
Some surprises in
Mathematica

December 1, 2005
Andrej Bauer
http://andrej.com

Mathematica is a great application. But like most Computer Algebra Systems, it does not always give
you correct answers. Sometimes this is so because giving the correct answer in all cases would
require Mathematica to solve undecidable problems. Sometimes it just a badly designed feature.

Badly designed syntax

� The meaning of whitespace

Do you know how to factor x2 + 2 x y + y2 ? Does Mathematica?

Factor@x2 + 2 xy + y2D
x2 + 2 xy + y2

It looks like it does not even know hot to factor a simple expression like that. But how about some-
thing more complicated?

Factor@2 x3 y - y4 + 2 x2 y5 - xD
H-1 + 2 x2 yL Hx + y4L

What is going on? Juxtaposition is interpreted by Mathematica as multiplication:

2 x 3 x y

6 x2 y

It is easy to miss a missing space. If you write xy instead of x y, it might take you a while before
you figure out what is going on. This is what was wrong above. It all works once you notice the
missing space:

Factor@x2 + 2 x y + y2D
Hx + yL2

Surprises.nb 1

� Function application

Here is a rather baffling answer given by Mathematica:

Integrate@Sin Hx^2L, xD
Sin x3
������������������

3

The problem is that Sin(x^2) should have been Sin[x^2] because in Mathematica square brack-
ets are used for function application. If you write Sin(x^2), it is understood as "constant Sin
multiplied by x squared". The correct answer is:

Integrate@Sin@x^2D, xD
$%%%%%%%Π

�����
2

FresnelSA$%%%%%%%2
�����
Π

xE
While it may be argued that it is user’s fault for not knowing how to apply a function, this surely
counts as bad design. What if I, an experienced user, wrote this by mistake in the middle of a larger
computation? I would get no warning at all that things have gone wrong.

The limits of Limit

� Limits with parameters

When a free parameter occurs in an expression, Mathematica (usually) does not try to check whether
things are different at special values of the parameter. For example:

LimitA x
�������������
x - a

, x ® 0E
0

However, at a = 0 the answer is 1:

LimitA x
�������������
x - 0

, x ® 0E
1

It is understandable that Mathematica behaves this way. After all, the general problem of detecting
special values is undecidable. However, if you read documentation for Limit there is no hint that it
is user’s responsebility to worry about parameters. While in the above case it is easy to guess that
a = 0 , the following example is not so easy:

Surprises.nb 2

LimitA H1 + 4 x2L1�4
- H1 + 5 x2L1�5

���
a-x2 �2 - Cos@xD , x ® 0E

0

Unless we practically compute this limit by hand, which is exactly what we try to avoid when we use
Mathematica, you will never guess that a = ã is special:

LimitA H1 + 4 x2L1�4
- H1 + 5 x2L1�5

���
ã-x2 �2 - Cos@xD , x ® 0E

6

� Computing limits by l’Hospital rule

Do you know l’Hospital rule for computing limits? I mean, really know it, including the side condi-
tions? It goes as follows.

Let a Î @-¥, ¥D and J Î R a finite or infinite interval which intersects every neighborhood of a .
Let f , g : J � 8a< ® R be continuous and differentiable functions such that

lim
x®a

f@xD = lim
x®a

g@xD = 0

or

lim
x®a

 f@xD¤ = lim
x®a

 g@xD¤ = ¥.

Suppose g@xD ¹ 0 and g ’ @xD ¹ 0 for every x Î J � 8a< which is close enough to a . If the limit

lim
x®a

f’@xD
�����������������
g’@xD

exists then

lim
x®a

f@xD
��������������
g@xD = lim

x®a

f’@xD
�����������������
g’@xD

The blue side−condition is nasty for Mathematica to check. So it ignores it. But documentation does
not give you any hints about that. So let us take the following two functions:

f@x_D := x + Sin@2 xD �2
g@x_D := ãSin@xD x + ãSin@xD Sin@2 xD �2

If you look closely, you will see that g@xD � f@xD × ãSin@xD . Furthermore, g@xDdoes not satisfy
the conditions for l’Hospital rule, as g’@xDhas infinitely many zeroes in neighborhood of ¥ (the
blue graph below is g’@xD):

Surprises.nb 3

Plot@8g’@xD, g@xD<, 8x, 0, 70<,
PlotStyle ® 8RGBColor@0.5, 0.5, 1.0D, RGBColor@0, 0, 0D<D;

10 20 30 40 50 60 70

-50

50

100

150

Let us compute the limit f@xD����������g@xD , which is just e-Sin@xD , as x ® ¥ :

LimitA f@xD
��������������
g@xD , x ® ¥E

0

This is a wrong answer, because the quotient f@xD � g@xDoscillates in neighborhood of x = ¥ :

PlotA f@xD
��������������
g@xD , 8x, 0, 100<E;

20 40 60 80 100

0.5

1

1.5

2

2.5

If we simplify f@xD � g@xDbefore computing its limit, Mathematica can handle it:

f@xD
��������������
g@xD �� Simplify

ã-Sin@xD

Surprises.nb 4

LimitASimplifyA f@xD
��������������
g@xD E, 8x ® ¥<E

9IntervalA9 1
�����
ã
, ã=E=

The order of things

You can get strange results by changing the order of operations when the order should not matter.
These usually involve subtitutions.

� Detecting singularities

Suppose I want to compute the sum Úk=0
5 ak (yes, this is a silly example, you can create a smart

one). What is the answer? Most people will forget to consider the possibility that a = 0 leads to
00 which is undefined. What does Mathematica say? It depends on the order of things. If we first
compute the sum and then substitute 0 for a it forgets, just like people:

Sum@a^k, 8k, 0, 5<D �. a ® 0

1

If we substitute 0 for a first, then it tells us something is wrong (again, just like most people would):

Sum@0^k, 8k, 0, 5<D
~ Power::indet : Indeterminate expression 00 encountered.

Indeterminate

� Addition of scalars and vectors

Consider the affine map f@vD == J 1 0
1 1

N × Hv + 80, 1<Lwhich takes a two−dimensional vector

v , translates it by 80, 1< and multiplies it by a 2�2 matrix. We might define it as follows in
Mathematica:

In[9]:= f@v_D = J 1 0
1 1

N.Hv + 80, 1<L;
This looks quite reasonable, does it not? Let us compute f@80, 0<D :

In[10]:= f@80, 0<D �� MatrixForm

Out[10]//MatrixForm=J 0 0
1 1

N

Surprises.nb 5

Why, we got a 2�2 matrix as a result instead of a vector?! What if we compute the same thing "by
hand"?

In[11]:= J 1 0
1 1

N.H80, 0< + 80, 1<L �� MatrixForm

Out[11]//MatrixForm=J 0
1

N
Now it is a vector. So the problem must be with the definition of f . Indeed, writing := instead of =
helps:

In[12]:= g@v_D := J 1 0
1 1

N.Hv + 80, 1<L
g@80, 0<D �� MatrixForm

Out[13]//MatrixForm=J 0
1

N
But the real problem lies deeper. Mathematica distributes addition of a symbol over a list, which is
problematic when the symbol is supposed to represent a vector:

a + 8x0, x1, x2<
8a + x0, a + x1, a + x2<

So, it thinks that in the expression v + 80, 1< the symbol v is a scalar so it gets distributed over the
list. When we plug in a vector for v we end up with a 2�2matrix:

In[14]:= v + 80, 1<
Out[14]= 8v, 1 + v<
In[15]:= v + 80, 1< �. v -> 80, 0< �� MatrixForm

Out[15]//MatrixForm=J 0 0
1 1

N
However, if we subtitute 80, 0< for v immediately, we get a vector:

In[16]:= 80, 0< + 80, 1< �� MatrixForm

Out[16]//MatrixForm=J 0
1

N
Once again, we see how certain design choices in Mathematica are reasonable in certain contexts, but
cause a lot of trouble in others.

Surprises.nb 6

