublished Manuscript. Available at
http://www.cs.cmu.edu/Groups/LTC/, December 1996.

[SV98] G. Sambin and S. Valentini. Building up a toolbox for Martin-Löf’s
type theory: Subset theory. In G. Sambin and J. Smith, editors,
Twenty-Five Years of Constructive Type Theory. Oxford University
Press, August 1998. Proceedings of a Congress held in Venice, Italy,
October 1995.

[Tai] W. W. Tait. The completeness of intuitionistic first-order logic. Un-
published manuscript.

29

http://www.cs.cmu.edu/Groups/LTC/

	Introduction
	Bracket Types
	Categorical Semantics of Bracket Types
	Properties of Bracket Types
	First Order Logic via Bracket Types
	First Order Logic vs. Propositions-as-Types
	Concluding Remarks
	Dependent Sums and Equality Types

